3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-24 09:35:32 +00:00

moving to rational coefficients

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2013-11-21 15:55:08 -08:00
parent e44db06bb7
commit 97dfb6d521
7 changed files with 261 additions and 119 deletions

View file

@ -30,44 +30,26 @@ namespace smt {
void theory_pb::ineq::negate() {
m_lit.neg();
numeral sum = 0;
numeral sum(0);
for (unsigned i = 0; i < size(); ++i) {
m_args[i].first.neg();
sum += coeff(i);
}
m_k = sum - m_k + 1;
m_k = sum - m_k + numeral::one();
SASSERT(well_formed());
}
void theory_pb::ineq::reset() {
m_max_coeff = 0;
m_max_coeff.reset();
m_watch_sz = 0;
m_max_sum = 0;
m_max_sum.reset();
m_num_propagations = 0;
m_compilation_threshold = UINT_MAX;
m_compiled = l_false;
m_args.reset();
m_k = 0;
m_k.reset();
}
theory_pb::numeral theory_pb::ineq::gcd(numeral a, numeral b) {
while (a != b) {
if (a == 0) return b;
if (b == 0) return a;
SASSERT(a != 0 && b != 0);
if (a < b) {
b %= a;
}
else {
a %= b;
}
}
return a;
}
theory_pb::numeral theory_pb::ineq::lcm(numeral a, numeral b) {
return (a*b)/gcd(a,b);
}
void theory_pb::ineq::unique() {
numeral& k = m_k;
@ -103,7 +85,7 @@ namespace smt {
}
args.pop_back();
}
if (coeff(i) == 0) {
if (coeff(i).is_zero()) {
for (unsigned j = i; j + 1 < size(); ++j) {
args[j] = args[j+1];
}
@ -127,10 +109,10 @@ namespace smt {
// <=>
// -c*~l + y >= k - c
//
numeral sum = 0;
numeral sum(0);
for (unsigned i = 0; i < size(); ++i) {
numeral c = coeff(i);
if (c < 0) {
if (c.is_neg()) {
args[i].second = -c;
args[i].first = ~lit(i);
k -= c;
@ -138,7 +120,7 @@ namespace smt {
sum += coeff(i);
}
// detect tautologies:
if (k <= 0) {
if (k <= numeral::zero()) {
args.reset();
return l_true;
}
@ -147,8 +129,21 @@ namespace smt {
args.reset();
return l_false;
}
// normalize to integers.
numeral d(denominator(k));
for (unsigned i = 0; i < size(); ++i) {
d = lcm(d, denominator(coeff(i)));
}
if (!d.is_one()) {
k *= d;
for (unsigned i = 0; i < size(); ++i) {
args[i].second *= d;
}
}
// Ensure the largest coefficient is not larger than k:
sum = 0;
sum = numeral::zero();
for (unsigned i = 0; i < size(); ++i) {
numeral c = coeff(i);
if (c > k) {
@ -161,45 +156,52 @@ namespace smt {
// normalize tight inequalities to unit coefficients.
if (sum == k) {
for (unsigned i = 0; i < size(); ++i) {
args[i].second = 1;
args[i].second = numeral::one();
}
k = size();
k = numeral(size());
}
// apply cutting plane reduction:
numeral g = 0;
for (unsigned i = 0; g != 1 && i < size(); ++i) {
numeral g(0);
for (unsigned i = 0; !g.is_one() && i < size(); ++i) {
numeral c = coeff(i);
if (c != k) {
g = gcd(g, c);
if (g.is_zero()) {
g = c;
}
else {
g = gcd(g, c);
}
}
}
if (g == 0) {
if (g.is_zero()) {
// all coefficients are equal to k.
for (unsigned i = 0; i < size(); ++i) {
SASSERT(coeff(i) == k);
args[i].second = 1;
args[i].second = numeral::one();
}
k = 1;
k = numeral::one();
}
else if (g > 1) {
else if (g > numeral::one()) {
//
// Example 5x + 5y + 2z + 2u >= 5
// becomes 3x + 3y + z + u >= 3
//
numeral k_new = k / g;
if ((k % g) != 0) { // k_new is the ceiling of k / g.
numeral k_new = div(k, g);
if (!(k % g).is_zero()) { // k_new is the ceiling of k / g.
k_new++;
}
for (unsigned i = 0; i < size(); ++i) {
SASSERT(coeff(i).is_pos());
numeral c = coeff(i);
if (c == k) {
c = k_new;
}
else {
c = c / g;
c = div(c, g);
}
args[i].second = c;
SASSERT(coeff(i).is_pos());
}
k = k_new;
}
@ -208,12 +210,12 @@ namespace smt {
}
bool theory_pb::ineq::well_formed() const {
SASSERT(k() > 0);
SASSERT(k().is_pos());
uint_set vars;
numeral sum = 0;
numeral sum = numeral::zero();
for (unsigned i = 0; i < size(); ++i) {
SASSERT(coeff(i) <= k());
SASSERT(1 <= coeff(i));
SASSERT(numeral::one() <= coeff(i));
SASSERT(lit(i) != true_literal);
SASSERT(lit(i) != false_literal);
SASSERT(lit(i) != null_literal);
@ -274,6 +276,9 @@ namespace smt {
}
k = -k;
}
else {
SASSERT(m_util.is_at_least_k(atom) || m_util.is_ge(atom));
}
c->unique();
lbool is_true = c->normalize();
@ -295,7 +300,7 @@ namespace smt {
// maximal coefficient:
numeral& max_coeff = c->m_max_coeff;
max_coeff = 0;
max_coeff = numeral::zero();
for (unsigned i = 0; i < args.size(); ++i) {
max_coeff = std::max(max_coeff, args[i].second);
}
@ -304,7 +309,7 @@ namespace smt {
// pre-compile threshold for cardinality
bool is_cardinality = true;
for (unsigned i = 0; is_cardinality && i < args.size(); ++i) {
is_cardinality = (args[i].second == 1);
is_cardinality = (args[i].second.is_one());
}
if (is_cardinality) {
unsigned log = 1, n = 1;
@ -472,7 +477,7 @@ namespace smt {
if (ctx.get_assignment(c.lit()) == l_undef) {
return;
}
numeral sum = 0, maxsum = 0;
numeral sum = numeral::zero(), maxsum = numeral::zero();
for (unsigned i = 0; i < c.size(); ++i) {
switch(ctx.get_assignment(c.lit(i))) {
case l_true:
@ -511,7 +516,7 @@ namespace smt {
}
literal_vector& theory_pb::get_helpful_literals(ineq& c, bool negate) {
numeral sum = 0;
numeral sum = numeral::zero();
context& ctx = get_context();
literal_vector& lits = get_lits();
for (unsigned i = 0; sum < c.k() && i < c.size(); ++i) {
@ -553,7 +558,7 @@ namespace smt {
SASSERT(c.well_formed());
context& ctx = get_context();
numeral maxsum = 0;
numeral maxsum = numeral::zero();
for (unsigned i = 0; i < c.size(); ++i) {
if (ctx.get_assignment(c.lit(i)) != l_false) {
maxsum += c.coeff(i);
@ -570,7 +575,7 @@ namespace smt {
add_clause(c, ~lits[0], lits);
}
else {
c.m_max_sum = 0;
c.m_max_sum = numeral::zero();
c.m_watch_sz = 0;
for (unsigned i = 0; c.max_sum() < c.k() + c.max_coeff() && i < c.size(); ++i) {
if (ctx.get_assignment(c.lit(i)) != l_false) {
@ -822,10 +827,9 @@ namespace smt {
context& ctx = get_context();
// only cardinality constraints are compiled.
SASSERT(c.m_compilation_threshold < UINT_MAX);
DEBUG_CODE(for (unsigned i = 0; i < c.size(); ++i) SASSERT(c.coeff(i) == 1); );
unsigned k = static_cast<unsigned>(c.k());
DEBUG_CODE(for (unsigned i = 0; i < c.size(); ++i) SASSERT(c.coeff(i).is_one()); );
unsigned k = c.k().get_unsigned();
unsigned num_args = c.size();
SASSERT(0 <= k && k <= num_args);
sort_expr se(*this);
sorting_network<sort_expr> sn(se);
@ -925,7 +929,7 @@ namespace smt {
}
for (unsigned i = 0; i < c.size(); ++i) {
literal l(c.lit(i));
if (c.coeff(i) != 1) {
if (!c.coeff(i).is_one()) {
out << c.coeff(i) << "*";
}
out << l;
@ -941,11 +945,11 @@ namespace smt {
}
}
out << " >= " << c.m_k << "\n";
if (c.m_num_propagations) out << "propagations: " << c.m_num_propagations << " ";
if (c.max_coeff()) out << "max_coeff: " << c.max_coeff() << " ";
if (c.watch_size()) out << "watch size: " << c.watch_size() << " ";
if (c.max_sum()) out << "max-sum: " << c.max_sum() << " ";
if (c.m_num_propagations || c.max_coeff() || c.watch_size() || c.max_sum()) out << "\n";
if (c.m_num_propagations) out << "propagations: " << c.m_num_propagations << " ";
if (c.max_coeff().is_pos()) out << "max_coeff: " << c.max_coeff() << " ";
if (c.watch_size()) out << "watch size: " << c.watch_size() << " ";
if (c.max_sum().is_pos()) out << "max-sum: " << c.max_sum() << " ";
if (c.m_num_propagations || c.max_coeff().is_pos() || c.watch_size() || c.max_sum().is_pos()) out << "\n";
return out;
}
@ -1077,23 +1081,25 @@ namespace smt {
//
context& ctx = get_context();
numeral coeff2 = (conseq==null_literal)?1:0;
numeral coeff2 = (conseq==null_literal)?numeral::one():numeral::zero();
for (unsigned i = 0; i < c.size(); ++i) {
if (c.lit(i) == conseq) {
coeff2 = c.coeff(i);
break;
}
}
SASSERT(coeff2 > 0);
numeral lc = ineq::lcm(coeff1, coeff2);
SASSERT(coeff2.is_pos());
numeral lc = lcm(coeff1, coeff2);
numeral g = lc/coeff1;
if (g > 1) {
SASSERT(g.is_int());
if (g > numeral::one()) {
for (unsigned i = 0; i < m_lemma.size(); ++i) {
m_lemma.m_args[i].second *= g;
}
m_lemma.m_k *= g;
}
g = lc/coeff2;
SASSERT(g.is_int());
m_lemma.m_k += g*c.k();
for (unsigned i = 0; i < c.size(); ++i) {
@ -1132,7 +1138,7 @@ namespace smt {
m_num_marks = 0;
m_lemma.reset();
m_ineq_literals.reset();
process_ineq(c, null_literal, 1); // add consequent to lemma.
process_ineq(c, null_literal, numeral::one()); // add consequent to lemma.
// point into stack of assigned literals
literal_vector const& lits = ctx.assigned_literals();
@ -1241,15 +1247,15 @@ namespace smt {
IF_VERBOSE(1, display(verbose_stream() << "lemma: ", m_lemma););
ast_manager& m = get_manager();
svector<int> coeffs;
svector<rational> coeffs;
expr_ref_vector args(m);
expr_ref tmp(m);
for (unsigned i = 0; i < m_lemma.size(); ++i) {
ctx.literal2expr(m_lemma.lit(i), tmp);
args.push_back(tmp);
coeffs.push_back(static_cast<int>(m_lemma.coeff(i)));
coeffs.push_back(m_lemma.coeff(i));
}
int k = static_cast<int>(m_lemma.k());
numeral k = m_lemma.k();
tmp = m_util.mk_ge(coeffs.size(), coeffs.c_ptr(), args.c_ptr(), k);
internalize_atom(to_app(tmp), false);
//m_ineq_literals.push_back(literal(ctx.get_bool_var(tmp)));

View file

@ -29,8 +29,8 @@ namespace smt {
struct sort_expr;
class pb_justification;
typedef int64 numeral;
typedef svector<std::pair<literal, numeral> > arg_t;
typedef rational numeral;
typedef vector<std::pair<literal, numeral> > arg_t;
struct stats {
unsigned m_num_conflicts;
@ -91,8 +91,8 @@ namespace smt {
bool well_formed() const;
static numeral gcd(numeral a, numeral b);
static numeral lcm(numeral a, numeral b);
//static numeral gcd(numeral a, numeral b);
//static numeral lcm(numeral a, numeral b);
};