3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-22 00:26:38 +00:00

Functions to extract fixed bits for slicing

This commit is contained in:
Jakob Rath 2023-08-17 17:26:19 +02:00
parent c95ff56d2d
commit 9600f812a6
2 changed files with 95 additions and 56 deletions

View file

@ -18,30 +18,59 @@ Author:
namespace polysat {
/**
* Constraint lhs <= rhs.
*
* 2^(k - d) * x = 2^(k - d) * c
* ==> x[|d|:0] = c[|d|:0]
*
* -2^(k - 2) * x > 2^(k - 1)
* <=> 2 + x[1:0] > 2 (mod 4)
* ==> x[1:0] = 1
* -- TODO: Generalize [the obvious solution does not work]
*/
/**
* 2^(k - d) * x = 2^(k - d) * c
* ==> x[|d|:0] = c[|d|:0]
* 2^k * x = 2^k * b
* ==> x[N-k-1:0] = b[N-k-1:0]
*/
bool get_eq_fixed_lsb(pdd const& p, fixed_bits& out) {
SASSERT(!p.is_val());
unsigned const N = p.power_of_2();
// Recognize p = 2^k * a * x - 2^k * b
if (!p.hi().is_val())
return false;
// TODO:
return false;
if (!p.lo().is_val())
return false;
// p = c * x - d
rational const c = p.hi().val();
rational const d = (-p.lo()).val();
SASSERT(!c.is_zero());
#if 1
// NOTE: ule_constraint::simplify removes odd factors of the leading term
unsigned k;
VERIFY(c.is_power_of_two(k));
if (d.parity(N) < k)
return false;
rational const b = machine_div2k(d, k);
out = fixed_bits(N - k - 1, 0, b);
SASSERT_EQ(d, b * rational::power_of_two(k));
SASSERT_EQ(p, (p.manager().mk_var(p.var()) - out.value) * rational::power_of_two(k));
return true;
#else
// branch if we want to support non-simplifed constraints (not recommended)
//
// 2^k * a * x = 2^k * b
// ==> x[N-k-1:0] = a^-1 * b[N-k-1:0]
// for odd a
unsigned k = c.parity(N);
if (d.parity(N) < k)
return false;
rational const a = machine_div2k(c, k);
SASSERT(a.is_odd());
SASSERT(a.is_one()); // TODO: ule-simplify will multiply with a_inv already, so we can drop the check here.
rational a_inv;
VERIFY(a.mult_inverse(N, a_inv));
rational const b = machine_div2k(d, k);
out.hi = N - k - 1;
out.lo = 0;
out.value = a_inv * b;
SASSERT_EQ(p, (p.manager().mk_var(p.var()) - out.value) * a * rational::power_of_two(k));
return true;
#endif
}
bool get_eq_fixed_bits(pdd const& p, fixed_bits& out) {
return get_eq_fixed_lsb(p, out);
if (get_eq_fixed_lsb(p, out))
return true;
return false;
}
/**
@ -56,7 +85,53 @@ namespace polysat {
return false;
}
/**
* Constraint lhs <= rhs.
*
* x <= 2^k - 1 ==> x[N-1:k] = 0
* x < 2^k ==> x[N-1:k] = 0
*/
bool get_ule_fixed_msb(pdd const& p, pdd const& q, bool is_positive, fixed_bits& out) {
SASSERT(!q.is_zero()); // equalities are handled elsewhere
unsigned const N = p.power_of_2();
pdd const& lhs = is_positive ? p : q;
pdd const& rhs = is_positive ? q : p;
bool const is_strict = !is_positive;
if (lhs.is_var() && rhs.is_val()) {
// x <= c
// find smallest k such that c <= 2^k - 1, i.e., c+1 <= 2^k
// ==> x <= 2^k - 1 ==> x[N-1:k] = 0
//
// x < c
// find smallest k such that c <= 2^k
// ==> x < 2^k ==> x[N-1:k] = 0
rational const c = is_strict ? rhs.val() : (rhs.val() + 1);
unsigned const k = c.next_power_of_two();
if (k < N) {
out.hi = N - 1;
out.lo = k;
out.value = 0;
return true;
}
}
return false;
}
// 2^(N-1) <= 2^(N-1-i) * x
bool get_ule_fixed_bit(pdd const& p, pdd const& q, bool is_positive, fixed_bits& out) {
return false;
}
bool get_ule_fixed_bits(pdd const& lhs, pdd const& rhs, bool is_positive, fixed_bits& out) {
SASSERT(ule_constraint::is_simplified(lhs, rhs));
if (rhs.is_zero())
return is_positive ? get_eq_fixed_bits(lhs, out) : false;
if (get_ule_fixed_msb(lhs, rhs, is_positive, out))
return true;
if (get_ule_fixed_lsb(lhs, rhs, is_positive, out))
return true;
if (get_ule_fixed_bit(lhs, rhs, is_positive, out))
return true;
return false;
}
@ -79,44 +154,6 @@ namespace polysat {
SASSERT(lhs.is_univariate() && lhs.degree() <= 1);
SASSERT(rhs.is_univariate() && rhs.degree() <= 1);
if (rhs.is_zero()) { // equality
auto lhs_decomp = decouple_constant(lhs);
lhs = lhs_decomp.first;
rhs = -lhs_decomp.second;
SASSERT(rhs.is_val());
unsigned k = lhs.manager().power_of_2();
unsigned d = lhs.max_pow2_divisor();
unsigned span = k - d;
if (span == 0 || lhs.is_val())
return false;
p = lhs.div(rational::power_of_two(d));
rational rhs_val = rhs.val();
info.bits = rhs_val / rational::power_of_two(d);
if (!info.bits.is_int())
return false;
SASSERT(lhs.is_univariate() && lhs.degree() <= 1);
auto it = p.begin();
auto first = *it;
it++;
if (it == p.end()) {
// if the lhs contains only one monomial it is of the form: odd * x = mask. We can multiply by the inverse to get the mask for x
SASSERT(first.coeff.is_odd());
rational inv;
VERIFY(first.coeff.mult_inverse(lhs.power_of_2(), inv));
p *= inv;
info.bits = mod2k(info.bits * inv, span);
}
info.length = span;
info.positive = pos;
return true;
}
else { // inequality - check for special case
if (pos || lhs.power_of_2() < 3)
return false;

View file

@ -3,7 +3,7 @@ Copyright (c) 2022 Microsoft Corporation
Module Name:
Extract fixed bits from (univariate) constraints
Extract fixed bits of variables from univariate constraints
Author:
@ -35,6 +35,8 @@ namespace polysat {
bool get_eq_fixed_bits(pdd const& p, fixed_bits& out);
bool get_ule_fixed_lsb(pdd const& lhs, pdd const& rhs, bool is_positive, fixed_bits& out);
bool get_ule_fixed_msb(pdd const& lhs, pdd const& rhs, bool is_positive, fixed_bits& out);
bool get_ule_fixed_bit(pdd const& lhs, pdd const& rhs, bool is_positive, fixed_bits& out);
bool get_ule_fixed_bits(pdd const& lhs, pdd const& rhs, bool is_positive, fixed_bits& out);
bool get_fixed_bits(signed_constraint c, fixed_bits& out);