3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-29 11:55:51 +00:00

adding review notes to code

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2013-10-26 16:24:21 +08:00
commit 9903c722af
7 changed files with 215 additions and 103 deletions

View file

@ -24,6 +24,12 @@ Notes:
namespace smt {
template<typename Ext>
network_flow<Ext>::network_flow(graph & g, vector<fin_numeral> const& costs) :
m_graph(g),
m_costs(costs) {
}
template<typename Ext>
void network_flow<Ext>::initialize() {
// TODO: construct an initial spanning tree i.e. inializing m_pred, m_depth and m_thread.
@ -36,54 +42,73 @@ namespace smt {
SASSERT(!m_potentials.empty());
SASSERT(!m_thread.empty());
SASSERT(m_thread.size() == m_pred.size());
array<rational, m_potentials.size()> potentials;
std::copy(m_potentials.begin(), m_potentials.end(), potentials);
rational zero(0);
potentials[0] = zero;
node next = m_thread[0];
while (next != 0) {
node current = m_pred[next];
edge e;
if (m_graph.get_edge(current, next, e)) {
potentials[next] = potentials[current] - e.get_weight();
m_potentials.set(0, numeral::zero());
node target = m_thread[0];
while (target != 0) {
node source = m_pred[target];
edge_id e_id;
if (m_graph.get_edge_id(source, target, e_id)) {
m_potentials.set(target, m_potentials[source] - m_graph.get_weight(e_id));
}
if (m_graph.get_edge(next, current, e)) {
potentials[next] = potentials[current] + e.get_weight();
if (m_graph.get_edge_id(target, source, e_id)) {
m_potentials.set(target, m_potentials[source] + m_graph.get_weight(e_id));
}
next = m_thread[next];
target = m_thread[target];
}
std::copy(potentials.begin(), potentials.end(), m_potentials);
}
template<typename Ext>
void network_flow<Ext>::compute_flows() {
vector<numeral> balances(m_balances);
numeral zero;
m_flows.fill(zero);
vector<edge> basics(m_basics);
// TODO: need a way to find a leaf node of a spanning tree
// OPTIMIZE: Need a set data structure for efficiently removing elements
vector<edge_id> basics;
while (!basics.empty()) {
return;
// Find a leaf node of a spanning tree
node target;
for (unsigned int i = 0; i < m_thread.size(); ++i) {
if (m_depth[i] <= m_depth[m_thread[i]]) {
target = i;
break;
}
}
node source = m_pred[target];
edge_id e_id;
if (m_graph.get_edge_id(source, target, e_id)) {
m_flows.set(e_id, -m_graph.get_weight(basics[target]));
basics[source] += basics[target];
basics.erase(e_id);
}
else if (m_graph.get_edge_id(target, source, e_id)) {
m_flows.set(e_id, m_graph.get_weight(basics[target]));
basics[source] += basics[target];
basics.erase(e_id);
}
}
}
template<typename Ext>
bool network_flow<Ext>::is_optimal(edge & violating_edge) {
typename vector<edge>::iterator it = m_nonbasics.begin();
typename vector<edge>::iterator end = m_nonbasics.end();
bool network_flow<Ext>::is_optimal(edge_id & violating_edge) {
// TODO: how to get nonbasics vector?
vector<edge> nonbasics;
typename vector<edge>::iterator it = nonbasics.begin();
typename vector<edge>::iterator end = nonbasics.end();
bool found = false;
for (unsigned int i = 0; i < m_nonbasics.size(); ++i) {
edge & e = m_nonbasics[i];
for (unsigned int i = 0; i < nonbasics.size(); ++i) {
edge & e = nonbasics[i];
if (e.is_enabled()) {
node source = e.get_source();
node target = e.get_target();
numeral cost = e.get_weight() - m_potentials[source] + m_potentials[target];
// Choose the first negative-cost edge to be the violating edge
// TODO: add multiple pivoting strategies
if (cost < 0) {
violating_edge = e;
numeral zero(0);
if (cost < zero) {
edge_id e_id;
m_graph.get_edge_id(source, target, e_id);
violating_edge = e_id;
found = true;
break;
}
@ -93,9 +118,9 @@ namespace smt {
}
template<typename Ext>
dl_edge<typename network_flow<Ext>::GExt> network_flow<Ext>::choose_leaving_edge(const edge & entering_edge) {
node source = entering_edge.get_source();
node target = entering_edge.get_target();
edge_id network_flow<Ext>::choose_leaving_edge(edge_id entering_edge) {
node source = m_graph.get_source(entering_edge);
node target = m_graph.get_target(entering_edge);
while (source != target) {
if (m_depth[source] > m_depth[target])
source = m_pred[source];
@ -106,14 +131,28 @@ namespace smt {
target = m_pred[target];
}
}
edge e;
m_graph.get_edge(source, target, e);
return e;
edge_id e_id;
m_graph.get_edge_id(source, target, e_id);
return e_id;
}
template<typename Ext>
void network_flow<Ext>::update_basics(const edge & entering_edge, const edge & leaving_edge) {
void network_flow<Ext>::update_spanning_tree(edge_id entering_edge, edge_id leaving_edge) {
// Need special handling in case two edges are identical
SASSERT(entering_edge != leaving_edge);
// Update potentials
node target = m_upwards[leaving_edge] ? m_graph.get_source(leaving_edge) : m_graph.get_target(leaving_edge);
numeral src_pot = m_potentials[m_graph.get_source(entering_edge)];
numeral tgt_pot = m_potentials[m_graph.get_target(entering_edge)];
numeral weight = m_graph.get_weight(entering_edge);
numeral change = m_upwards[entering_edge] ? (weight - src_pot + tgt_pot) : (-weight + src_pot - tgt_pot);
m_potentials[target] += change;
node start = m_thread[target];
while (m_depth[start] > m_depth[target]) {
m_potentials[start] += change;
start = m_thread[start];
}
}
template<typename Ext>
@ -124,24 +163,34 @@ namespace smt {
// Get the optimal solution
template<typename Ext>
void network_flow<Ext>::get_optimal_solution(numeral & objective, vector<numeral> & flows) {
SASSERT(m_is_optimal);
flows.reset();
flows.append(m_flows);
// TODO: calculate objective value
numeral cost(0);
for (unsigned int i = 0; i < m_flows.size(); ++i) {
// FIXME: this * operator is not supported
cost += m_costs[i] * m_flows[i];
}
objective = cost;
}
// Minimize cost flows
// Return true if found an optimal solution, and return false if unbounded
template<typename Ext>
bool network_flow<Ext>::min_cost() {
SASSERT(!m_graph.get_all_edges().empty());
initialize();
edge & entering_edge;
edge_id entering_edge;
while (!is_optimal(entering_edge)) {
edge & leaving_edge = choose_leaving_edge();
update_tree(entering_edge, leaving_edge);
if (is_unbounded())
return false;
edge_id leaving_edge = choose_leaving_edge(entering_edge);
update_spanning_tree(entering_edge, leaving_edge);
if (is_unbounded()) {
m_is_optimal = false;
return m_is_optimal;
}
}
return true;
m_is_optimal = true;
return m_is_optimal;
}
}