mirror of
https://github.com/Z3Prover/z3
synced 2025-04-22 00:26:38 +00:00
Functions to extract fixed bits for slicing
This commit is contained in:
parent
c95ff56d2d
commit
9600f812a6
2 changed files with 95 additions and 56 deletions
|
@ -18,30 +18,59 @@ Author:
|
|||
namespace polysat {
|
||||
|
||||
/**
|
||||
* Constraint lhs <= rhs.
|
||||
*
|
||||
* 2^(k - d) * x = 2^(k - d) * c
|
||||
* ==> x[|d|:0] = c[|d|:0]
|
||||
*
|
||||
* -2^(k - 2) * x > 2^(k - 1)
|
||||
* <=> 2 + x[1:0] > 2 (mod 4)
|
||||
* ==> x[1:0] = 1
|
||||
* -- TODO: Generalize [the obvious solution does not work]
|
||||
*/
|
||||
|
||||
/**
|
||||
* 2^(k - d) * x = 2^(k - d) * c
|
||||
* ==> x[|d|:0] = c[|d|:0]
|
||||
* 2^k * x = 2^k * b
|
||||
* ==> x[N-k-1:0] = b[N-k-1:0]
|
||||
*/
|
||||
bool get_eq_fixed_lsb(pdd const& p, fixed_bits& out) {
|
||||
SASSERT(!p.is_val());
|
||||
unsigned const N = p.power_of_2();
|
||||
// Recognize p = 2^k * a * x - 2^k * b
|
||||
if (!p.hi().is_val())
|
||||
return false;
|
||||
// TODO:
|
||||
return false;
|
||||
if (!p.lo().is_val())
|
||||
return false;
|
||||
// p = c * x - d
|
||||
rational const c = p.hi().val();
|
||||
rational const d = (-p.lo()).val();
|
||||
SASSERT(!c.is_zero());
|
||||
#if 1
|
||||
// NOTE: ule_constraint::simplify removes odd factors of the leading term
|
||||
unsigned k;
|
||||
VERIFY(c.is_power_of_two(k));
|
||||
if (d.parity(N) < k)
|
||||
return false;
|
||||
rational const b = machine_div2k(d, k);
|
||||
out = fixed_bits(N - k - 1, 0, b);
|
||||
SASSERT_EQ(d, b * rational::power_of_two(k));
|
||||
SASSERT_EQ(p, (p.manager().mk_var(p.var()) - out.value) * rational::power_of_two(k));
|
||||
return true;
|
||||
#else
|
||||
// branch if we want to support non-simplifed constraints (not recommended)
|
||||
//
|
||||
// 2^k * a * x = 2^k * b
|
||||
// ==> x[N-k-1:0] = a^-1 * b[N-k-1:0]
|
||||
// for odd a
|
||||
unsigned k = c.parity(N);
|
||||
if (d.parity(N) < k)
|
||||
return false;
|
||||
rational const a = machine_div2k(c, k);
|
||||
SASSERT(a.is_odd());
|
||||
SASSERT(a.is_one()); // TODO: ule-simplify will multiply with a_inv already, so we can drop the check here.
|
||||
rational a_inv;
|
||||
VERIFY(a.mult_inverse(N, a_inv));
|
||||
rational const b = machine_div2k(d, k);
|
||||
out.hi = N - k - 1;
|
||||
out.lo = 0;
|
||||
out.value = a_inv * b;
|
||||
SASSERT_EQ(p, (p.manager().mk_var(p.var()) - out.value) * a * rational::power_of_two(k));
|
||||
return true;
|
||||
#endif
|
||||
}
|
||||
|
||||
bool get_eq_fixed_bits(pdd const& p, fixed_bits& out) {
|
||||
return get_eq_fixed_lsb(p, out);
|
||||
if (get_eq_fixed_lsb(p, out))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
|
@ -56,7 +85,53 @@ namespace polysat {
|
|||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Constraint lhs <= rhs.
|
||||
*
|
||||
* x <= 2^k - 1 ==> x[N-1:k] = 0
|
||||
* x < 2^k ==> x[N-1:k] = 0
|
||||
*/
|
||||
bool get_ule_fixed_msb(pdd const& p, pdd const& q, bool is_positive, fixed_bits& out) {
|
||||
SASSERT(!q.is_zero()); // equalities are handled elsewhere
|
||||
unsigned const N = p.power_of_2();
|
||||
pdd const& lhs = is_positive ? p : q;
|
||||
pdd const& rhs = is_positive ? q : p;
|
||||
bool const is_strict = !is_positive;
|
||||
if (lhs.is_var() && rhs.is_val()) {
|
||||
// x <= c
|
||||
// find smallest k such that c <= 2^k - 1, i.e., c+1 <= 2^k
|
||||
// ==> x <= 2^k - 1 ==> x[N-1:k] = 0
|
||||
//
|
||||
// x < c
|
||||
// find smallest k such that c <= 2^k
|
||||
// ==> x < 2^k ==> x[N-1:k] = 0
|
||||
rational const c = is_strict ? rhs.val() : (rhs.val() + 1);
|
||||
unsigned const k = c.next_power_of_two();
|
||||
if (k < N) {
|
||||
out.hi = N - 1;
|
||||
out.lo = k;
|
||||
out.value = 0;
|
||||
return true;
|
||||
}
|
||||
}
|
||||
return false;
|
||||
}
|
||||
|
||||
// 2^(N-1) <= 2^(N-1-i) * x
|
||||
bool get_ule_fixed_bit(pdd const& p, pdd const& q, bool is_positive, fixed_bits& out) {
|
||||
return false;
|
||||
}
|
||||
|
||||
bool get_ule_fixed_bits(pdd const& lhs, pdd const& rhs, bool is_positive, fixed_bits& out) {
|
||||
SASSERT(ule_constraint::is_simplified(lhs, rhs));
|
||||
if (rhs.is_zero())
|
||||
return is_positive ? get_eq_fixed_bits(lhs, out) : false;
|
||||
if (get_ule_fixed_msb(lhs, rhs, is_positive, out))
|
||||
return true;
|
||||
if (get_ule_fixed_lsb(lhs, rhs, is_positive, out))
|
||||
return true;
|
||||
if (get_ule_fixed_bit(lhs, rhs, is_positive, out))
|
||||
return true;
|
||||
return false;
|
||||
}
|
||||
|
||||
|
@ -79,44 +154,6 @@ namespace polysat {
|
|||
SASSERT(lhs.is_univariate() && lhs.degree() <= 1);
|
||||
SASSERT(rhs.is_univariate() && rhs.degree() <= 1);
|
||||
|
||||
if (rhs.is_zero()) { // equality
|
||||
auto lhs_decomp = decouple_constant(lhs);
|
||||
|
||||
lhs = lhs_decomp.first;
|
||||
rhs = -lhs_decomp.second;
|
||||
|
||||
SASSERT(rhs.is_val());
|
||||
|
||||
unsigned k = lhs.manager().power_of_2();
|
||||
unsigned d = lhs.max_pow2_divisor();
|
||||
unsigned span = k - d;
|
||||
if (span == 0 || lhs.is_val())
|
||||
return false;
|
||||
|
||||
p = lhs.div(rational::power_of_two(d));
|
||||
rational rhs_val = rhs.val();
|
||||
info.bits = rhs_val / rational::power_of_two(d);
|
||||
if (!info.bits.is_int())
|
||||
return false;
|
||||
|
||||
SASSERT(lhs.is_univariate() && lhs.degree() <= 1);
|
||||
|
||||
auto it = p.begin();
|
||||
auto first = *it;
|
||||
it++;
|
||||
if (it == p.end()) {
|
||||
// if the lhs contains only one monomial it is of the form: odd * x = mask. We can multiply by the inverse to get the mask for x
|
||||
SASSERT(first.coeff.is_odd());
|
||||
rational inv;
|
||||
VERIFY(first.coeff.mult_inverse(lhs.power_of_2(), inv));
|
||||
p *= inv;
|
||||
info.bits = mod2k(info.bits * inv, span);
|
||||
}
|
||||
|
||||
info.length = span;
|
||||
info.positive = pos;
|
||||
return true;
|
||||
}
|
||||
else { // inequality - check for special case
|
||||
if (pos || lhs.power_of_2() < 3)
|
||||
return false;
|
||||
|
|
|
@ -3,7 +3,7 @@ Copyright (c) 2022 Microsoft Corporation
|
|||
|
||||
Module Name:
|
||||
|
||||
Extract fixed bits from (univariate) constraints
|
||||
Extract fixed bits of variables from univariate constraints
|
||||
|
||||
Author:
|
||||
|
||||
|
@ -35,6 +35,8 @@ namespace polysat {
|
|||
bool get_eq_fixed_bits(pdd const& p, fixed_bits& out);
|
||||
|
||||
bool get_ule_fixed_lsb(pdd const& lhs, pdd const& rhs, bool is_positive, fixed_bits& out);
|
||||
bool get_ule_fixed_msb(pdd const& lhs, pdd const& rhs, bool is_positive, fixed_bits& out);
|
||||
bool get_ule_fixed_bit(pdd const& lhs, pdd const& rhs, bool is_positive, fixed_bits& out);
|
||||
bool get_ule_fixed_bits(pdd const& lhs, pdd const& rhs, bool is_positive, fixed_bits& out);
|
||||
bool get_fixed_bits(signed_constraint c, fixed_bits& out);
|
||||
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue