mirror of
https://github.com/Z3Prover/z3
synced 2025-04-15 13:28:47 +00:00
move interval functionality from horner to intervals
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
parent
b84ac3f27e
commit
9b3ebfdd2a
|
@ -69,28 +69,11 @@ bool horner::lemmas_on_expr(cross_nested& cn, nex_sum* e) {
|
|||
return cn.done();
|
||||
}
|
||||
|
||||
bool horner::check_cross_nested_expr(const nex* n) {
|
||||
TRACE("nla_horner", tout << "cross-nested n = " << *n << ", n->type() == " << n->type() << "\n";);
|
||||
c().lp_settings().stats().m_cross_nested_forms++;
|
||||
|
||||
auto i = interval_of_expr(n, 1);
|
||||
TRACE("nla_horner", tout << "callback n = " << *n << "\ni="; m_intervals.display(tout, i) << "\n";);
|
||||
if (!m_intervals.separated_from_zero(i)) {
|
||||
m_intervals.reset();
|
||||
return false;
|
||||
}
|
||||
auto interv_wd = interval_of_expr_with_deps(n, 1);
|
||||
TRACE("nla_horner", tout << "conflict: interv_wd = "; m_intervals.display(tout, interv_wd ) << *n << "\n";);
|
||||
ci_dependency* dep = m_fixed_as_scalars? get_fixed_vars_dep_from_row(c().m_lar_solver.A_r().m_rows[m_row_index], m_intervals.dep_manager()) : nullptr;
|
||||
m_intervals.check_interval_for_conflict_on_zero(interv_wd, dep);
|
||||
m_intervals.reset(); // clean the memory allocated by the interval bound dependencies
|
||||
return true;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
bool horner::lemmas_on_row(const T& row) {
|
||||
cross_nested cn(
|
||||
[this](const nex* n) { return check_cross_nested_expr(n); },
|
||||
[this](const nex* n) { return m_intervals.check_cross_nested_expr(n, m_fixed_as_scalars? get_fixed_vars_dep_from_row(c().m_lar_solver.A_r().m_rows[m_row_index], m_intervals.dep_manager()) : nullptr); },
|
||||
[this](unsigned j) { return c().var_is_fixed(j); },
|
||||
[this]() { return c().random(); }, m_nex_creator);
|
||||
|
||||
|
@ -140,444 +123,9 @@ void horner::horner_lemmas() {
|
|||
}
|
||||
|
||||
|
||||
void horner::set_interval_for_scalar(interv& a, const rational& v) {
|
||||
m_intervals.set_lower(a, v);
|
||||
m_intervals.set_upper(a, v);
|
||||
m_intervals.set_lower_is_open(a, false);
|
||||
m_intervals.set_lower_is_inf(a, false);
|
||||
m_intervals.set_upper_is_open(a, false);
|
||||
m_intervals.set_upper_is_inf(a, false);
|
||||
}
|
||||
|
||||
interv horner::power_with_deps(const interv& a, unsigned n) {
|
||||
interv b;
|
||||
interval_deps_combine_rule combine_rule;
|
||||
m_intervals.power(a, n, b, combine_rule);
|
||||
m_intervals.combine_deps(a, combine_rule, b);
|
||||
TRACE("nla_horner_details", tout << "power of "; m_intervals.display(tout, a) << " = ";
|
||||
m_intervals.display(tout, b) << "\n"; );
|
||||
|
||||
return b;
|
||||
}
|
||||
|
||||
interv horner::interval_of_expr_with_deps(const nex* e, unsigned power) {
|
||||
interv a;
|
||||
switch (e->type()) {
|
||||
case expr_type::SCALAR:
|
||||
set_interval_for_scalar(a, to_scalar(e)->value());
|
||||
if (power != 1) {
|
||||
return power_with_deps(a, power);
|
||||
}
|
||||
return a;
|
||||
case expr_type::SUM:
|
||||
{
|
||||
interv b = interval_of_sum_with_deps(to_sum(e));
|
||||
if (power != 1)
|
||||
return power_with_deps(b, power);
|
||||
return b;
|
||||
}
|
||||
case expr_type::MUL:
|
||||
{
|
||||
interv b = interval_of_mul_with_deps(to_mul(e));
|
||||
if (power != 1)
|
||||
return power_with_deps(b, power);;
|
||||
return b;
|
||||
}
|
||||
case expr_type::VAR:
|
||||
set_var_interval_with_deps(to_var(e)->var(), a);
|
||||
if (power != 1)
|
||||
return power_with_deps(a, power);;
|
||||
return a;
|
||||
default:
|
||||
TRACE("nla_horner_details", tout << e->type() << "\n";);
|
||||
SASSERT(false);
|
||||
return interv();
|
||||
}
|
||||
}
|
||||
|
||||
interv horner::interval_of_expr(const nex* e, unsigned power) {
|
||||
TRACE("nla_horner_details", tout << "e = " << *e << "\n";);
|
||||
interv a;
|
||||
switch (e->type()) {
|
||||
case expr_type::SCALAR:
|
||||
set_interval_for_scalar(a, to_scalar(e)->value());
|
||||
break;
|
||||
case expr_type::SUM:
|
||||
{
|
||||
interv b = interval_of_sum(to_sum(e));
|
||||
if (power != 1) {
|
||||
return power_with_deps(b, power);;
|
||||
}
|
||||
return b;
|
||||
}
|
||||
case expr_type::MUL:
|
||||
{
|
||||
interv b = interval_of_mul(to_mul(e));
|
||||
if (power != 1) {
|
||||
return power_with_deps(b, power);;
|
||||
}
|
||||
return b;
|
||||
}
|
||||
case expr_type::VAR:
|
||||
set_var_interval(to_var(e)->var(), a);
|
||||
break;
|
||||
default:
|
||||
TRACE("nla_horner_details", tout << e->type() << "\n";);
|
||||
SASSERT(false);
|
||||
return interv();
|
||||
}
|
||||
if (power != 1) {
|
||||
return power_with_deps(a, power);;
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
|
||||
interv horner::interval_of_mul_with_deps(const nex_mul* e) {
|
||||
const nex * zero_interval_child = get_zero_interval_child(e);
|
||||
if (zero_interval_child) {
|
||||
interv a = interval_of_expr_with_deps(zero_interval_child, 1);
|
||||
m_intervals.set_zero_interval_deps_for_mult(a);
|
||||
TRACE("nla_horner_details", tout << "zero_interval_child = "<< *zero_interval_child << std::endl << "a = "; m_intervals.display(tout, a); );
|
||||
return a;
|
||||
}
|
||||
|
||||
SASSERT(e->is_mul());
|
||||
interv a;
|
||||
set_interval_for_scalar(a, e->coeff());
|
||||
TRACE("nla_horner_details", tout << "a = "; m_intervals.display(tout, a); );
|
||||
for (const auto & ep : *e) {
|
||||
interv b = interval_of_expr_with_deps(ep.e(), ep.pow());
|
||||
TRACE("nla_horner_details", tout << "ep = " << ep << ", "; m_intervals.display(tout, b); );
|
||||
interv c;
|
||||
interval_deps_combine_rule comb_rule;
|
||||
m_intervals.mul_two_intervals(a, b, c, comb_rule);
|
||||
TRACE("nla_horner_details", tout << "c before combine_deps() "; m_intervals.display(tout, c););
|
||||
m_intervals.combine_deps(a, b, comb_rule, c);
|
||||
TRACE("nla_horner_details", tout << "a "; m_intervals.display(tout, a););
|
||||
TRACE("nla_horner_details", tout << "c "; m_intervals.display(tout, c););
|
||||
m_intervals.set_with_deps(a, c);
|
||||
TRACE("nla_horner_details", tout << "part mult "; m_intervals.display(tout, a););
|
||||
}
|
||||
TRACE("nla_horner_details", tout << "e=" << *e << "\n";
|
||||
tout << " return "; m_intervals.display(tout, a););
|
||||
return a;
|
||||
}
|
||||
|
||||
interv horner::interval_of_mul(const nex_mul* e) {
|
||||
TRACE("nla_horner_details", tout << "e = " << *e << "\n";);
|
||||
const nex * zero_interval_child = get_zero_interval_child(e);
|
||||
if (zero_interval_child) {
|
||||
interv a = interval_of_expr(zero_interval_child, 1);
|
||||
m_intervals.set_zero_interval_deps_for_mult(a);
|
||||
TRACE("nla_horner_details", tout << "zero_interval_child = "<< *zero_interval_child << std::endl << "a = "; m_intervals.display(tout, a); );
|
||||
return a;
|
||||
}
|
||||
|
||||
interv a;
|
||||
|
||||
set_interval_for_scalar(a, e->coeff());
|
||||
TRACE("nla_horner_details", tout << "a = "; m_intervals.display(tout, a); );
|
||||
for (const auto & ep : *e) {
|
||||
interv b = interval_of_expr(ep.e(), ep.pow() );
|
||||
TRACE("nla_horner_details", tout << "ep = " << ep << ", "; m_intervals.display(tout, b); );
|
||||
interv c;
|
||||
interval_deps_combine_rule comb_rule;
|
||||
m_intervals.mul_two_intervals(a, b, c, comb_rule);
|
||||
TRACE("nla_horner_details", tout << "c before combine_deps() "; m_intervals.display(tout, c););
|
||||
m_intervals.combine_deps(a, b, comb_rule, c);
|
||||
TRACE("nla_horner_details", tout << "a "; m_intervals.display(tout, a););
|
||||
TRACE("nla_horner_details", tout << "c "; m_intervals.display(tout, c););
|
||||
m_intervals.set(a, c, 33);
|
||||
TRACE("nla_horner_details", tout << "part mult "; m_intervals.display(tout, a););
|
||||
}
|
||||
TRACE("nla_horner_details", tout << "e=" << *e << "\n";
|
||||
tout << " return "; m_intervals.display(tout, a););
|
||||
return a;
|
||||
}
|
||||
|
||||
|
||||
void horner::add_mul_of_degree_one_to_vector(const nex_mul* e, vector<std::pair<rational, lpvar>> &v) {
|
||||
TRACE("nla_horner_details", tout << *e << "\n";);
|
||||
SASSERT(e->size() == 1);
|
||||
SASSERT((*e)[0].pow() == 1);
|
||||
const nex *ev = (*e)[0].e();
|
||||
lpvar j = to_var(ev)->var();
|
||||
v.push_back(std::make_pair(e->coeff(), j));
|
||||
}
|
||||
|
||||
void horner::add_linear_to_vector(const nex* e, vector<std::pair<rational, lpvar>> &v) {
|
||||
TRACE("nla_horner_details", tout << *e << "\n";);
|
||||
switch (e->type()) {
|
||||
case expr_type::MUL:
|
||||
add_mul_of_degree_one_to_vector(to_mul(e), v);
|
||||
break;
|
||||
case expr_type::VAR:
|
||||
v.push_back(std::make_pair(rational(1), to_var(e)->var()));
|
||||
break;
|
||||
default:
|
||||
SASSERT(!e->is_sum());
|
||||
// noop
|
||||
}
|
||||
}
|
||||
// e = a * can_t + b
|
||||
lp::lar_term horner::expression_to_normalized_term(const nex_sum* e, rational& a, rational& b) {
|
||||
TRACE("nla_horner_details", tout << *e << "\n";);
|
||||
lpvar smallest_j;
|
||||
vector<std::pair<rational, lpvar>> v;
|
||||
b = rational(0);
|
||||
unsigned a_index;
|
||||
for (const nex* c : e->children()) {
|
||||
if (c->is_scalar()) {
|
||||
b += to_scalar(c)->value();
|
||||
} else {
|
||||
add_linear_to_vector(c, v);
|
||||
if (v.empty())
|
||||
continue;
|
||||
if (v.size() == 1 || smallest_j > v.back().second) {
|
||||
smallest_j = v.back().second;
|
||||
a_index = v.size() - 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
TRACE("nla_horner_details", tout << "a_index = " << a_index << ", v="; print_vector(v, tout) << "\n";);
|
||||
a = v[a_index].first;
|
||||
lp::lar_term t;
|
||||
|
||||
if (a.is_one()) {
|
||||
for (unsigned k = 0; k < v.size(); k++) {
|
||||
auto& p = v[k];
|
||||
t.add_coeff_var(p.first, p.second);
|
||||
}
|
||||
} else {
|
||||
for (unsigned k = 0; k < v.size(); k++) {
|
||||
auto& p = v[k];
|
||||
if (k != a_index)
|
||||
t.add_coeff_var(p.first/a, p.second);
|
||||
else
|
||||
t.add_var(p.second);
|
||||
}
|
||||
}
|
||||
TRACE("nla_horner_details", tout << a << "* (";
|
||||
lp::lar_solver::print_term_as_indices(t, tout) << ") + " << b << std::endl;);
|
||||
SASSERT(t.is_normalized());
|
||||
return t;
|
||||
}
|
||||
|
||||
bool horner::mul_has_inf_interval(const nex_mul* e) const {
|
||||
bool has_inf = false;
|
||||
for (const auto & p : e->children()) {
|
||||
const nex *c = p.e();
|
||||
if (!c->is_elementary())
|
||||
return false;
|
||||
if (has_zero_interval(c))
|
||||
return false;
|
||||
has_inf |= has_inf_interval(c);
|
||||
}
|
||||
return has_inf;
|
||||
}
|
||||
|
||||
bool horner::has_inf_interval(const nex* e) const {
|
||||
if (e->is_var())
|
||||
return c().no_bounds(to_var(e)->var());
|
||||
if (e->is_mul()) {
|
||||
return mul_has_inf_interval(to_mul(e));
|
||||
}
|
||||
if (e->is_scalar())
|
||||
return false;
|
||||
for (auto * c : to_sum(e)->children()) {
|
||||
if (has_inf_interval(c))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool horner::has_zero_interval(const nex* e) const {
|
||||
SASSERT(!e->is_scalar() || !to_scalar(e)->value().is_zero());
|
||||
if (! e->is_var())
|
||||
return false;
|
||||
return c().var_is_fixed_to_zero(to_var(e)->var());
|
||||
}
|
||||
|
||||
const nex* horner::get_zero_interval_child(const nex_mul* e) const {
|
||||
for (const auto & p : e->children()) {
|
||||
const nex * c = p.e();
|
||||
if (has_zero_interval(c))
|
||||
return c;
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
const nex* horner::get_inf_interval_child(const nex_sum* e) const {
|
||||
for (auto * c : e->children()) {
|
||||
if (has_inf_interval(c))
|
||||
return c;
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
// we should have in the case of found a * m_terms[k] + b = e,
|
||||
// where m_terms[k] corresponds to the returned lpvar
|
||||
lpvar horner::find_term_column(const lp::lar_term & norm_t, rational& a) const {
|
||||
std::pair<rational, lpvar> a_j;
|
||||
if (c().m_lar_solver.fetch_normalized_term_column(norm_t, a_j)) {
|
||||
a /= a_j.first;
|
||||
return a_j.second;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
interv horner::interval_of_sum_no_term_with_deps(const nex_sum* e) {
|
||||
const nex* inf_e = get_inf_interval_child(e);
|
||||
if (inf_e) {
|
||||
return interv();
|
||||
}
|
||||
auto & es = e->children();
|
||||
interv a = interval_of_expr_with_deps(es[0], 1);
|
||||
for (unsigned k = 1; k < es.size(); k++) {
|
||||
TRACE("nla_horner_details_sum", tout << "es[" << k << "]= " << *es[k] << "\n";);
|
||||
interv b = interval_of_expr_with_deps(es[k], 1);
|
||||
interv c;
|
||||
interval_deps_combine_rule combine_rule;
|
||||
TRACE("nla_horner_details_sum", tout << "a = "; m_intervals.display(tout, a) << "\nb = "; m_intervals.display(tout, b) << "\n";);
|
||||
m_intervals.add(a, b, c, combine_rule);
|
||||
m_intervals.combine_deps(a, b, combine_rule, c);
|
||||
m_intervals.set_with_deps(a, c);
|
||||
TRACE("nla_horner_details_sum", tout << *es[k] << ", ";
|
||||
m_intervals.display(tout, a); tout << "\n";);
|
||||
}
|
||||
TRACE("nla_horner_details", tout << "e=" << *e << "\n";
|
||||
tout << " interv = "; m_intervals.display(tout, a););
|
||||
return a;
|
||||
}
|
||||
|
||||
interv horner::interval_of_sum_no_term(const nex_sum* e) {
|
||||
const nex* inf_e = get_inf_interval_child(e);
|
||||
if (inf_e) {
|
||||
return interv();
|
||||
}
|
||||
auto & es = e->children();
|
||||
interv a = interval_of_expr(es[0], 1);
|
||||
for (unsigned k = 1; k < es.size(); k++) {
|
||||
TRACE("nla_horner_details_sum", tout << "es[" << k << "]= " << *es[k] << "\n";);
|
||||
interv b = interval_of_expr(es[k], 1);
|
||||
interv c;
|
||||
interval_deps_combine_rule combine_rule;
|
||||
TRACE("nla_horner_details_sum", tout << "a = "; m_intervals.display(tout, a) << "\nb = "; m_intervals.display(tout, b) << "\n";);
|
||||
m_intervals.add(a, b, c, combine_rule);
|
||||
m_intervals.combine_deps(a, b, combine_rule, c);
|
||||
m_intervals.set(a, c, 22);
|
||||
TRACE("nla_horner_details_sum", tout << *es[k] << ", ";
|
||||
m_intervals.display(tout, a); tout << "\n";);
|
||||
}
|
||||
TRACE("nla_horner_details", tout << "e=" << *e << "\n";
|
||||
tout << " interv = "; m_intervals.display(tout, a););
|
||||
return a;
|
||||
}
|
||||
|
||||
bool horner::interval_from_term_with_deps(const nex* e, interv & i) const {
|
||||
rational a, b;
|
||||
lp::lar_term norm_t = expression_to_normalized_term(to_sum(e), a, b);
|
||||
lp::explanation exp;
|
||||
if (c().explain_by_equiv(norm_t, exp)) {
|
||||
m_intervals.set_zero_interval_with_explanation(i, exp);
|
||||
TRACE("nla_horner", tout << "explain_by_equiv\n";);
|
||||
return true;
|
||||
}
|
||||
lpvar j = find_term_column(norm_t, a);
|
||||
if (j + 1 == 0)
|
||||
return false;
|
||||
|
||||
set_var_interval_with_deps(j, i);
|
||||
interv bi;
|
||||
m_intervals.mul_with_deps(a, i, bi);
|
||||
m_intervals.add(b, bi);
|
||||
m_intervals.set_with_deps(i, bi);
|
||||
|
||||
TRACE("nla_horner",
|
||||
c().m_lar_solver.print_column_info(j, tout) << "\n";
|
||||
tout << "a=" << a << ", b=" << b << "\n";
|
||||
tout << *e << ", interval = "; m_intervals.display(tout, i););
|
||||
return true;
|
||||
}
|
||||
|
||||
bool horner::interval_from_term(const nex* e, interv & i) const {
|
||||
rational a, b;
|
||||
lp::lar_term norm_t = expression_to_normalized_term(to_sum(e), a, b);
|
||||
lp::explanation exp;
|
||||
if (c().explain_by_equiv(norm_t, exp)) {
|
||||
m_intervals.set_zero_interval(i);
|
||||
TRACE("nla_horner", tout << "explain_by_equiv\n";);
|
||||
return true;
|
||||
}
|
||||
lpvar j = find_term_column(norm_t, a);
|
||||
if (j + 1 == 0)
|
||||
return false;
|
||||
|
||||
set_var_interval(j, i);
|
||||
interv bi;
|
||||
m_intervals.mul_no_deps(a, i, bi);
|
||||
m_intervals.add(b, bi);
|
||||
m_intervals.set(i, bi, 44);
|
||||
|
||||
TRACE("nla_horner",
|
||||
c().m_lar_solver.print_column_info(j, tout) << "\n";
|
||||
tout << "a=" << a << ", b=" << b << "\n";
|
||||
tout << *e << ", interval = "; m_intervals.display(tout, i););
|
||||
return true;
|
||||
|
||||
}
|
||||
|
||||
|
||||
interv horner::interval_of_sum_with_deps(const nex_sum* e) {
|
||||
TRACE("nla_horner_details", tout << "e=" << *e << "\n";);
|
||||
interv i_e = interval_of_sum_no_term_with_deps(e);
|
||||
if (e->is_a_linear_term()) {
|
||||
SASSERT(e->is_sum() && e->size() > 1);
|
||||
interv i_from_term ;
|
||||
if (interval_from_term_with_deps(e, i_from_term)) {
|
||||
interv r = m_intervals.intersect_with_deps(i_e, i_from_term);
|
||||
TRACE("nla_horner_details", tout << "intersection="; m_intervals.display(tout, r) << "\n";);
|
||||
if (m_intervals.is_empty(r)) {
|
||||
SASSERT(false); // not implemented
|
||||
}
|
||||
return r;
|
||||
|
||||
}
|
||||
}
|
||||
return i_e;
|
||||
}
|
||||
|
||||
interv horner::interval_of_sum(const nex_sum* e) {
|
||||
interv i_e = interval_of_sum_no_term(e);
|
||||
TRACE("nla_horner_details", tout << "e=" << *e << "\ni_e="; m_intervals.display(tout, i_e) << "\n";);
|
||||
if (e->is_a_linear_term()) {
|
||||
SASSERT(e->is_sum() && e->size() > 1);
|
||||
interv i_from_term ;
|
||||
if (interval_from_term(e, i_from_term)) {
|
||||
TRACE("nla_horner_details", tout << "i_from_term="; m_intervals.display(tout, i_from_term) << "\n";);
|
||||
interv r = m_intervals.intersect(i_e, i_from_term, 44);
|
||||
TRACE("nla_horner_details", tout << "intersection="; m_intervals.display(tout, r) << "\n";);
|
||||
if (m_intervals.is_empty(r)) {
|
||||
SASSERT(false); // not implemented
|
||||
}
|
||||
return r;
|
||||
|
||||
}
|
||||
}
|
||||
return i_e;
|
||||
}
|
||||
|
||||
// sets the dependencies also
|
||||
void horner::set_var_interval_with_deps(lpvar v, interv& b) const{
|
||||
m_intervals.set_var_interval_with_deps(v, b);
|
||||
TRACE("nla_horner_details_var", tout << "v = "; print_var(v, tout) << "\n"; m_intervals.display(tout, b););
|
||||
}
|
||||
|
||||
void horner::set_var_interval(lpvar v, interv& b) const{
|
||||
m_intervals.set_var_interval(v, b);
|
||||
TRACE("nla_horner_details_var", tout << "v = "; print_var(v, tout) << "\n"; m_intervals.display(tout, b););
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
|
|
@ -41,35 +41,15 @@ public:
|
|||
template <typename T> // T has an iterator of (coeff(), var())
|
||||
bool lemmas_on_row(const T&);
|
||||
template <typename T> bool row_is_interesting(const T&) const;
|
||||
intervals::interval interval_of_expr_with_deps(const nex* e, unsigned power);
|
||||
intervals::interval interval_of_expr(const nex* e, unsigned power);
|
||||
intervals::interval interval_of_sum(const nex_sum*);
|
||||
intervals::interval interval_of_sum_no_term(const nex_sum*);
|
||||
intervals::interval interval_of_mul(const nex_mul*);
|
||||
void set_interval_for_scalar(intervals::interval&, const rational&);
|
||||
void set_var_interval(lpvar j, intervals::interval&) const;
|
||||
bool interval_from_term(const nex* e, interv&) const;
|
||||
|
||||
|
||||
intervals::interval interval_of_sum_with_deps(const nex_sum*);
|
||||
intervals::interval interval_of_sum_no_term_with_deps(const nex_sum*);
|
||||
intervals::interval interval_of_mul_with_deps(const nex_mul*);
|
||||
void set_var_interval_with_deps(lpvar j, intervals::interval&) const;
|
||||
bool lemmas_on_expr(cross_nested&, nex_sum*);
|
||||
|
||||
template <typename T> // T has an iterator of (coeff(), var())
|
||||
bool row_has_monomial_to_refine(const T&) const;
|
||||
lpvar find_term_column(const lp::lar_term &, rational & a) const;
|
||||
static lp::lar_term expression_to_normalized_term(const nex_sum*, rational& a, rational & b);
|
||||
static void add_linear_to_vector(const nex*, vector<std::pair<rational, lpvar>> &);
|
||||
static void add_mul_of_degree_one_to_vector(const nex_mul*, vector<std::pair<rational, lpvar>> &);
|
||||
bool interval_from_term_with_deps(const nex* e, interv&) const;
|
||||
const nex* get_zero_interval_child(const nex_mul*) const;
|
||||
const nex* get_inf_interval_child(const nex_sum*) const;
|
||||
bool has_zero_interval(const nex* ) const;
|
||||
bool has_inf_interval(const nex* ) const;
|
||||
bool mul_has_inf_interval(const nex_mul* ) const;
|
||||
bool check_cross_nested_expr(const nex*);
|
||||
interv power_with_deps(const interv& a, unsigned);
|
||||
}; // end of horner
|
||||
}
|
||||
|
|
|
@ -32,6 +32,459 @@ void intervals::set_var_interval_with_deps(lpvar v, interval& b) const {
|
|||
}
|
||||
}
|
||||
|
||||
void intervals::set_interval_for_scalar(interv& a, const rational& v) {
|
||||
set_lower(a, v);
|
||||
set_upper(a, v);
|
||||
set_lower_is_open(a, false);
|
||||
set_lower_is_inf(a, false);
|
||||
set_upper_is_open(a, false);
|
||||
set_upper_is_inf(a, false);
|
||||
}
|
||||
|
||||
|
||||
|
||||
intervals::interv intervals::power_with_deps(const interv& a, unsigned n) {
|
||||
interv b;
|
||||
interval_deps_combine_rule combine_rule;
|
||||
power(a, n, b, combine_rule);
|
||||
combine_deps(a, combine_rule, b);
|
||||
TRACE("nla_horner_details", tout << "power of "; display(tout, a) << " = ";
|
||||
display(tout, b) << "\n"; );
|
||||
|
||||
return b;
|
||||
}
|
||||
|
||||
|
||||
intervals::interv intervals::interval_of_expr_with_deps(const nex* e, unsigned power) {
|
||||
interv a;
|
||||
switch (e->type()) {
|
||||
case expr_type::SCALAR:
|
||||
set_interval_for_scalar(a, to_scalar(e)->value());
|
||||
if (power != 1) {
|
||||
return power_with_deps(a, power);
|
||||
}
|
||||
return a;
|
||||
case expr_type::SUM:
|
||||
{
|
||||
interv b = interval_of_sum_with_deps(to_sum(e));
|
||||
if (power != 1)
|
||||
return power_with_deps(b, power);
|
||||
return b;
|
||||
}
|
||||
case expr_type::MUL:
|
||||
{
|
||||
interv b = interval_of_mul_with_deps(to_mul(e));
|
||||
if (power != 1)
|
||||
return power_with_deps(b, power);;
|
||||
return b;
|
||||
}
|
||||
case expr_type::VAR:
|
||||
set_var_interval_with_deps(to_var(e)->var(), a);
|
||||
if (power != 1)
|
||||
return power_with_deps(a, power);;
|
||||
return a;
|
||||
default:
|
||||
TRACE("nla_intervals_details", tout << e->type() << "\n";);
|
||||
SASSERT(false);
|
||||
return interv();
|
||||
}
|
||||
}
|
||||
|
||||
intervals::interv intervals::interval_of_expr(const nex* e, unsigned power) {
|
||||
TRACE("nla_intervals_details", tout << "e = " << *e << "\n";);
|
||||
interv a;
|
||||
switch (e->type()) {
|
||||
case expr_type::SCALAR:
|
||||
set_interval_for_scalar(a, to_scalar(e)->value());
|
||||
break;
|
||||
case expr_type::SUM:
|
||||
{
|
||||
interv b = interval_of_sum(to_sum(e));
|
||||
if (power != 1) {
|
||||
return power_with_deps(b, power);;
|
||||
}
|
||||
return b;
|
||||
}
|
||||
case expr_type::MUL:
|
||||
{
|
||||
interv b = interval_of_mul(to_mul(e));
|
||||
if (power != 1) {
|
||||
return power_with_deps(b, power);;
|
||||
}
|
||||
return b;
|
||||
}
|
||||
case expr_type::VAR:
|
||||
set_var_interval(to_var(e)->var(), a);
|
||||
break;
|
||||
default:
|
||||
TRACE("nla_intervals_details", tout << e->type() << "\n";);
|
||||
SASSERT(false);
|
||||
return interv();
|
||||
}
|
||||
if (power != 1) {
|
||||
return power_with_deps(a, power);;
|
||||
}
|
||||
return a;
|
||||
}
|
||||
|
||||
const nex* intervals::get_inf_interval_child(const nex_sum* e) const {
|
||||
for (auto * c : e->children()) {
|
||||
if (has_inf_interval(c))
|
||||
return c;
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
bool intervals::mul_has_inf_interval(const nex_mul* e) const {
|
||||
bool has_inf = false;
|
||||
for (const auto & p : e->children()) {
|
||||
const nex *c = p.e();
|
||||
if (!c->is_elementary())
|
||||
return false;
|
||||
if (has_zero_interval(c))
|
||||
return false;
|
||||
has_inf |= has_inf_interval(c);
|
||||
}
|
||||
return has_inf;
|
||||
}
|
||||
|
||||
bool intervals::has_inf_interval(const nex* e) const {
|
||||
if (e->is_var())
|
||||
return m_core->no_bounds(to_var(e)->var());
|
||||
if (e->is_mul()) {
|
||||
return mul_has_inf_interval(to_mul(e));
|
||||
}
|
||||
if (e->is_scalar())
|
||||
return false;
|
||||
for (auto * c : to_sum(e)->children()) {
|
||||
if (has_inf_interval(c))
|
||||
return true;
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
bool intervals::has_zero_interval(const nex* e) const {
|
||||
SASSERT(!e->is_scalar() || !to_scalar(e)->value().is_zero());
|
||||
if (! e->is_var())
|
||||
return false;
|
||||
return m_core->var_is_fixed_to_zero(to_var(e)->var());
|
||||
}
|
||||
|
||||
const nex* intervals::get_zero_interval_child(const nex_mul* e) const {
|
||||
for (const auto & p : e->children()) {
|
||||
const nex * c = p.e();
|
||||
if (has_zero_interval(c))
|
||||
return c;
|
||||
}
|
||||
return nullptr;
|
||||
}
|
||||
|
||||
|
||||
intervals::interv intervals::interval_of_mul_with_deps(const nex_mul* e) {
|
||||
const nex * zero_interval_child = get_zero_interval_child(e);
|
||||
if (zero_interval_child) {
|
||||
interv a = interval_of_expr_with_deps(zero_interval_child, 1);
|
||||
set_zero_interval_deps_for_mult(a);
|
||||
TRACE("nla_intervals_details", tout << "zero_interval_child = "<< *zero_interval_child << std::endl << "a = "; display(tout, a); );
|
||||
return a;
|
||||
}
|
||||
|
||||
SASSERT(e->is_mul());
|
||||
interv a;
|
||||
set_interval_for_scalar(a, e->coeff());
|
||||
TRACE("nla_intervals_details", tout << "a = "; display(tout, a); );
|
||||
for (const auto & ep : *e) {
|
||||
interv b = interval_of_expr_with_deps(ep.e(), ep.pow());
|
||||
TRACE("nla_intervals_details", tout << "ep = " << ep << ", "; display(tout, b); );
|
||||
interv c;
|
||||
interval_deps_combine_rule comb_rule;
|
||||
mul_two_intervals(a, b, c, comb_rule);
|
||||
TRACE("nla_intervals_details", tout << "c before combine_deps() "; display(tout, c););
|
||||
combine_deps(a, b, comb_rule, c);
|
||||
TRACE("nla_intervals_details", tout << "a "; display(tout, a););
|
||||
TRACE("nla_intervals_details", tout << "c "; display(tout, c););
|
||||
set_with_deps(a, c);
|
||||
TRACE("nla_intervals_details", tout << "part mult "; display(tout, a););
|
||||
}
|
||||
TRACE("nla_intervals_details", tout << "e=" << *e << "\n";
|
||||
tout << " return "; display(tout, a););
|
||||
return a;
|
||||
}
|
||||
|
||||
intervals::interv intervals::interval_of_mul(const nex_mul* e) {
|
||||
TRACE("nla_intervals_details", tout << "e = " << *e << "\n";);
|
||||
const nex * zero_interval_child = get_zero_interval_child(e);
|
||||
if (zero_interval_child) {
|
||||
interv a = interval_of_expr(zero_interval_child, 1);
|
||||
set_zero_interval_deps_for_mult(a);
|
||||
TRACE("nla_intervals_details", tout << "zero_interval_child = "<< *zero_interval_child << std::endl << "a = "; display(tout, a); );
|
||||
return a;
|
||||
}
|
||||
|
||||
interv a;
|
||||
|
||||
set_interval_for_scalar(a, e->coeff());
|
||||
TRACE("nla_intervals_details", tout << "a = "; display(tout, a); );
|
||||
for (const auto & ep : *e) {
|
||||
interv b = interval_of_expr(ep.e(), ep.pow() );
|
||||
TRACE("nla_intervals_details", tout << "ep = " << ep << ", "; display(tout, b); );
|
||||
interv c;
|
||||
interval_deps_combine_rule comb_rule;
|
||||
mul_two_intervals(a, b, c, comb_rule);
|
||||
TRACE("nla_intervals_details", tout << "c before combine_deps() "; display(tout, c););
|
||||
combine_deps(a, b, comb_rule, c);
|
||||
TRACE("nla_intervals_details", tout << "a "; display(tout, a););
|
||||
TRACE("nla_intervals_details", tout << "c "; display(tout, c););
|
||||
set(a, c, 33);
|
||||
TRACE("nla_intervals_details", tout << "part mult "; display(tout, a););
|
||||
}
|
||||
TRACE("nla_intervals_details", tout << "e=" << *e << "\n";
|
||||
tout << " return "; display(tout, a););
|
||||
return a;
|
||||
}
|
||||
|
||||
|
||||
bool intervals::check_cross_nested_expr(const nex* n, ci_dependency* initial_deps) {
|
||||
TRACE("nla_intervals", tout << "cross-nested n = " << *n << ", n->type() == " << n->type() << "\n";);
|
||||
m_core->lp_settings().stats().m_cross_nested_forms++;
|
||||
|
||||
auto i = interval_of_expr(n, 1);
|
||||
TRACE("nla_intervals", tout << "callback n = " << *n << "\ni="; display(tout, i) << "\n";);
|
||||
if (!separated_from_zero(i)) {
|
||||
reset();
|
||||
return false;
|
||||
}
|
||||
auto interv_wd = interval_of_expr_with_deps(n, 1);
|
||||
TRACE("nla_intervals", tout << "conflict: interv_wd = "; display(tout, interv_wd ) << *n << "\n";);
|
||||
check_interval_for_conflict_on_zero(interv_wd, initial_deps);
|
||||
reset(); // clean the memory allocated by the interval bound dependencies
|
||||
return true;
|
||||
}
|
||||
|
||||
intervals::interv intervals::interval_of_sum_no_term_with_deps(const nex_sum* e) {
|
||||
const nex* inf_e = get_inf_interval_child(e);
|
||||
if (inf_e) {
|
||||
return interv();
|
||||
}
|
||||
auto & es = e->children();
|
||||
interv a = interval_of_expr_with_deps(es[0], 1);
|
||||
for (unsigned k = 1; k < es.size(); k++) {
|
||||
TRACE("nla_intervals_details_sum", tout << "es[" << k << "]= " << *es[k] << "\n";);
|
||||
interv b = interval_of_expr_with_deps(es[k], 1);
|
||||
interv c;
|
||||
interval_deps_combine_rule combine_rule;
|
||||
TRACE("nla_intervals_details_sum", tout << "a = "; display(tout, a) << "\nb = "; display(tout, b) << "\n";);
|
||||
add(a, b, c, combine_rule);
|
||||
combine_deps(a, b, combine_rule, c);
|
||||
set_with_deps(a, c);
|
||||
TRACE("nla_intervals_details_sum", tout << *es[k] << ", ";
|
||||
display(tout, a); tout << "\n";);
|
||||
}
|
||||
TRACE("nla_intervals_details", tout << "e=" << *e << "\n";
|
||||
tout << " interv = "; display(tout, a););
|
||||
return a;
|
||||
}
|
||||
|
||||
intervals::interv intervals::interval_of_sum_no_term(const nex_sum* e) {
|
||||
const nex* inf_e = get_inf_interval_child(e);
|
||||
if (inf_e) {
|
||||
return interv();
|
||||
}
|
||||
auto & es = e->children();
|
||||
interv a = interval_of_expr(es[0], 1);
|
||||
for (unsigned k = 1; k < es.size(); k++) {
|
||||
TRACE("nla_intervals_details_sum", tout << "es[" << k << "]= " << *es[k] << "\n";);
|
||||
interv b = interval_of_expr(es[k], 1);
|
||||
interv c;
|
||||
interval_deps_combine_rule combine_rule;
|
||||
TRACE("nla_intervals_details_sum", tout << "a = "; display(tout, a) << "\nb = "; display(tout, b) << "\n";);
|
||||
add(a, b, c, combine_rule);
|
||||
combine_deps(a, b, combine_rule, c);
|
||||
set(a, c, 22);
|
||||
TRACE("nla_intervals_details_sum", tout << *es[k] << ", ";
|
||||
display(tout, a); tout << "\n";);
|
||||
}
|
||||
TRACE("nla_intervals_details", tout << "e=" << *e << "\n";
|
||||
tout << " interv = "; display(tout, a););
|
||||
return a;
|
||||
}
|
||||
|
||||
void intervals::add_mul_of_degree_one_to_vector(const nex_mul* e, vector<std::pair<rational, lpvar>> &v) {
|
||||
TRACE("nla_horner_details", tout << *e << "\n";);
|
||||
SASSERT(e->size() == 1);
|
||||
SASSERT((*e)[0].pow() == 1);
|
||||
const nex *ev = (*e)[0].e();
|
||||
lpvar j = to_var(ev)->var();
|
||||
v.push_back(std::make_pair(e->coeff(), j));
|
||||
}
|
||||
|
||||
void intervals::add_linear_to_vector(const nex* e, vector<std::pair<rational, lpvar>> &v) {
|
||||
TRACE("nla_horner_details", tout << *e << "\n";);
|
||||
switch (e->type()) {
|
||||
case expr_type::MUL:
|
||||
add_mul_of_degree_one_to_vector(to_mul(e), v);
|
||||
break;
|
||||
case expr_type::VAR:
|
||||
v.push_back(std::make_pair(rational(1), to_var(e)->var()));
|
||||
break;
|
||||
default:
|
||||
SASSERT(!e->is_sum());
|
||||
// noop
|
||||
}
|
||||
}
|
||||
|
||||
// e = a * can_t + b
|
||||
lp::lar_term intervals::expression_to_normalized_term(const nex_sum* e, rational& a, rational& b) {
|
||||
TRACE("nla_horner_details", tout << *e << "\n";);
|
||||
lpvar smallest_j;
|
||||
vector<std::pair<rational, lpvar>> v;
|
||||
b = rational(0);
|
||||
unsigned a_index;
|
||||
for (const nex* c : e->children()) {
|
||||
if (c->is_scalar()) {
|
||||
b += to_scalar(c)->value();
|
||||
} else {
|
||||
add_linear_to_vector(c, v);
|
||||
if (v.empty())
|
||||
continue;
|
||||
if (v.size() == 1 || smallest_j > v.back().second) {
|
||||
smallest_j = v.back().second;
|
||||
a_index = v.size() - 1;
|
||||
}
|
||||
}
|
||||
}
|
||||
TRACE("nla_horner_details", tout << "a_index = " << a_index << ", v="; print_vector(v, tout) << "\n";);
|
||||
a = v[a_index].first;
|
||||
lp::lar_term t;
|
||||
|
||||
if (a.is_one()) {
|
||||
for (unsigned k = 0; k < v.size(); k++) {
|
||||
auto& p = v[k];
|
||||
t.add_coeff_var(p.first, p.second);
|
||||
}
|
||||
} else {
|
||||
for (unsigned k = 0; k < v.size(); k++) {
|
||||
auto& p = v[k];
|
||||
if (k != a_index)
|
||||
t.add_coeff_var(p.first/a, p.second);
|
||||
else
|
||||
t.add_var(p.second);
|
||||
}
|
||||
}
|
||||
TRACE("nla_horner_details", tout << a << "* (";
|
||||
lp::lar_solver::print_term_as_indices(t, tout) << ") + " << b << std::endl;);
|
||||
SASSERT(t.is_normalized());
|
||||
return t;
|
||||
}
|
||||
|
||||
|
||||
// we should have in the case of found a * m_terms[k] + b = e,
|
||||
// where m_terms[k] corresponds to the returned lpvar
|
||||
lpvar intervals::find_term_column(const lp::lar_term & norm_t, rational& a) const {
|
||||
std::pair<rational, lpvar> a_j;
|
||||
if (m_core->m_lar_solver.fetch_normalized_term_column(norm_t, a_j)) {
|
||||
a /= a_j.first;
|
||||
return a_j.second;
|
||||
}
|
||||
return -1;
|
||||
}
|
||||
|
||||
|
||||
|
||||
bool intervals::interval_from_term_with_deps(const nex* e, interv & i) const {
|
||||
rational a, b;
|
||||
lp::lar_term norm_t = expression_to_normalized_term(to_sum(e), a, b);
|
||||
lp::explanation exp;
|
||||
if (m_core->explain_by_equiv(norm_t, exp)) {
|
||||
set_zero_interval_with_explanation(i, exp);
|
||||
TRACE("nla_intervals", tout << "explain_by_equiv\n";);
|
||||
return true;
|
||||
}
|
||||
lpvar j = find_term_column(norm_t, a);
|
||||
if (j + 1 == 0)
|
||||
return false;
|
||||
|
||||
set_var_interval_with_deps(j, i);
|
||||
interv bi;
|
||||
mul_with_deps(a, i, bi);
|
||||
add(b, bi);
|
||||
set_with_deps(i, bi);
|
||||
|
||||
TRACE("nla_intervals",
|
||||
m_core->m_lar_solver.print_column_info(j, tout) << "\n";
|
||||
tout << "a=" << a << ", b=" << b << "\n";
|
||||
tout << *e << ", interval = "; display(tout, i););
|
||||
return true;
|
||||
}
|
||||
|
||||
bool intervals::interval_from_term(const nex* e, interv & i) const {
|
||||
rational a, b;
|
||||
lp::lar_term norm_t = expression_to_normalized_term(to_sum(e), a, b);
|
||||
lp::explanation exp;
|
||||
if (m_core->explain_by_equiv(norm_t, exp)) {
|
||||
set_zero_interval(i);
|
||||
TRACE("nla_intervals", tout << "explain_by_equiv\n";);
|
||||
return true;
|
||||
}
|
||||
lpvar j = find_term_column(norm_t, a);
|
||||
if (j + 1 == 0)
|
||||
return false;
|
||||
|
||||
set_var_interval(j, i);
|
||||
interv bi;
|
||||
mul_no_deps(a, i, bi);
|
||||
add(b, bi);
|
||||
set(i, bi, 44);
|
||||
|
||||
TRACE("nla_intervals",
|
||||
m_core->m_lar_solver.print_column_info(j, tout) << "\n";
|
||||
tout << "a=" << a << ", b=" << b << "\n";
|
||||
tout << *e << ", interval = "; display(tout, i););
|
||||
return true;
|
||||
|
||||
}
|
||||
|
||||
|
||||
intervals::interv intervals::interval_of_sum_with_deps(const nex_sum* e) {
|
||||
TRACE("nla_intervals_details", tout << "e=" << *e << "\n";);
|
||||
interv i_e = interval_of_sum_no_term_with_deps(e);
|
||||
if (e->is_a_linear_term()) {
|
||||
SASSERT(e->is_sum() && e->size() > 1);
|
||||
interv i_from_term ;
|
||||
if (interval_from_term_with_deps(e, i_from_term)) {
|
||||
interv r = intersect_with_deps(i_e, i_from_term);
|
||||
TRACE("nla_intervals_details", tout << "intersection="; display(tout, r) << "\n";);
|
||||
if (is_empty(r)) {
|
||||
SASSERT(false); // not implemented
|
||||
}
|
||||
return r;
|
||||
|
||||
}
|
||||
}
|
||||
return i_e;
|
||||
}
|
||||
|
||||
intervals::interv intervals::interval_of_sum(const nex_sum* e) {
|
||||
interv i_e = interval_of_sum_no_term(e);
|
||||
TRACE("nla_intervals_details", tout << "e=" << *e << "\ni_e="; display(tout, i_e) << "\n";);
|
||||
if (e->is_a_linear_term()) {
|
||||
SASSERT(e->is_sum() && e->size() > 1);
|
||||
interv i_from_term ;
|
||||
if (interval_from_term(e, i_from_term)) {
|
||||
TRACE("nla_intervals_details", tout << "i_from_term="; display(tout, i_from_term) << "\n";);
|
||||
interv r = intersect(i_e, i_from_term, 44);
|
||||
TRACE("nla_intervals_details", tout << "intersection="; display(tout, r) << "\n";);
|
||||
if (is_empty(r)) {
|
||||
SASSERT(false); // not implemented
|
||||
}
|
||||
return r;
|
||||
|
||||
}
|
||||
}
|
||||
return i_e;
|
||||
}
|
||||
|
||||
|
||||
void intervals::set_var_interval(lpvar v, interval& b) const {
|
||||
lp::constraint_index ci;
|
||||
rational val;
|
||||
|
|
|
@ -452,5 +452,28 @@ public:
|
|||
return false;
|
||||
}
|
||||
void reset() { m_alloc.reset(); }
|
||||
bool check_cross_nested_expr(const nex*, ci_dependency*);
|
||||
interval interval_of_expr_with_deps(const nex* e, unsigned power);
|
||||
interval interval_of_expr(const nex* e, unsigned power);
|
||||
interval interval_of_sum(const nex_sum*);
|
||||
interval interval_of_sum_no_term(const nex_sum*);
|
||||
interval interval_of_mul(const nex_mul*);
|
||||
interval interval_of_sum_no_term_with_deps(const nex_sum* e);
|
||||
bool interval_from_term_with_deps(const nex* e, interval & i) const;
|
||||
bool interval_from_term(const nex* e, interval & i) const;
|
||||
interval interval_of_sum_with_deps(const nex_sum* e);
|
||||
typedef interval interv;
|
||||
void set_interval_for_scalar(interv&, const rational&);
|
||||
interv power_with_deps(const interv& a, unsigned);
|
||||
interv interval_of_mul_with_deps(const nex_mul*);
|
||||
const nex* get_zero_interval_child(const nex_mul*) const;
|
||||
const nex* get_inf_interval_child(const nex_sum*) const;
|
||||
bool has_zero_interval(const nex* ) const;
|
||||
bool has_inf_interval(const nex* ) const;
|
||||
bool mul_has_inf_interval(const nex_mul* ) const;
|
||||
static lp::lar_term expression_to_normalized_term(const nex_sum*, rational& a, rational & b);
|
||||
static void add_linear_to_vector(const nex*, vector<std::pair<rational, lpvar>> &);
|
||||
static void add_mul_of_degree_one_to_vector(const nex_mul*, vector<std::pair<rational, lpvar>> &);
|
||||
lpvar find_term_column(const lp::lar_term &, rational & a) const;
|
||||
}; // end of intervals
|
||||
} // end of namespace nla
|
||||
|
|
Loading…
Reference in a new issue