3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-10 19:27:06 +00:00

add cancel to hnf_cutter

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

exit earlier on a large matrix in hnf_cutter

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

call hnf only for the boundary points

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

fix a bug in hnf_cutter initialization

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

initialize has_bounds in lar_solver::get_equality_for_term_on_corrent_x

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

initialize has_bounds in lar_solver::get_equality_for_term_on_corrent_x

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

initialize has_bounds in lar_solver::get_equality_for_term_on_corrent_x

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

initialize has_bounds in lar_solver::get_equality_for_term_on_corrent_x

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

fixes in determinant_of_rectangular_matrix calculations

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

changes in debug code

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

init m_hnf_cut_period from globals settings

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

fix some warnings

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

Lev2 (#66)

* log quantifiers only if present

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* merge and fix some warnings

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

remove a comment

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

simplify gomory cut return's logic

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

simplify uniformly int_solver::check()

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

making new arith solver default for LIA (#67)

* log quantifiers only if present

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* merge and fix some warnings

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

* set new arith as default for LIA

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>

remove chase_cut_solver

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

remove integer_domain

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

restore call for find_cube()

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

remove a method

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>

remove some debug code

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2018-05-23 15:23:34 -07:00
parent 82eb80de6d
commit 9be49ff6ff
17 changed files with 300 additions and 4144 deletions

View file

@ -25,11 +25,11 @@ Revision History:
enum arith_solver_id {
AS_NO_ARITH, // 0
AS_DIFF_LOGIC, // 1
AS_ARITH, // 2
AS_OLD_ARITH, // 2
AS_DENSE_DIFF_LOGIC, // 3
AS_UTVPI, // 4
AS_OPTINF, // 5
AS_LRA // 6
AS_NEW_ARITH // 6
};
enum bound_prop_mode {
@ -113,7 +113,7 @@ struct theory_arith_params {
theory_arith_params(params_ref const & p = params_ref()):
m_arith_eq2ineq(false),
m_arith_process_all_eqs(false),
m_arith_mode(AS_ARITH),
m_arith_mode(AS_NEW_ARITH),
m_arith_auto_config_simplex(false),
m_arith_blands_rule_threshold(1000),
m_arith_propagate_eqs(true),

View file

@ -730,11 +730,11 @@ namespace smt {
}
void setup::setup_i_arith() {
if (AS_LRA == m_params.m_arith_mode) {
setup_r_arith();
if (AS_OLD_ARITH == m_params.m_arith_mode) {
m_context.register_plugin(alloc(smt::theory_i_arith, m_manager, m_params));
}
else {
m_context.register_plugin(alloc(smt::theory_i_arith, m_manager, m_params));
setup_r_arith();
}
}
@ -747,7 +747,7 @@ namespace smt {
case AS_OPTINF:
m_context.register_plugin(alloc(smt::theory_inf_arith, m_manager, m_params));
break;
case AS_LRA:
case AS_NEW_ARITH:
setup_r_arith();
break;
default:
@ -811,12 +811,15 @@ namespace smt {
case AS_OPTINF:
m_context.register_plugin(alloc(smt::theory_inf_arith, m_manager, m_params));
break;
case AS_LRA:
setup_r_arith();
case AS_OLD_ARITH:
if (m_params.m_arith_int_only && int_only)
m_context.register_plugin(alloc(smt::theory_i_arith, m_manager, m_params));
else
m_context.register_plugin(alloc(smt::theory_mi_arith, m_manager, m_params));
break;
default:
if (m_params.m_arith_int_only && int_only)
m_context.register_plugin(alloc(smt::theory_i_arith, m_manager, m_params));
setup_i_arith();
else
m_context.register_plugin(alloc(smt::theory_mi_arith, m_manager, m_params));
break;

View file

@ -307,7 +307,7 @@ class theory_lra::imp {
m_solver->settings().bound_propagation() = BP_NONE != propagation_mode();
m_solver->set_track_pivoted_rows(lp.bprop_on_pivoted_rows());
m_solver->settings().m_int_gomory_cut_period = ctx().get_fparams().m_arith_branch_cut_ratio;
m_solver->settings().m_int_cuts_etc_period = ctx().get_fparams().m_arith_branch_cut_ratio;
m_solver->settings().m_hnf_cut_period = ctx().get_fparams().m_arith_branch_cut_ratio;
m_solver->settings().m_int_chase_cut_solver_period = std::max(8u, ctx().get_fparams().m_arith_branch_cut_ratio);
m_solver->settings().m_int_run_gcd_test = ctx().get_fparams().m_arith_gcd_test;
@ -1302,7 +1302,7 @@ public:
case lp::lia_move::cut: {
++m_stats.m_gomory_cuts;
// m_explanation implies term <= k
app_ref b = mk_bound(term, k, false);
app_ref b = mk_bound(term, k, !upper);
m_eqs.reset();
m_core.reset();
m_params.reset();
@ -2533,10 +2533,10 @@ public:
struct scoped_arith_mode {
smt_params& p;
scoped_arith_mode(smt_params& p) : p(p) {
p.m_arith_mode = AS_ARITH;
p.m_arith_mode = AS_OLD_ARITH;
}
~scoped_arith_mode() {
p.m_arith_mode = AS_LRA;
p.m_arith_mode = AS_NEW_ARITH;
}
};
@ -2544,7 +2544,7 @@ public:
if (dump_lemmas()) {
ctx().display_lemma_as_smt_problem(m_core.size(), m_core.c_ptr(), m_eqs.size(), m_eqs.c_ptr(), false_literal);
}
if (m_arith_params.m_arith_mode != AS_LRA) return true;
if (m_arith_params.m_arith_mode != AS_NEW_ARITH) return true;
scoped_arith_mode _sa(ctx().get_fparams());
context nctx(m, ctx().get_fparams(), ctx().get_params());
add_background(nctx);
@ -2559,7 +2559,7 @@ public:
if (dump_lemmas()) {
ctx().display_lemma_as_smt_problem(m_core.size(), m_core.c_ptr(), m_eqs.size(), m_eqs.c_ptr(), lit);
}
if (m_arith_params.m_arith_mode != AS_LRA) return true;
if (m_arith_params.m_arith_mode != AS_NEW_ARITH) return true;
scoped_arith_mode _sa(ctx().get_fparams());
context nctx(m, ctx().get_fparams(), ctx().get_params());
m_core.push_back(~lit);
@ -2574,7 +2574,7 @@ public:
}
bool validate_eq(enode* x, enode* y) {
if (m_arith_params.m_arith_mode == AS_LRA) return true;
if (m_arith_params.m_arith_mode == AS_NEW_ARITH) return true;
context nctx(m, ctx().get_fparams(), ctx().get_params());
add_background(nctx);
nctx.assert_expr(m.mk_not(m.mk_eq(x->get_owner(), y->get_owner())));

View file

@ -47,7 +47,6 @@
#include "util/lp/stacked_unordered_set.h"
#include "util/lp/int_set.h"
#include "util/stopwatch.h"
#include "util/lp/integer_domain.h"
#include "util/lp/stacked_map.h"
#include <cstdlib>
#include "test/lp/gomory_test.h"
@ -3121,152 +3120,6 @@ void get_random_interval(bool& neg_inf, bool& pos_inf, int& x, int &y) {
lp_assert((neg_inf || (0 <= x && x <= 100)) && (pos_inf || (0 <= y && y <= 100)));
}
void test_integer_domain_intersection(integer_domain<int> & d) {
// int x, y; bool neg_inf, pos_inf;
// get_random_interval(neg_inf, pos_inf, x, y);
// if (neg_inf) {
// if (!pos_inf) {
// d.intersect_with_upper_bound(y);
// }
// }
// else if (pos_inf)
// d.intersect_with_lower_bound(x);
// else
// d.intersect_with_interval(x, y);
}
void test_integer_domain_union(integer_domain<int> & d) {
int x, y; bool neg_inf, pos_inf;
get_random_interval(neg_inf, pos_inf, x, y);
if (neg_inf) {
if (!pos_inf) {
d.unite_with_interval_neg_inf_x(y);
}
else
d.init_to_contain_all();
}
else if (pos_inf)
d.unite_with_interval_x_pos_inf(x);
else
d.unite_with_interval(x, y);
lp_assert(d.is_correct());
}
void test_integer_domain_randomly(integer_domain<int> & d) {
int i = my_random() % 10;
if (i == 0)
test_integer_domain_intersection(d);
else
test_integer_domain_union(d);
}
void test_integer_domain() {
#ifdef Z3DEBUG
std::cout << "test_integer_domain\n";
unsigned e0 = 0;
unsigned e1 = 1;
unsigned e2 = 2;
unsigned e3 = 3; // these are explanations
unsigned e4 = 4;
unsigned e5 = 5;
integer_domain<unsigned> d;
unsigned l0 = 0, l1 = 1, l2 = 3;
unsigned u0 = 10, u1 = 9, u2 = 8;
d.push();
d.intersect_with_lower_bound(l0, e0);
unsigned b;
unsigned e;
bool r = d.get_lower_bound_with_expl(b, e);
lp_assert(r && b == l0 && e == e0);
d.push();
d.intersect_with_upper_bound(u0, e1);
r = d.get_upper_bound_with_expl(b, e);
lp_assert(r && b == u0 && e == e1);
r = d.get_lower_bound_with_expl(b, e);
lp_assert(r && b == l0 && e == e0);
d.pop();
r = d.get_upper_bound_with_expl(b, e);
lp_assert(!r);
d.intersect_with_upper_bound(u0, e1);
d.push();
d.intersect_with_lower_bound(l1, e2);
d.intersect_with_upper_bound(u1, e3);
d.push();
d.intersect_with_lower_bound(l2, e4);
d.intersect_with_upper_bound(u2, e5);
lp_assert(d.is_empty() == false);
d.print(std::cout);
d.pop();
r = d.get_lower_bound_with_expl(b, e);
lp_assert(r && b == l1 && e == e2);
d.print(std::cout);
d.pop(2);
d.print(std::cout);
lp_assert(d.has_neg_inf() && d.has_pos_inf());
#endif
// integer_domain<int> d;
// std::vector<integer_domain<int>> stack;
// for (int i = 0; i < 10000; i++) {
// test_integer_domain_randomly(d);
// stack.push_back(d);
// d.push();
// if (i > 0 && i%100 == 0) {
// if (stack.size() == 0) continue;
// unsigned k = my_random() % stack.size();
// if (k == 0)
// k = 1;
// d.pop(k);
// d.restore_domain();
// for (unsigned j = 0; j + 1 < k; j++) {
// stack.pop_back();
// }
// std::cout<<"comparing i = " << i << std::endl;
// lp_assert(d == *stack.rbegin());
// stack.pop_back();
// }
// //d.print(std::cout);
// }
}
void test_resolve_with_tight_constraint(chase_cut_solver& cs,
lp::chase_cut_solver::polynomial&i ,
unsigned int j,
chase_cut_solver::polynomial& ti) {
// std::cout << "resolve constraint ";
// cs.print_polynomial(std::cout, i);
// std::cout << " for " << cs.get_column_name(j) << " by using poly ";
// cs.print_polynomial(std::cout, ti);
// std::cout << std::endl;
// bool j_coeff_is_one = ti.coeff(j) == 1;
// chase_cut_solver::polynomial result;
// cs.resolve(i, j, j_coeff_is_one, ti);
// std::cout << "resolve result is ";
// cs.print_polynomial(std::cout, i);
// std::cout << std::endl;
}
typedef chase_cut_solver::monomial mono;
void test_resolve(chase_cut_solver& cs, unsigned constraint_index, unsigned i0) {
var_index x = 0;
var_index y = 1;
var_index z = 2;
std::cout << "test_resolve\n";
chase_cut_solver::polynomial i; i += mono(2, x);i += mono(-3,y);
i+= mono(4, z);
i.m_a = 5;
chase_cut_solver::polynomial ti; ti += mono(1, x); ti+= mono(1,y);ti.m_a = 3;
test_resolve_with_tight_constraint(cs, i, x, ti);
test_resolve_with_tight_constraint(cs, i, y ,ti);
}
void test_gomory_cut_0() {
gomory_test g(
@ -3688,15 +3541,29 @@ void test_larger_generated_hnf() {
std::cout << "test_larger_generated_rank_hnf" << std::endl;
general_matrix A;
vector<mpq> v;
v.push_back(zero_of_type<mpq>());
v.push_back(zero_of_type<mpq>());
v.push_back(zero_of_type<mpq>());
A.push_row(v);
v.clear();
v.push_back(mpq(5));
v.push_back(mpq(6));
v.push_back(mpq(3));
v.push_back(mpq(1));
A.push_row(v);
v.clear();
v.push_back(mpq(5));
v.push_back(mpq(26));
v.push_back(mpq(2));
v.push_back(mpq(3));
v.push_back(mpq(7));
A.push_row(v);
v.clear();
v.push_back(mpq(5));
v.push_back(mpq(6));
v.push_back(mpq(3));
v.push_back(mpq(1));
A.push_row(v);
v.clear();
v.push_back(mpq(5));
v.push_back(mpq(2));
v.push_back(mpq(3));
v.push_back(mpq(7));
A.push_row(v);
call_hnf(A);
std::cout << "test_larger_generated_rank_hnf passed" << std::endl;
@ -3750,10 +3617,6 @@ void test_lp_local(int argn, char**argv) {
test_gomory_cut();
return finalize(0);
}
if (args_parser.option_is_used("-intd")) {
test_integer_domain();
return finalize(0);
}
if (args_parser.option_is_used("--test_mpq")) {
test_rationals();

View file

@ -4,7 +4,6 @@ z3_add_component(lp
binary_heap_priority_queue.cpp
binary_heap_upair_queue.cpp
bound_propagator.cpp
chase_cut_solver.cpp
core_solver_pretty_printer.cpp
dense_matrix.cpp
eta_matrix.cpp

View file

@ -1,23 +0,0 @@
/*
Copyright (c) 2017 Microsoft Corporation
Author: Nikolaj Bjorner, Lev Nachmanson
*/
#include "util/lp/chase_cut_solver.h"
namespace lp {
mpq polynomial::m_local_zero = zero_of_type<mpq>();
size_t constraint_hash::operator() (const constraint* c) const { return c->id(); }
bool constraint_equal::operator() (const constraint* a, const constraint * b) const { return a->id() == b->id(); }
std::ostream& operator<<(std::ostream& out, pp_poly const& p) {
p.s.print_polynomial(out, p.p);
return out;
}
std::ostream& operator<<(std::ostream& out, pp_constraint const& c) {
c.s.print_constraint(out, c.c);
return out;
}
}

File diff suppressed because it is too large Load diff

View file

@ -18,6 +18,7 @@ Revision History:
--*/
#pragma once
#include <functional>
namespace lp {
class general_matrix {
// fields
@ -72,12 +73,18 @@ public:
#ifdef Z3DEBUG
void print(std::ostream & out, unsigned blanks = 0) const {
print_matrix<mpq>(m_data, out, blanks);
unsigned m = row_count();
unsigned n = column_count();
general_matrix g(m, n);
for (unsigned i = 0; i < m; i++)
for (unsigned j = 0; j < n; j++)
g[i][j] = (*this)[i][j];
print_matrix<mpq>(g.m_data, out, blanks);
}
void print(std::ostream & out, const char * ss) const {
std::string s(ss);
out << s;
print(out, s.size());
print(out, static_cast<unsigned>(s.size()));
}
void print_submatrix(std::ostream & out, unsigned k, unsigned blanks = 0) const {

View file

@ -20,7 +20,6 @@ $1$ at $i$-th position. Then we need to find the row vector $e_iU^{-1}=t$. Notic
We find $e_iH^{-1} = f$ by solving $e_i = fH$ and then $fA$ gives us $t$.
Author:
Nikolaj Bjorner (nbjorner)
Lev Nachmanson (levnach)
Revision History:
@ -104,15 +103,13 @@ void extended_gcd_minimal_uv(const mpq & a, const mpq & b, mpq & d, mpq & u, mpq
template <typename M> bool prepare_pivot_for_lower_triangle(M &m, unsigned r, svector<unsigned> & basis_rows) {
lp_assert(m.row_count() <= m.column_count());
template <typename M> bool prepare_pivot_for_lower_triangle(M &m, unsigned r) {
for (unsigned i = r; i < m.row_count(); i++) {
for (unsigned j = r; j < m.column_count(); j++) {
if (!is_zero(m[i][j])) {
if (i != r) {
m.transpose_rows(i, r);
}
basis_rows.push_back(i);
if (j != r) {
m.transpose_columns(j, r);
}
@ -123,7 +120,8 @@ template <typename M> bool prepare_pivot_for_lower_triangle(M &m, unsigned r, sv
return false;
}
template <typename M> void pivot_column_non_fractional(M &m, unsigned & r) {
template <typename M> void pivot_column_non_fractional(M &m, unsigned r) {
lp_assert(!is_zero(m[r][r]));
lp_assert(m.row_count() <= m.column_count());
for (unsigned j = r + 1; j < m.column_count(); j++) {
for (unsigned i = r + 1; i < m.row_count(); i++) {
@ -134,37 +132,36 @@ template <typename M> void pivot_column_non_fractional(M &m, unsigned & r) {
lp_assert(is_int(m[i][j]));
}
}
// debug
for (unsigned k = r + 1; k < m.row_count(); k++) {
m[k][r] = zero_of_type<mpq>();
}
}
// returns the rank of the matrix
template <typename M> void to_lower_triangle_non_fractional(M &m, svector<unsigned> & basis_rows ) {
template <typename M> unsigned to_lower_triangle_non_fractional(M &m) {
lp_assert(m.row_count() <= m.column_count());
unsigned i = 0;
for (; i < m.row_count() - 1; i++) {
if (!prepare_pivot_for_lower_triangle(m, i, basis_rows)) {
return;
for (; i < m.row_count(); i++) {
if (!prepare_pivot_for_lower_triangle(m, i)) {
return i;
}
pivot_column_non_fractional(m, i);
}
lp_assert(i == m.row_count() - 1);
// go over the last row and try to find a non-zero in the row to the right of diagonal
for (unsigned j = i; j < m.column_count(); j++) {
if (!is_zero(m[i][j])) {
basis_rows.push_back(i);
break;
}
}
lp_assert(i == m.row_count());
return i;
}
template <typename M>
mpq gcd_of_row_starting_from_diagonal(const M& m, unsigned i) {
mpq g = zero_of_type<mpq>();
unsigned j = i;
for (; j < m.column_count() && is_zero(j); j++) {
for (; j < m.column_count() && is_zero(g); j++) {
const auto & t = m[i][j];
if (!is_zero(t))
g = t;
g = abs(t);
}
lp_assert(!is_zero(g));
for (; j < m.column_count(); j++) {
const auto & t = m[i][j];
if (!is_zero(t))
@ -183,10 +180,15 @@ template <typename M> mpq determinant_of_rectangular_matrix(const M& m, svector<
// m[r-1][r-1], m[r-1][r], ..., m[r-1]m[m.column_count() - 1] give the determinants of all minors of rank r.
// The gcd of these minors is the return value
auto mc = m;
to_lower_triangle_non_fractional(mc, basis_rows);
if (basis_rows.size() == 0)
unsigned rank = to_lower_triangle_non_fractional(mc);
if (rank == 0)
return one_of_type<mpq>();
return gcd_of_row_starting_from_diagonal(mc, basis_rows.size() - 1);
for (unsigned i = 0; i < rank; i++) {
basis_rows.push_back(mc.adjust_row(i));
}
TRACE("hnf_calc", tout << "basis_rows = "; print_vector(basis_rows, tout); mc.print(tout, "mc = "););
return gcd_of_row_starting_from_diagonal(mc, rank - 1);
}
template <typename M> mpq determinant(const M& m) {
@ -499,9 +501,7 @@ private:
m_W[k][j] -= u * m_W[k][m_i];
// m_W[k][j] = mod_R_balanced(m_W[k][j]);
}
}
}
bool is_unit_matrix(const M& u) const {
unsigned m = u.row_count();
@ -597,8 +597,8 @@ public:
hnf(M & A, const mpq & d) :
#ifdef Z3DEBUG
m_H(A),
#endif
m_A_orig(A),
#endif
m_W(A),
m_buffer(std::max(A.row_count(), A.column_count())),
m_m(A.row_count()),

View file

@ -11,7 +11,6 @@ Abstract:
Author:
Lev Nachmanson (levnach)
Nikolaj Bjorner (nbjorner)
Revision History:
@ -33,13 +32,21 @@ class hnf_cutter {
vector<mpq> m_right_sides;
unsigned m_row_count;
unsigned m_column_count;
std::function<unsigned ()> m_random_next;
lp_settings & m_settings;
public:
hnf_cutter(std::function<unsigned()> random) : m_random_next(random) {}
hnf_cutter(lp_settings & settings) : m_row_count(0), m_column_count(0), m_settings(settings) {}
unsigned row_count() const {
return m_row_count;
}
const vector<const lar_term*>& terms() const { return m_terms; }
const vector<mpq> & right_sides() const { return m_right_sides; }
void clear() {
// m_A will be filled from scratch in init_matrix_A
m_var_register.clear();
m_terms.clear();
m_right_sides.clear();
m_row_count = m_column_count = 0;
}
void add_term(const lar_term* t, const mpq &rs) {
@ -95,15 +102,14 @@ public:
int ret = -1;
int n = 0;
for (int i = 0; i < static_cast<int>(b.size()); i++) {
if (!is_int(b[i])) {
if (n == 0 ) {
lp_assert(ret == -1);
n = 1;
if (is_int(b[i])) continue;
if (n == 0 ) {
lp_assert(ret == -1);
n = 1;
ret = i;
} else {
if (m_settings.random_next() % (++n) == 0) {
ret = i;
} else {
if (m_random_next() % (++n) == 0) {
ret = i;
}
}
}
}
@ -144,11 +150,28 @@ public:
t.add_monomial(row[j], m_var_register.local_var_to_user_var(j));
}
}
lia_move create_cut(lar_term& t, mpq& k, explanation& ex, bool & upper) {
#ifdef Z3DEBUG
vector<mpq> transform_to_local_columns(const vector<impq> & x) const {
vector<mpq> ret;
lp_assert(m_column_count <= m_var_register.size());
for (unsigned j = 0; j < m_column_count;j++) {
lp_assert(is_zero(x[m_var_register.local_var_to_user_var(j)].y));
ret.push_back(x[m_var_register.local_var_to_user_var(j)].x);
}
return ret;
}
#endif
lia_move create_cut(lar_term& t, mpq& k, explanation& ex, bool & upper
#ifdef Z3DEBUG
,
const vector<mpq> & x0
#endif
) {
init_matrix_A();
svector<unsigned> basis_rows;
mpq d = hnf_calc::determinant_of_rectangular_matrix(m_A, basis_rows);
if (m_settings.get_cancel_flag())
return lia_move::undef;
if (basis_rows.size() < m_A.row_count())
m_A.shrink_to_rank(basis_rows);
@ -156,10 +179,10 @@ public:
// general_matrix A_orig = m_A;
vector<mpq> b = create_b(basis_rows);
vector<mpq> bcopy = b;
lp_assert(m_A * x0 == b);
// vector<mpq> bcopy = b;
find_h_minus_1_b(h.W(), b);
lp_assert(bcopy == h.W().take_first_n_columns(b.size()) * b);
// lp_assert(bcopy == h.W().take_first_n_columns(b.size()) * b);
int cut_row = find_cut_row_index(b);
if (cut_row == -1) {
return lia_move::undef;
@ -181,7 +204,6 @@ public:
vector<mpq> row(m_A.column_count());
get_ei_H_minus_1(cut_row, h.W(), row);
vector<mpq> f = row * m_A;
fill_term(f, t);
k = floor(b[cut_row]);
upper = true;

View file

@ -5,9 +5,9 @@
#include "util/lp/int_solver.h"
#include "util/lp/lar_solver.h"
#include "util/lp/chase_cut_solver.h"
#include "util/lp/lp_utils.h"
#include <utility>
#include "util/lp/monomial.h"
namespace lp {
@ -32,22 +32,15 @@ void int_solver::trace_inf_rows() const {
);
}
bool int_solver::all_columns_are_bounded() const {
for (unsigned j = 0; j < m_lar_solver->column_count(); j++)
if (m_lar_solver->column_is_bounded(j) == false)
return false;
return true;
}
bool int_solver::has_inf_int() const {
return m_lar_solver->has_inf_int();
}
int int_solver::find_inf_int_base_column() {
unsigned inf_int_count;
unsigned inf_int_count = 0;
int j = find_inf_int_boxed_base_column_with_smallest_range(inf_int_count);
if (j != -1)
return j;
if (j != -1)
return j;
if (inf_int_count == 0)
return -1;
unsigned k = random() % inf_int_count;
@ -55,22 +48,17 @@ int int_solver::find_inf_int_base_column() {
}
int int_solver::get_kth_inf_int(unsigned k) const {
unsigned inf_int_count = 0;
for (unsigned j : m_lar_solver->r_basis()) {
if (! column_is_int_inf(j) )
continue;
if (inf_int_count++ == k)
for (unsigned j : m_lar_solver->r_basis())
if (column_is_int_inf(j) && k-- == 0)
return j;
}
lp_assert(false);
return -1;
}
int int_solver::find_inf_int_nbasis_column() const {
for (unsigned j : m_lar_solver->r_nbasis())
if (! column_is_int_inf(j) )
return j;
if (!column_is_int_inf(j))
return j;
return -1;
}
@ -80,7 +68,7 @@ int int_solver::find_inf_int_boxed_base_column_with_smallest_range(unsigned & in
mpq range;
mpq new_range;
mpq small_range_thresold(1024);
unsigned n;
unsigned n = 0;
lar_core_solver & lcs = m_lar_solver->m_mpq_lar_core_solver;
for (unsigned j : m_lar_solver->r_basis()) {
@ -93,24 +81,14 @@ int int_solver::find_inf_int_boxed_base_column_with_smallest_range(unsigned & in
new_range = lcs.m_r_upper_bounds()[j].x - lcs.m_r_lower_bounds()[j].x;
if (new_range > small_range_thresold)
continue;
if (result == -1) {
if (result == -1 || new_range < range) {
result = j;
range = new_range;
n = 1;
continue;
}
if (new_range < range) {
n = 1;
else if (new_range == range && settings().random_next() % (++n) == 0) {
lp_assert(n > 1);
result = j;
range = new_range;
continue;
}
if (new_range == range) {
lp_assert(n >= 1);
if (settings().random_next() % (++n) == 0) {
result = j;
continue;
}
}
}
return result;
@ -272,18 +250,10 @@ void int_solver::gomory_cut_adjust_t_and_k(vector<std::pair<mpq, unsigned>> & po
bool int_solver::current_solution_is_inf_on_cut() const {
const auto & x = m_lar_solver->m_mpq_lar_core_solver.m_r_x;
impq v = m_t->apply(x);
mpq sign = !(*m_upper) ? one_of_type<mpq>() : -one_of_type<mpq>();
TRACE("current_solution_is_inf_on_cut",
if (is_pos(sign)) {
tout << "v = " << v << " k = " << (*m_k) << std::endl;
if (v <=(*m_k)) {
tout << "v <= k - it should not happen!\n";
}
} else {
if (v >= (*m_k)) {
tout << "v > k - it should not happen!\n";
}
}
mpq sign = *m_upper ? one_of_type<mpq>() : -one_of_type<mpq>();
CTRACE("current_solution_is_inf_on_cut", v * sign <= (*m_k) * sign,
tout << "m_upper = " << *m_upper << std::endl;
tout << "v = " << v << ", k = " << (*m_k) << std::endl;
);
return v * sign > (*m_k) * sign;
}
@ -362,8 +332,7 @@ lia_move int_solver::mk_gomory_cut( unsigned inf_col, const row_strip<mpq> & row
a.neg();
if (is_real(x_j))
real_case_in_gomory_cut(a, x_j, f_0, one_min_f_0);
else {
if (a.is_int()) continue; // f_j will be zero and no monomial will be added
else if (!a.is_int()) { // f_j will be zero and no monomial will be added
some_int_columns = true;
int_case_in_gomory_cut(a, x_j, lcm_den, f_0, one_min_f_0);
}
@ -392,14 +361,14 @@ int int_solver::find_free_var_in_gomory_row(const row_strip<mpq>& row) {
lia_move int_solver::proceed_with_gomory_cut(unsigned j) {
const row_strip<mpq>& row = m_lar_solver->get_row(row_of_basic_column(j));
int free_j = find_free_var_in_gomory_row(row);
if (free_j != -1)
return lia_move::undef;
if (!is_gomory_cut_target(row)) {
return lia_move::undef;
}
*m_upper = false;
if (-1 != find_free_var_in_gomory_row(row))
return lia_move::undef;
if (!is_gomory_cut_target(row))
return lia_move::undef;
*m_upper = true;
return mk_gomory_cut(j, row);
}
@ -420,29 +389,7 @@ unsigned int_solver::row_of_basic_column(unsigned j) const {
// }
typedef chase_cut_solver::monomial mono;
// it produces an inequality coeff*x <= rs
template <typename T>
void int_solver::get_int_coeffs_from_constraint(const lar_base_constraint* c,
vector<mono>& coeffs, T & rs) {
lp_assert(c->m_kind != EQ); // it is not implemented, we need to create two inequalities in this case
int sign = ((int)c->m_kind > 0) ? -1 : 1;
vector<std::pair<T, var_index>> lhs = c->get_left_side_coefficients();
T den = denominator(c->m_right_side);
for (auto & kv : lhs) {
lp_assert(!is_term(kv.second));
lp_assert(is_int(kv.second)); // not implemented for real vars!
den = lcm(den, denominator(kv.first));
}
lp_assert(den > 0);
for (auto& kv : lhs) {
coeffs.push_back(mono(den * kv.first * sign, kv.second));
}
rs = den * c->m_right_side * sign;
if (kind_is_strict(c->m_kind))
rs--;
}
typedef monomial mono;
// this will allow to enable and disable tracking of the pivot rows
@ -462,36 +409,6 @@ struct pivoted_rows_tracking_control {
}
};
void int_solver::copy_explanations_from_chase_cut_solver() {
TRACE("propagate_and_backjump_step_int",
for (unsigned j: m_chase_cut_solver.m_explanation)
m_lar_solver->print_constraint(m_lar_solver->constraints()[j], tout););
for (unsigned j : m_chase_cut_solver.m_explanation) {
m_ex->push_justification(j);
}
m_chase_cut_solver.m_explanation.clear();
}
void int_solver::copy_values_from_chase_cut_solver() {
for (unsigned j = 0; j < m_lar_solver->A_r().column_count() && j < m_chase_cut_solver.number_of_vars(); j++) {
if (!m_chase_cut_solver.var_is_active(j))
continue;
if (!is_int(j)) {
continue;
}
m_lar_solver->m_mpq_lar_core_solver.m_r_x[j] = m_chase_cut_solver.var_value(j);
lp_assert(m_lar_solver->column_value_is_int(j));
}
}
void int_solver::catch_up_in_adding_constraints_to_chase_cut_solver() {
lp_assert(m_chase_cut_solver.number_of_asserts() <= m_lar_solver->constraints().size());
for (unsigned j = m_chase_cut_solver.number_of_asserts(); j < m_lar_solver->constraints().size(); j++) {
add_constraint_to_chase_cut_solver(j, m_lar_solver->constraints()[j]);
}
}
impq int_solver::get_cube_delta_for_term(const lar_term& t) const {
if (t.size() == 2) {
bool seen_minus = false;
@ -541,9 +458,9 @@ bool int_solver::tighten_terms_for_cube() {
return true;
}
bool int_solver::find_cube() {
lia_move int_solver::find_cube() {
if (m_branch_cut_counter % settings().m_int_find_cube_period != 0)
return false;
return lia_move::undef;
settings().st().m_cube_calls++;
TRACE("cube",
@ -551,26 +468,25 @@ bool int_solver::find_cube() {
display_column(tout, j);
m_lar_solver->print_terms(tout);
);
m_lar_solver->push();
if(!tighten_terms_for_cube()) {
m_lar_solver->pop();
return false;
lar_solver::scoped_push _sp(*m_lar_solver);
if (!tighten_terms_for_cube()) {
return lia_move::undef;
}
lp_status st = m_lar_solver->find_feasible_solution();
if (st != lp_status::FEASIBLE && st != lp_status::OPTIMAL) {
TRACE("cube", tout << "cannot find a feasiblie solution";);
m_lar_solver->pop();
_sp.pop();
move_non_basic_columns_to_bounds();
find_feasible_solution();
lp_assert(m_chase_cut_solver.cancel() || is_feasible());
// it can happen that we found an integer solution here
return !m_lar_solver->r_basis_has_inf_int();
return !m_lar_solver->r_basis_has_inf_int()? lia_move::sat: lia_move::undef;
}
m_lar_solver->pop();
_sp.pop();
m_lar_solver->round_to_integer_solution();
lp_assert(m_chase_cut_solver.cancel() || is_feasible());
return true;
settings().st().m_cube_success++;
return lia_move::sat;
}
void int_solver::find_feasible_solution() {
@ -589,55 +505,26 @@ lia_move int_solver::run_gcd_test() {
return lia_move::undef;
}
lia_move int_solver::call_chase_cut_solver() {
if ((m_branch_cut_counter) % settings().m_int_chase_cut_solver_period != 0 || !all_columns_are_bounded())
return lia_move::undef;
TRACE("check_main_int", tout<<"chase_cut_solver";);
catch_up_in_adding_constraints_to_chase_cut_solver();
auto check_res = m_chase_cut_solver.check();
settings().st().m_chase_cut_solver_calls++;
switch (check_res) {
case chase_cut_solver::lbool::l_false:
copy_explanations_from_chase_cut_solver();
settings().st().m_chase_cut_solver_false++;
return lia_move::conflict;
case chase_cut_solver::lbool::l_true:
settings().st().m_chase_cut_solver_true++;
copy_values_from_chase_cut_solver();
lp_assert(m_lar_solver->all_constraints_hold());
return lia_move::sat;
case chase_cut_solver::lbool::l_undef:
settings().st().m_chase_cut_solver_undef++;
if (m_chase_cut_solver.try_getting_cut(*m_t, *m_k, m_lar_solver->m_mpq_lar_core_solver.m_r_x)) {
m_lar_solver->subs_term_columns(*m_t);
TRACE("chase_cut_solver_cuts",
tout<<"precut from chase_cut_solver:"; m_lar_solver->print_term(*m_t, tout); tout << " <= " << *m_k << std::endl;);
return lia_move::cut;
}
default:
return lia_move::undef;
}
}
lia_move int_solver::gomory_cut() {
TRACE("check_main_int", tout << "gomory";);
if ((m_branch_cut_counter) % settings().m_int_gomory_cut_period != 0)
return lia_move::undef;
if (move_non_basic_columns_to_bounds()) {
lp_status st = m_lar_solver->find_feasible_solution();
if (st != lp_status::FEASIBLE && st != lp_status::OPTIMAL) {
TRACE("arith_int", tout << "give_up\n";);
return lia_move::undef;
}
#if Z3DEBUG
lp_status st =
#endif
m_lar_solver->find_feasible_solution();
#if Z3DEBUG
lp_assert(st == lp_status::FEASIBLE || st == lp_status::OPTIMAL);
#endif
}
int j = find_inf_int_base_column();
if (j == -1) {
j = find_inf_int_nbasis_column();
return j == -1? lia_move::sat : create_branch_on_column(j);
}
lia_move r = proceed_with_gomory_cut(j);
if (r != lia_move::undef)
return r;
return create_branch_on_column(j);
return proceed_with_gomory_cut(j);
}
@ -645,39 +532,49 @@ bool int_solver::try_add_term_to_A_for_hnf(unsigned i) {
mpq rs;
const lar_term* t = m_lar_solver->terms()[i];
for (const auto & p : *t) {
if (!is_int(p.var()))
if (!is_int(p.var())) {
lp_assert(false);
return false; // todo : the mix case!
}
}
if (m_lar_solver->get_equality_for_term_on_corrent_x(i, rs)) {
bool has_bounds;
if (m_lar_solver->get_equality_and_right_side_for_term_on_corrent_x(i, rs, has_bounds)) {
m_hnf_cutter.add_term(t, rs);
return true;
} else {
return false;
}
return !has_bounds;
}
bool int_solver::hnf_matrix_is_empty() const { return true; }
bool int_solver::prepare_matrix_A_for_hnf_cut() {
bool int_solver::init_terms_for_hnf_cut() {
m_hnf_cutter.clear();
for (unsigned i = 0; i < m_lar_solver->terms().size(); i++) {
bool r = try_add_term_to_A_for_hnf(i);
if (!r && settings().hnf_cutter_exit_if_x_is_not_on_bound_or_mixed )
return false;
try_add_term_to_A_for_hnf(i);
}
return true;
return m_hnf_cutter.row_count() < settings().limit_on_rows_for_hnf_cutter;
}
lia_move int_solver::make_hnf_cut() {
if (!prepare_matrix_A_for_hnf_cut()) {
if (!init_terms_for_hnf_cut()) {
return lia_move::undef;
}
settings().st().m_hnf_cutter_calls++;
lia_move r = m_hnf_cutter.create_cut(*m_t, *m_k, *m_ex, *m_upper);
TRACE("hnf_cut", tout << "settings().st().m_hnf_cutter_calls = " << settings().st().m_hnf_cutter_calls;);
#ifdef Z3DEBUG
vector<mpq> x0 = m_hnf_cutter.transform_to_local_columns(m_lar_solver->m_mpq_lar_core_solver.m_r_x);
#endif
lia_move r = m_hnf_cutter.create_cut(*m_t, *m_k, *m_ex, *m_upper
#ifdef Z3DEBUG
, x0
#endif
);
CTRACE("hnf_cut", r == lia_move::cut, tout<< "cut:"; m_lar_solver->print_term(*m_t, tout); tout << " <= " << *m_k << std::endl;);
if (r == lia_move::cut)
if (r == lia_move::cut) {
lp_assert(current_solution_is_inf_on_cut());
settings().st().m_hnf_cuts++;
}
return r;
}
@ -689,43 +586,42 @@ lia_move int_solver::hnf_cut() {
}
lia_move int_solver::check(lar_term& t, mpq& k, explanation& ex, bool & upper) {
if (!has_inf_int())
return lia_move::sat;
if (!has_inf_int()) return lia_move::sat;
m_t = &t; m_k = &k; m_ex = &ex; m_upper = &upper;
if (run_gcd_test() == lia_move::conflict)
return lia_move::conflict;
lia_move r = run_gcd_test();
if (r != lia_move::undef) return r;
pivoted_rows_tracking_control pc(m_lar_solver);
if(settings().m_int_pivot_fixed_vars_from_basis)
m_lar_solver->pivot_fixed_vars_from_basis();
if (patch_nbasic_columns() == lia_move::sat)
return lia_move::sat;
r = patch_nbasic_columns();
if (r != lia_move::undef) return r;
++m_branch_cut_counter;
if (find_cube()){
settings().st().m_cube_success++;
return lia_move::sat;
}
lia_move r = call_chase_cut_solver();
if (r != lia_move::undef)
return r;
r = hnf_cut();
if (r != lia_move::undef)
return r;
r = find_cube();
if (r != lia_move::undef) return r;
if ((m_branch_cut_counter) % settings().m_int_gomory_cut_period == 0) {
return gomory_cut();
}
int j = find_inf_int_base_column();
if (j == -1) {
j = find_inf_int_nbasis_column();
if (j == -1)
return lia_move::sat;
}
return create_branch_on_column(j);
r = hnf_cut();
if (r != lia_move::undef) return r;
r = gomory_cut();
return (r == lia_move::undef)? branch_or_sat() : r;
}
lia_move int_solver::branch_or_sat() {
int j = find_any_inf_int_column_basis_first();
return j == -1? lia_move::sat : create_branch_on_column(j);
}
int int_solver::find_any_inf_int_column_basis_first() {
int j = find_inf_int_base_column();
if (j != -1)
return j;
return find_inf_int_nbasis_column();
}
bool int_solver::move_non_basic_column_to_bounds(unsigned j) {
@ -751,7 +647,7 @@ bool int_solver::move_non_basic_column_to_bounds(unsigned j) {
if (val != lcs.m_r_upper_bounds()[j]) {
set_value_for_nbasic_column(j, lcs.m_r_upper_bounds()[j]);
return true;
}
}
break;
default:
if (is_int(j) && !val.is_int()) {
@ -845,6 +741,7 @@ void int_solver::patch_nbasic_column(unsigned j) {
tout << "patching with 0\n";);
}
}
lia_move int_solver::patch_nbasic_columns() {
settings().st().m_patches++;
lp_assert(is_feasible());
@ -931,6 +828,7 @@ bool int_solver::gcd_test_for_row(static_matrix<mpq, numeric_pair<mpq>> & A, uns
return true;
}
void int_solver::add_to_explanation_from_fixed_or_boxed_column(unsigned j) {
constraint_index lc, uc;
m_lar_solver->get_bound_constraint_witnesses_for_column(j, lc, uc);
@ -948,10 +846,8 @@ void int_solver::fill_explanation_from_fixed_columns(const row_strip<mpq> & row)
bool int_solver::gcd_test() {
auto & A = m_lar_solver->A_r(); // getting the matrix
for (unsigned i = 0; i < A.row_count(); i++)
if (!gcd_test_for_row(A, i)) {
return false;
}
if (!gcd_test_for_row(A, i))
return false;
return true;
}
@ -1022,19 +918,15 @@ linear_combination_iterator<mpq> * int_solver::get_column_iterator(unsigned j) {
}
*/
int_solver::int_solver(lar_solver* lar_slv) :
m_lar_solver(lar_slv),
m_branch_cut_counter(0),
m_chase_cut_solver([this](unsigned j) {return m_lar_solver->get_column_name(j);},
[this](unsigned j, std::ostream &o) {m_lar_solver->print_constraint(j, o);},
[this]() {return m_lar_solver->A_r().column_count();},
[this](unsigned j) {return get_value(j);},
settings()),
m_hnf_cutter([this](){ return settings().random_next(); })
{
m_hnf_cutter(settings()) {
m_lar_solver->set_int_solver(this);
}
bool int_solver::has_low(unsigned j) const {
switch (m_lar_solver->m_mpq_lar_core_solver.m_column_types()[j]) {
case column_type::fixed:
@ -1067,6 +959,7 @@ void set_lower(impq & l,
}
}
void set_upper(impq & u,
bool & inf_u,
impq const & v) {
@ -1386,22 +1279,6 @@ bool int_solver::is_term(unsigned j) const {
return m_lar_solver->column_corresponds_to_term(j);
}
void int_solver::add_constraint_to_chase_cut_solver(unsigned ci, const lar_base_constraint * c) {
vector<mono> coeffs;
mpq rs;
get_int_coeffs_from_constraint<mpq>(c, coeffs, rs);
m_chase_cut_solver.add_ineq(coeffs, -rs, ci);
}
void int_solver::pop(unsigned k) {
m_chase_cut_solver.pop_trail(k);
while (m_chase_cut_solver.number_of_asserts() > m_lar_solver->constraints().size())
m_chase_cut_solver.pop_last_assert();
m_chase_cut_solver.pop_constraints();
}
void int_solver::push() { m_chase_cut_solver.push(); }
unsigned int_solver::column_count() const { return m_lar_solver->column_count(); }
}

View file

@ -22,7 +22,6 @@ Revision History:
#include "util/lp/static_matrix.h"
#include "util/lp/int_set.h"
#include "util/lp/lar_term.h"
#include "util/lp/chase_cut_solver.h"
#include "util/lp/lar_constraints.h"
#include "util/lp/hnf_cutter.h"
#include "util/lp/lia_move.h"
@ -38,10 +37,9 @@ struct lp_constraint;
class int_solver {
public:
// fields
lar_solver * m_lar_solver;
lar_solver *m_lar_solver;
unsigned m_branch_cut_counter;
chase_cut_solver m_chase_cut_solver;
lar_term* m_t; // the term to return in the cut
lar_term *m_t; // the term to return in the cut
mpq *m_k; // the right side of the cut
explanation *m_ex; // the conflict explanation
bool *m_upper; // we have a cut m_t*x <= k if m_upper is true nad m_t*x >= k otherwise
@ -96,6 +94,8 @@ private:
const impq & get_value(unsigned j) const;
bool column_is_int_inf(unsigned j) const;
void trace_inf_rows() const;
lia_move branch_or_sat();
int find_any_inf_int_column_basis_first();
int find_inf_int_base_column();
int find_inf_int_boxed_base_column_with_smallest_range(unsigned&);
int get_kth_inf_int(unsigned) const;
@ -139,20 +139,10 @@ private:
unsigned random();
bool has_inf_int() const;
lia_move create_branch_on_column(int j);
void catch_up_in_adding_constraints_to_chase_cut_solver();
public:
template <typename T>
void fill_chase_cut_solver_vars();
template <typename T>
void get_int_coeffs_from_constraint(const lar_base_constraint* c, vector<chase_cut_solver::monomial>& coeff, T & rs);
bool is_term(unsigned j) const;
void add_constraint_to_chase_cut_solver(unsigned,const lar_base_constraint*);
void copy_explanations_from_chase_cut_solver();
void pop(unsigned);
void push();
void copy_values_from_chase_cut_solver();
bool left_branch_is_more_narrow_than_right(unsigned);
bool find_cube();
lia_move find_cube();
bool tighten_terms_for_cube();
bool tighten_term_for_cube(unsigned);
unsigned column_count() const;
@ -161,11 +151,10 @@ public:
void find_feasible_solution();
int find_inf_int_nbasis_column() const;
lia_move run_gcd_test();
lia_move call_chase_cut_solver();
lia_move gomory_cut();
lia_move hnf_cut();
lia_move make_hnf_cut();
bool prepare_matrix_A_for_hnf_cut();
bool init_terms_for_hnf_cut();
bool hnf_matrix_is_empty() const;
bool try_add_term_to_A_for_hnf(unsigned term_index);
};

File diff suppressed because it is too large Load diff

View file

@ -331,7 +331,6 @@ void lar_solver::push() {
m_term_count.push();
m_constraint_count = m_constraints.size();
m_constraint_count.push();
m_int_solver->push();
}
void lar_solver::clean_popped_elements(unsigned n, int_set& set) {
@ -396,7 +395,6 @@ void lar_solver::pop(unsigned k) {
lp_assert(sizes_are_correct());
lp_assert((!m_settings.use_tableau()) || m_mpq_lar_core_solver.m_r_solver.reduced_costs_are_correct_tableau());
m_status = m_mpq_lar_core_solver.m_r_solver.current_x_is_feasible()? lp_status::OPTIMAL: lp_status::UNKNOWN;
m_int_solver->pop(k);
}
vector<constraint_index> lar_solver::get_all_constraint_indices() const {
@ -1476,17 +1474,9 @@ bool lar_solver::strategy_is_undecided() const {
return m_settings.simplex_strategy() == simplex_strategy_enum::undecided;
}
void lar_solver::catch_up_in_updating_int_solver() {
for (unsigned i = 0; i < constraints().size(); i++) {
m_int_solver->add_constraint_to_chase_cut_solver(i, constraints()[i]);
}
}
var_index lar_solver::add_var(unsigned ext_j, bool is_int) {
if (is_int)
m_has_int_var = true;
if (is_int && !has_int_var())
catch_up_in_updating_int_solver();
TRACE("add_var", tout << "adding var " << ext_j << (is_int? " int" : " nonint") << std::endl;);
var_index i;
@ -2217,9 +2207,10 @@ void lar_solver::round_to_integer_solution() {
}
}
bool lar_solver::get_equality_for_term_on_corrent_x(unsigned term_index, mpq & rs) const {
bool lar_solver::get_equality_for_term_on_corrent_x(unsigned term_index, mpq & rs, bool & has_bounds) const {
unsigned tj = term_index + m_terms_start_index;
auto it = m_ext_vars_to_columns.find(tj);
has_bounds = false;
if (it == m_ext_vars_to_columns.end())
return false;
unsigned j = it->second.internal_j();
@ -2227,6 +2218,7 @@ bool lar_solver::get_equality_for_term_on_corrent_x(unsigned term_index, mpq & r
impq term_val;
bool term_val_ready = false;
if (slv.column_has_upper_bound(j)) {
has_bounds = true;
const impq & b = slv.m_upper_bounds[j];
lp_assert(is_zero(b.y) && is_int(b.x));
term_val = terms()[term_index]->apply(m_mpq_lar_core_solver.m_r_x);
@ -2237,6 +2229,7 @@ bool lar_solver::get_equality_for_term_on_corrent_x(unsigned term_index, mpq & r
}
}
if (slv.column_has_lower_bound(j)) {
has_bounds = true;
if (!term_val_ready)
term_val = terms()[term_index]->apply(m_mpq_lar_core_solver.m_r_x);
const impq & b = slv.m_lower_bounds[j];
@ -2247,7 +2240,7 @@ bool lar_solver::get_equality_for_term_on_corrent_x(unsigned term_index, mpq & r
return true;
}
}
return false;
return false;
}

View file

@ -298,9 +298,17 @@ public:
static void clean_popped_elements(unsigned n, int_set& set);
static void shrink_inf_set_after_pop(unsigned n, int_set & set);
void pop(unsigned k);
class scoped_push {
lar_solver& m_solver;
bool m_pop;
public:
scoped_push(lar_solver& s):m_solver(s), m_pop(true) { s.push(); }
~scoped_push() { if (m_pop) m_solver.pop(); }
void pop() { SASSERT(m_pop); m_solver.pop(); m_pop = false; }
};
vector<constraint_index> get_all_constraint_indices() const;
@ -579,6 +587,6 @@ public:
unsigned column_count() const { return A_r().column_count(); }
const vector<unsigned> & r_basis() const { return m_mpq_lar_core_solver.r_basis(); }
const vector<unsigned> & r_nbasis() const { return m_mpq_lar_core_solver.r_nbasis(); }
bool get_equality_for_term_on_corrent_x(unsigned i, mpq &rs) const;
bool get_equality_and_right_side_for_term_on_corrent_x(unsigned i, mpq &rs, bool & has_bounds) const;
};
}

View file

@ -133,54 +133,77 @@ private:
};
default_lp_resource_limit m_default_resource_limit;
lp_resource_limit* m_resource_limit;
lp_resource_limit* m_resource_limit;
// used for debug output
std::ostream* m_debug_out;
std::ostream* m_debug_out;
// used for messages, for example, the computation progress messages
std::ostream* m_message_out;
std::ostream* m_message_out;
stats m_stats;
random_gen m_rand;
stats m_stats;
random_gen m_rand;
public:
unsigned reps_in_scaler;
unsigned reps_in_scaler;
// when the absolute value of an element is less than pivot_epsilon
// in pivoting, we treat it as a zero
double pivot_epsilon;
double pivot_epsilon;
// see Chatal, page 115
double positive_price_epsilon;
double positive_price_epsilon;
// a quatation "if some choice of the entering vairable leads to an eta matrix
// whose diagonal element in the eta column is less than e2 (entering_diag_epsilon) in magnitude, the this choice is rejected ...
double entering_diag_epsilon;
int c_partial_pivoting; // this is the constant c from page 410
unsigned depth_of_rook_search;
bool using_partial_pivoting;
double entering_diag_epsilon;
int c_partial_pivoting; // this is the constant c from page 410
unsigned depth_of_rook_search;
bool using_partial_pivoting;
// dissertation of Achim Koberstein
// if Bx - b is different at any component more that refactor_epsilon then we refactor
double refactor_tolerance;
double pivot_tolerance;
double zero_tolerance;
double drop_tolerance;
double tolerance_for_artificials;
double can_be_taken_to_basis_tolerance;
double refactor_tolerance;
double pivot_tolerance;
double zero_tolerance;
double drop_tolerance;
double tolerance_for_artificials;
double can_be_taken_to_basis_tolerance;
unsigned percent_of_entering_to_check; // we try to find a profitable column in a percentage of the columns
bool use_scaling;
double scaling_maximum;
double scaling_minimum;
double harris_feasibility_tolerance; // page 179 of Istvan Maros
double ignore_epsilon_of_harris;
unsigned max_number_of_iterations_with_no_improvements;
unsigned max_total_number_of_iterations;
double time_limit; // the maximum time limit of the total run time in seconds
unsigned percent_of_entering_to_check; // we try to find a profitable column in a percentage of the columns
bool use_scaling;
double scaling_maximum;
double scaling_minimum;
double harris_feasibility_tolerance; // page 179 of Istvan Maros
double ignore_epsilon_of_harris;
unsigned max_number_of_iterations_with_no_improvements;
unsigned max_total_number_of_iterations;
double time_limit; // the maximum time limit of the total run time in seconds
// dual section
double dual_feasibility_tolerance; // // page 71 of the PhD thesis of Achim Koberstein
double primal_feasibility_tolerance; // page 71 of the PhD thesis of Achim Koberstein
double relative_primal_feasibility_tolerance; // page 71 of the PhD thesis of Achim Koberstein
bool hnf_cutter_exit_if_x_is_not_on_bound_or_mixed = true;
bool m_bound_propagation;
double dual_feasibility_tolerance; // // page 71 of the PhD thesis of Achim Koberstein
double primal_feasibility_tolerance; // page 71 of the PhD thesis of Achim Koberstein
double relative_primal_feasibility_tolerance; // page 71 of the PhD thesis of Achim Koberstein
// end of dual section
bool m_bound_propagation;
bool presolve_with_double_solver_for_lar;
simplex_strategy_enum m_simplex_strategy;
int report_frequency;
bool print_statistics;
unsigned column_norms_update_frequency;
bool scale_with_ratio;
double density_threshold;
bool use_breakpoints_in_feasibility_search;
unsigned max_row_length_for_bound_propagation;
bool backup_costs;
unsigned column_number_threshold_for_using_lu_in_lar_solver;
unsigned m_int_gomory_cut_period;
unsigned m_int_chase_cut_solver_period;
unsigned m_int_find_cube_period;
unsigned m_hnf_cut_period;
bool m_int_run_gcd_test;
unsigned m_chase_cut_solver_cycle_on_var;
bool m_int_pivot_fixed_vars_from_basis;
bool m_int_patch_only_integer_values;
unsigned limit_on_rows_for_hnf_cutter;
unsigned random_next() { return m_rand(); }
void set_random_seed(unsigned s) { m_rand.set_seed(s); }
bool bound_progation() const {
return m_bound_propagation;
}
@ -237,12 +260,12 @@ public:
m_int_gomory_cut_period(4),
m_int_chase_cut_solver_period(8),
m_int_find_cube_period(4),
m_int_cuts_etc_period(4),
m_hnf_cut_period(4),
m_int_run_gcd_test(true),
m_chase_cut_solver_cycle_on_var(10),
m_int_pivot_fixed_vars_from_basis(false),
m_int_patch_only_integer_values(true)
m_int_patch_only_integer_values(true),
limit_on_rows_for_hnf_cutter(100)
{}
void set_resource_limit(lp_resource_limit& lim) { m_resource_limit = &lim; }
@ -312,8 +335,6 @@ public:
return is_eps_small_general<T>(t, tolerance_for_artificials);
}
// the method of lar solver to use
bool presolve_with_double_solver_for_lar;
simplex_strategy_enum m_simplex_strategy;
simplex_strategy_enum simplex_strategy() const {
return m_simplex_strategy;
}
@ -335,29 +356,9 @@ public:
return m_simplex_strategy == simplex_strategy_enum::tableau_rows;
}
int report_frequency;
bool print_statistics;
unsigned column_norms_update_frequency;
bool scale_with_ratio;
double density_threshold; // need to tune it up, todo
#ifdef Z3DEBUG
static unsigned ddd; // used for debugging
#endif
bool use_breakpoints_in_feasibility_search;
unsigned random_next() { return m_rand(); }
void set_random_seed(unsigned s) { m_rand.set_seed(s); }
unsigned max_row_length_for_bound_propagation;
bool backup_costs;
unsigned column_number_threshold_for_using_lu_in_lar_solver;
unsigned m_int_gomory_cut_period;
unsigned m_int_chase_cut_solver_period;
unsigned m_int_find_cube_period;
unsigned m_int_cuts_etc_period;
unsigned m_hnf_cut_period;
bool m_int_run_gcd_test;
unsigned m_chase_cut_solver_cycle_on_var;
bool m_int_pivot_fixed_vars_from_basis;
bool m_int_patch_only_integer_values;
}; // end of lp_settings class

View file

@ -24,6 +24,7 @@ Revision History:
#include <unordered_set>
#include <set>
#include <stack>
#include <map>
namespace lp {
template<class A,
class B,