mirror of
https://github.com/Z3Prover/z3
synced 2025-04-24 01:25:31 +00:00
import updates from poly branch
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
2ca1187b3a
commit
955c80e98b
8 changed files with 408 additions and 217 deletions
|
@ -260,9 +260,6 @@ namespace arith {
|
|||
if (valy >= sz || valy == 0)
|
||||
return true;
|
||||
unsigned k = valy.get_unsigned();
|
||||
rational r = mod(valx * rational::power_of_two(k), N);
|
||||
if (r == valn)
|
||||
return true;
|
||||
sat::literal eq = eq_internalize(n, a.mk_mod(a.mk_mul(_x, a.mk_int(rational::power_of_two(k))), a.mk_int(N)));
|
||||
if (s().value(eq) == l_true)
|
||||
return true;
|
||||
|
@ -275,9 +272,6 @@ namespace arith {
|
|||
if (valy >= sz || valy == 0)
|
||||
return true;
|
||||
unsigned k = valy.get_unsigned();
|
||||
rational r = mod(div(valx, rational::power_of_two(k)), N);
|
||||
if (r == valn)
|
||||
return true;
|
||||
sat::literal eq = eq_internalize(n, a.mk_idiv(x, a.mk_int(rational::power_of_two(k))));
|
||||
if (s().value(eq) == l_true)
|
||||
return true;
|
||||
|
@ -290,12 +284,6 @@ namespace arith {
|
|||
if (valy >= sz || valy == 0)
|
||||
return true;
|
||||
unsigned k = valy.get_unsigned();
|
||||
bool signvalx = x >= N/2;
|
||||
rational valxdiv2k = div(valx, rational::power_of_two(k));
|
||||
if (signvalx)
|
||||
valxdiv2k = mod(valxdiv2k - rational::power_of_two(sz - k), N);
|
||||
if (valn == valxdiv2k)
|
||||
return true;
|
||||
sat::literal signx = mk_literal(a.mk_ge(x, a.mk_int(N/2)));
|
||||
sat::literal eq;
|
||||
expr* xdiv2k;
|
||||
|
@ -334,11 +322,7 @@ namespace arith {
|
|||
return true;
|
||||
}
|
||||
|
||||
/*
|
||||
* 0 <= x&y < 2^sz
|
||||
* x&y <= x
|
||||
* x&y <= y
|
||||
*/
|
||||
|
||||
void solver::mk_bv_axiom(app* n) {
|
||||
unsigned sz;
|
||||
expr* _x, * _y;
|
||||
|
@ -347,10 +331,15 @@ namespace arith {
|
|||
expr_ref x(a.mk_mod(_x, a.mk_int(N)), m);
|
||||
expr_ref y(a.mk_mod(_y, a.mk_int(N)), m);
|
||||
|
||||
add_clause(mk_literal(a.mk_ge(n, a.mk_int(0))));
|
||||
add_clause(mk_literal(a.mk_le(n, a.mk_int(N - 1))));
|
||||
|
||||
if (a.is_band(n)) {
|
||||
|
||||
// 0 <= x&y < 2^sz
|
||||
// x&y <= x
|
||||
// x&y <= y
|
||||
// TODO? x = y => x&y = x
|
||||
|
||||
add_clause(mk_literal(a.mk_ge(n, a.mk_int(0))));
|
||||
add_clause(mk_literal(a.mk_le(n, a.mk_int(N - 1))));
|
||||
add_clause(mk_literal(a.mk_le(n, x)));
|
||||
add_clause(mk_literal(a.mk_le(n, y)));
|
||||
}
|
||||
|
|
|
@ -37,6 +37,7 @@ namespace intblast {
|
|||
euf::theory_var solver::mk_var(euf::enode* n) {
|
||||
auto r = euf::th_euf_solver::mk_var(n);
|
||||
ctx.attach_th_var(n, this, r);
|
||||
TRACE("bv", tout << "mk-var: v" << r << " " << ctx.bpp(n) << "\n";);
|
||||
return r;
|
||||
}
|
||||
|
||||
|
@ -97,16 +98,16 @@ namespace intblast {
|
|||
ensure_translated(y);
|
||||
m_args.reset();
|
||||
m_args.push_back(a.mk_sub(translated(x), translated(y)));
|
||||
set_translated(e, m.mk_eq(umod(x, 0), a.mk_int(0)));
|
||||
set_translated(e, m.mk_eq(umod(x, 0), a.mk_int(0)));
|
||||
}
|
||||
m_preds.push_back(e);
|
||||
ctx.push(push_back_vector(m_preds));
|
||||
}
|
||||
|
||||
void solver::set_translated(expr* e, expr* r) {
|
||||
void solver::set_translated(expr* e, expr* r) {
|
||||
SASSERT(r);
|
||||
SASSERT(!is_translated(e));
|
||||
m_translate.setx(e->get_id(), r);
|
||||
SASSERT(!is_translated(e));
|
||||
m_translate.setx(e->get_id(), r);
|
||||
ctx.push(set_vector_idx_trail(m_translate, e->get_id()));
|
||||
}
|
||||
|
||||
|
@ -147,7 +148,7 @@ namespace intblast {
|
|||
auto a = expr2literal(e);
|
||||
auto b = mk_literal(r);
|
||||
ctx.mark_relevant(b);
|
||||
TRACE("intblast", tout << "add-predicate-axiom: " << mk_bounded_pp(e, m) << " \n" << r << "\n");
|
||||
// verbose_stream() << "add-predicate-axiom: " << mk_pp(e, m) << " == " << r << "\n";
|
||||
add_equiv(a, b);
|
||||
}
|
||||
return true;
|
||||
|
@ -156,7 +157,6 @@ namespace intblast {
|
|||
bool solver::unit_propagate() {
|
||||
return add_bound_axioms() || add_predicate_axioms();
|
||||
}
|
||||
|
||||
void solver::ensure_translated(expr* e) {
|
||||
if (m_translate.get(e->get_id(), nullptr))
|
||||
return;
|
||||
|
@ -178,10 +178,96 @@ namespace intblast {
|
|||
}
|
||||
}
|
||||
std::stable_sort(todo.begin(), todo.end(), [&](expr* a, expr* b) { return get_depth(a) < get_depth(b); });
|
||||
for (expr* e : todo)
|
||||
for (expr* e : todo)
|
||||
translate_expr(e);
|
||||
}
|
||||
|
||||
lbool solver::check_axiom(sat::literal_vector const& lits) {
|
||||
sat::literal_vector core;
|
||||
for (auto lit : lits)
|
||||
core.push_back(~lit);
|
||||
return check_core(core, {});
|
||||
}
|
||||
lbool solver::check_propagation(sat::literal lit, sat::literal_vector const& lits, euf::enode_pair_vector const& eqs) {
|
||||
sat::literal_vector core;
|
||||
core.append(lits);
|
||||
core.push_back(~lit);
|
||||
return check_core(core, eqs);
|
||||
}
|
||||
|
||||
lbool solver::check_core(sat::literal_vector const& lits, euf::enode_pair_vector const& eqs) {
|
||||
m_core.reset();
|
||||
m_vars.reset();
|
||||
m_is_plugin = false;
|
||||
m_solver = mk_smt2_solver(m, s.params(), symbol::null);
|
||||
|
||||
for (unsigned i = 0; i < m_translate.size(); ++i)
|
||||
m_translate[i] = nullptr;
|
||||
|
||||
expr_ref_vector es(m), original_es(m);
|
||||
for (auto lit : lits)
|
||||
es.push_back(ctx.literal2expr(lit));
|
||||
for (auto [a, b] : eqs)
|
||||
es.push_back(m.mk_eq(a->get_expr(), b->get_expr()));
|
||||
|
||||
original_es.append(es);
|
||||
|
||||
lbool r;
|
||||
if (false) {
|
||||
r = m_solver->check_sat(es);
|
||||
}
|
||||
else {
|
||||
|
||||
translate(es);
|
||||
|
||||
for (auto e : m_vars) {
|
||||
auto v = translated(e);
|
||||
auto b = rational::power_of_two(bv.get_bv_size(e));
|
||||
m_solver->assert_expr(a.mk_le(a.mk_int(0), v));
|
||||
m_solver->assert_expr(a.mk_lt(v, a.mk_int(b)));
|
||||
}
|
||||
|
||||
for (unsigned i = 0; i < es.size(); ++i) {
|
||||
expr_ref tmp(es.get(i), m);
|
||||
ctx.get_rewriter()(tmp);
|
||||
es[i] = tmp;
|
||||
}
|
||||
|
||||
IF_VERBOSE(2, verbose_stream() << "check\n" << original_es << "\n");
|
||||
|
||||
IF_VERBOSE(2,
|
||||
{
|
||||
m_solver->push();
|
||||
m_solver->assert_expr(es);
|
||||
m_solver->display(verbose_stream()) << "(check-sat)\n";
|
||||
m_solver->pop(1);
|
||||
});
|
||||
|
||||
|
||||
r = m_solver->check_sat(es);
|
||||
}
|
||||
|
||||
m_solver->collect_statistics(m_stats);
|
||||
|
||||
IF_VERBOSE(2, verbose_stream() << "(sat.intblast :result " << r << ")\n");
|
||||
if (r == l_true) {
|
||||
IF_VERBOSE(0,
|
||||
model_ref mdl;
|
||||
m_solver->get_model(mdl);
|
||||
verbose_stream() << original_es << "\n";
|
||||
verbose_stream() << *mdl << "\n";
|
||||
verbose_stream() << es << "\n";
|
||||
m_solver->display(verbose_stream()););
|
||||
SASSERT(false);
|
||||
}
|
||||
|
||||
m_solver = nullptr;
|
||||
|
||||
return r;
|
||||
}
|
||||
|
||||
|
||||
|
||||
lbool solver::check_solver_state() {
|
||||
sat::literal_vector literals;
|
||||
uint_set selected;
|
||||
|
@ -291,6 +377,8 @@ namespace intblast {
|
|||
for (expr* e : es) {
|
||||
if (is_translated(e))
|
||||
continue;
|
||||
if (visited.is_marked(e))
|
||||
continue;
|
||||
sorted.push_back(e);
|
||||
visited.mark(e);
|
||||
}
|
||||
|
@ -304,6 +392,7 @@ namespace intblast {
|
|||
sorted.push_back(arg);
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
else if (is_quantifier(e)) {
|
||||
quantifier* q = to_quantifier(e);
|
||||
|
@ -334,7 +423,7 @@ namespace intblast {
|
|||
es[i] = translated(es.get(i));
|
||||
}
|
||||
|
||||
sat::check_result solver::check() {
|
||||
sat::check_result solver::check() {
|
||||
// ensure that bv2int is injective
|
||||
for (auto e : m_bv2int) {
|
||||
euf::enode* n = expr2enode(e);
|
||||
|
@ -346,12 +435,10 @@ namespace intblast {
|
|||
continue;
|
||||
if (sib->get_arg(0)->get_root() == r1)
|
||||
continue;
|
||||
if (sib->get_arg(0)->get_sort() != n->get_arg(0)->get_sort())
|
||||
continue;
|
||||
auto a = eq_internalize(n, sib);
|
||||
auto b = eq_internalize(sib->get_arg(0), n->get_arg(0));
|
||||
ctx.mark_relevant(a);
|
||||
ctx.mark_relevant(b);
|
||||
auto a = eq_internalize(n, sib);
|
||||
auto b = eq_internalize(sib->get_arg(0), n->get_arg(0));
|
||||
ctx.mark_relevant(a);
|
||||
ctx.mark_relevant(b);
|
||||
add_clause(~a, b, nullptr);
|
||||
return sat::check_result::CR_CONTINUE;
|
||||
}
|
||||
|
@ -369,27 +456,40 @@ namespace intblast {
|
|||
auto nBv2int = ctx.get_enode(bv2int);
|
||||
auto nxModN = ctx.get_enode(xModN);
|
||||
if (nBv2int->get_root() != nxModN->get_root()) {
|
||||
auto a = eq_internalize(nBv2int, nxModN);
|
||||
ctx.mark_relevant(a);
|
||||
add_unit(a);
|
||||
return sat::check_result::CR_CONTINUE;
|
||||
auto a = eq_internalize(nBv2int, nxModN);
|
||||
ctx.mark_relevant(a);
|
||||
add_unit(a);
|
||||
return sat::check_result::CR_CONTINUE;
|
||||
}
|
||||
}
|
||||
return sat::check_result::CR_DONE;
|
||||
return sat::check_result::CR_DONE;
|
||||
}
|
||||
|
||||
bool solver::is_bounded(expr* x, rational const& N) {
|
||||
return any_of(m_vars, [&](expr* v) {
|
||||
return is_translated(v) && translated(v) == x && bv.get_bv_size(v) <= N;
|
||||
});
|
||||
}
|
||||
|
||||
bool solver::is_non_negative(expr* bv_expr, expr* e) {
|
||||
auto N = rational::power_of_two(bv.get_bv_size(bv_expr));
|
||||
rational r;
|
||||
if (a.is_numeral(e, r))
|
||||
return r >= 0;
|
||||
if (is_bounded(e, N))
|
||||
return true;
|
||||
expr* x, * y;
|
||||
if (a.is_mul(e, x, y))
|
||||
return is_non_negative(bv_expr, x) && is_non_negative(bv_expr, y);
|
||||
if (a.is_add(e, x, y))
|
||||
return is_non_negative(bv_expr, x) && is_non_negative(bv_expr, y);
|
||||
return false;
|
||||
}
|
||||
|
||||
expr* solver::umod(expr* bv_expr, unsigned i) {
|
||||
expr* x = arg(i);
|
||||
rational r;
|
||||
rational N = bv_size(bv_expr);
|
||||
if (a.is_numeral(x, r)) {
|
||||
if (0 <= r && r < N)
|
||||
return x;
|
||||
return a.mk_int(mod(r, N));
|
||||
}
|
||||
if (any_of(m_vars, [&](expr* v) { return translated(v) == x && bv.get_bv_size(v) == bv.get_bv_size(bv_expr); }))
|
||||
return x;
|
||||
return a.mk_mod(x, a.mk_int(N));
|
||||
return amod(bv_expr, x, N);
|
||||
}
|
||||
|
||||
expr* solver::smod(expr* bv_expr, unsigned i) {
|
||||
|
@ -399,7 +499,61 @@ namespace intblast {
|
|||
rational r;
|
||||
if (a.is_numeral(x, r))
|
||||
return a.mk_int(mod(r + shift, N));
|
||||
return a.mk_mod(a.mk_add(x, a.mk_int(shift)), a.mk_int(N));
|
||||
return amod(bv_expr, add(x, a.mk_int(shift)), N);
|
||||
}
|
||||
|
||||
expr_ref solver::mul(expr* x, expr* y) {
|
||||
expr_ref _x(x, m), _y(y, m);
|
||||
if (a.is_zero(x))
|
||||
return _x;
|
||||
if (a.is_zero(y))
|
||||
return _y;
|
||||
if (a.is_one(x))
|
||||
return _y;
|
||||
if (a.is_one(y))
|
||||
return _x;
|
||||
rational v1, v2;
|
||||
if (a.is_numeral(x, v1) && a.is_numeral(y, v2))
|
||||
return expr_ref(a.mk_int(v1 * v2), m);
|
||||
_x = a.mk_mul(x, y);
|
||||
return _x;
|
||||
}
|
||||
|
||||
expr_ref solver::add(expr* x, expr* y) {
|
||||
expr_ref _x(x, m), _y(y, m);
|
||||
if (a.is_zero(x))
|
||||
return _y;
|
||||
if (a.is_zero(y))
|
||||
return _x;
|
||||
rational v1, v2;
|
||||
if (a.is_numeral(x, v1) && a.is_numeral(y, v2))
|
||||
return expr_ref(a.mk_int(v1 + v2), m);
|
||||
_x = a.mk_add(x, y);
|
||||
return _x;
|
||||
}
|
||||
|
||||
/*
|
||||
* Perform simplifications that are claimed sound when the bit-vector interpretations of
|
||||
* mod/div always guard the mod and dividend to be non-zero.
|
||||
* Potentially shady area is for arithmetic expressions created by int2bv.
|
||||
* They will be guarded by a modulus which dose not disappear.
|
||||
*/
|
||||
expr* solver::amod(expr* bv_expr, expr* x, rational const& N) {
|
||||
rational v;
|
||||
expr* r, *c, * t, * e;
|
||||
if (m.is_ite(x, c, t, e))
|
||||
r = m.mk_ite(c, amod(bv_expr, t, N), amod(bv_expr, e, N));
|
||||
else if (a.is_idiv(x, t, e) && a.is_numeral(t, v) && 0 <= v && v < N && is_non_negative(bv_expr, e))
|
||||
r = x;
|
||||
else if (a.is_mod(x, t, e) && a.is_numeral(t, v) && 0 <= v && v < N)
|
||||
r = x;
|
||||
else if (a.is_numeral(x, v))
|
||||
r = a.mk_int(mod(v, N));
|
||||
else if (is_bounded(x, N))
|
||||
r = x;
|
||||
else
|
||||
r = a.mk_mod(x, a.mk_int(N));
|
||||
return r;
|
||||
}
|
||||
|
||||
rational solver::bv_size(expr* bv_expr) {
|
||||
|
@ -483,8 +637,7 @@ namespace intblast {
|
|||
m_args[i] = bv.mk_int2bv(bv.get_bv_size(e->get_arg(i)), m_args.get(i));
|
||||
|
||||
if (has_bv_sort)
|
||||
m_vars.push_back(e);
|
||||
|
||||
m_vars.push_back(e);
|
||||
if (m_is_plugin) {
|
||||
expr* r = m.mk_app(f, m_args);
|
||||
if (has_bv_sort) {
|
||||
|
@ -505,7 +658,7 @@ namespace intblast {
|
|||
f = g;
|
||||
m_pinned.push_back(f);
|
||||
}
|
||||
set_translated(e, m.mk_app(f, m_args));
|
||||
set_translated(e, m.mk_app(f, m_args));
|
||||
}
|
||||
|
||||
void solver::translate_bv(app* e) {
|
||||
|
@ -532,15 +685,15 @@ namespace intblast {
|
|||
auto N = bv_size(e);
|
||||
auto A = rational::power_of_two(sz - n);
|
||||
auto B = rational::power_of_two(n);
|
||||
auto hi = a.mk_mul(r, a.mk_int(A));
|
||||
auto lo = a.mk_mod(a.mk_idiv(umod(e, 0), a.mk_int(B)), a.mk_int(A));
|
||||
r = a.mk_add(hi, lo);
|
||||
auto hi = mul(r, a.mk_int(A));
|
||||
auto lo = amod(e, a.mk_idiv(umod(e, 0), a.mk_int(B)), A);
|
||||
r = add(hi, lo);
|
||||
}
|
||||
return r;
|
||||
};
|
||||
};
|
||||
|
||||
expr* bv_expr = e;
|
||||
expr* r = nullptr;
|
||||
expr_ref r(m);
|
||||
auto const& args = m_args;
|
||||
switch (e->get_decl_kind()) {
|
||||
case OP_BADD:
|
||||
|
@ -573,7 +726,6 @@ namespace intblast {
|
|||
r = a.mk_le(smod(bv_expr, 0), smod(bv_expr, 1));
|
||||
break;
|
||||
case OP_SGEQ:
|
||||
bv_expr = e->get_arg(0);
|
||||
r = a.mk_ge(smod(bv_expr, 0), smod(bv_expr, 1));
|
||||
break;
|
||||
case OP_SLT:
|
||||
|
@ -589,12 +741,13 @@ namespace intblast {
|
|||
break;
|
||||
case OP_CONCAT: {
|
||||
unsigned sz = 0;
|
||||
expr_ref new_arg(m);
|
||||
for (unsigned i = args.size(); i-- > 0;) {
|
||||
expr* old_arg = e->get_arg(i);
|
||||
expr* new_arg = umod(old_arg, i);
|
||||
new_arg = umod(old_arg, i);
|
||||
if (sz > 0) {
|
||||
new_arg = a.mk_mul(new_arg, a.mk_int(rational::power_of_two(sz)));
|
||||
r = a.mk_add(r, new_arg);
|
||||
new_arg = mul(new_arg, a.mk_int(rational::power_of_two(sz)));
|
||||
r = add(r, new_arg);
|
||||
}
|
||||
else
|
||||
r = new_arg;
|
||||
|
@ -606,10 +759,9 @@ namespace intblast {
|
|||
unsigned lo, hi;
|
||||
expr* old_arg;
|
||||
VERIFY(bv.is_extract(e, lo, hi, old_arg));
|
||||
r = arg(0);
|
||||
if (lo > 0)
|
||||
r = a.mk_idiv(umod(old_arg, 0), a.mk_int(rational::power_of_two(lo)));
|
||||
else
|
||||
r = arg(0);
|
||||
r = a.mk_idiv(r, a.mk_int(rational::power_of_two(lo)));
|
||||
break;
|
||||
}
|
||||
case OP_BV_NUM: {
|
||||
|
@ -627,32 +779,32 @@ namespace intblast {
|
|||
}
|
||||
case OP_BUDIV:
|
||||
case OP_BUDIV_I: {
|
||||
expr* x = umod(e, 0), * y = umod(e, 1);
|
||||
expr* x = arg(0), * y = umod(e, 1);
|
||||
r = m.mk_ite(m.mk_eq(y, a.mk_int(0)), a.mk_int(-1), a.mk_idiv(x, y));
|
||||
break;
|
||||
}
|
||||
case OP_BUMUL_NO_OVFL: {
|
||||
bv_expr = e->get_arg(0);
|
||||
r = a.mk_lt(a.mk_mul(umod(bv_expr, 0), umod(bv_expr, 1)), a.mk_int(bv_size(bv_expr)));
|
||||
r = a.mk_lt(mul(umod(bv_expr, 0), umod(bv_expr, 1)), a.mk_int(bv_size(bv_expr)));
|
||||
break;
|
||||
}
|
||||
case OP_BSHL: {
|
||||
if (!a.is_numeral(arg(0)) && !a.is_numeral(arg(1)))
|
||||
r = a.mk_shl(bv.get_bv_size(e), arg(0), arg(1));
|
||||
if (!a.is_numeral(arg(0)) && !a.is_numeral(arg(1)))
|
||||
r = a.mk_shl(bv.get_bv_size(e), arg(0),arg(1));
|
||||
else {
|
||||
expr* x = arg(0), * y = umod(e, 1);
|
||||
r = a.mk_int(0);
|
||||
IF_VERBOSE(2, verbose_stream() << "shl " << mk_bounded_pp(e, m) << " " << bv.get_bv_size(e) << "\n");
|
||||
for (unsigned i = 0; i < bv.get_bv_size(e); ++i)
|
||||
r = m.mk_ite(m.mk_eq(y, a.mk_int(i)), a.mk_mul(x, a.mk_int(rational::power_of_two(i))), r);
|
||||
r = m.mk_ite(m.mk_eq(y, a.mk_int(i)), mul(x, a.mk_int(rational::power_of_two(i))), r);
|
||||
}
|
||||
break;
|
||||
}
|
||||
case OP_BNOT:
|
||||
r = bnot(arg(0));
|
||||
break;
|
||||
case OP_BLSHR:
|
||||
if (!a.is_numeral(arg(0)) && !a.is_numeral(arg(1)))
|
||||
case OP_BLSHR:
|
||||
if (!a.is_numeral(arg(0)) && !a.is_numeral(arg(1)))
|
||||
r = a.mk_lshr(bv.get_bv_size(e), arg(0), arg(1));
|
||||
else {
|
||||
expr* x = arg(0), * y = umod(e, 1);
|
||||
|
@ -662,11 +814,11 @@ namespace intblast {
|
|||
r = m.mk_ite(m.mk_eq(y, a.mk_int(i)), a.mk_idiv(x, a.mk_int(rational::power_of_two(i))), r);
|
||||
}
|
||||
break;
|
||||
case OP_BASHR:
|
||||
case OP_BASHR:
|
||||
if (!a.is_numeral(arg(1)))
|
||||
r = a.mk_ashr(bv.get_bv_size(e), arg(0), arg(1));
|
||||
else {
|
||||
|
||||
|
||||
//
|
||||
// ashr(x, y)
|
||||
// if y = k & x >= 0 -> x / 2^k
|
||||
|
@ -674,15 +826,15 @@ namespace intblast {
|
|||
//
|
||||
unsigned sz = bv.get_bv_size(e);
|
||||
rational N = bv_size(e);
|
||||
expr* x = umod(e, 0), * y = umod(e, 1);
|
||||
expr* x = umod(e, 0), *y = umod(e, 1);
|
||||
expr* signx = a.mk_ge(x, a.mk_int(N / 2));
|
||||
r = m.mk_ite(signx, a.mk_int(-1), a.mk_int(0));
|
||||
r = m.mk_ite(signx, a.mk_int(- 1), a.mk_int(0));
|
||||
IF_VERBOSE(1, verbose_stream() << "ashr " << mk_bounded_pp(e, m) << " " << bv.get_bv_size(e) << "\n");
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
expr* d = a.mk_idiv(x, a.mk_int(rational::power_of_two(i)));
|
||||
expr* d = a.mk_idiv(x, a.mk_int(rational::power_of_two(i)));
|
||||
r = m.mk_ite(m.mk_eq(y, a.mk_int(i)),
|
||||
m.mk_ite(signx, a.mk_add(d, a.mk_int(-rational::power_of_two(sz - i))), d),
|
||||
r);
|
||||
m.mk_ite(signx, add(d, a.mk_int(- rational::power_of_two(sz-i))), d),
|
||||
r);
|
||||
}
|
||||
}
|
||||
break;
|
||||
|
@ -691,7 +843,7 @@ namespace intblast {
|
|||
IF_VERBOSE(2, verbose_stream() << "bor " << mk_bounded_pp(e, m) << " " << bv.get_bv_size(e) << "\n");
|
||||
r = arg(0);
|
||||
for (unsigned i = 1; i < args.size(); ++i)
|
||||
r = a.mk_sub(a.mk_add(r, arg(i)), a.mk_band(bv.get_bv_size(e), r, arg(i)));
|
||||
r = a.mk_sub(add(r, arg(i)), a.mk_band(bv.get_bv_size(e), r, arg(i)));
|
||||
break;
|
||||
}
|
||||
case OP_BNAND:
|
||||
|
@ -709,7 +861,7 @@ namespace intblast {
|
|||
r = arg(0);
|
||||
for (unsigned i = 1; i < args.size(); ++i) {
|
||||
expr* q = arg(i);
|
||||
r = a.mk_sub(a.mk_add(r, q), a.mk_mul(a.mk_int(2), a.mk_band(sz, r, q)));
|
||||
r = a.mk_sub(add(r, q), mul(a.mk_int(2), a.mk_band(sz, r, q)));
|
||||
}
|
||||
if (e->get_decl_kind() == OP_BXNOR)
|
||||
r = bnot(r);
|
||||
|
@ -747,11 +899,11 @@ namespace intblast {
|
|||
r = m.mk_ite(m.mk_eq(umod(bv_expr, 0), umod(bv_expr, 1)), a.mk_int(1), a.mk_int(0));
|
||||
break;
|
||||
case OP_BSMOD_I:
|
||||
case OP_BSMOD: {
|
||||
expr* x = umod(e, 0), * y = umod(e, 1);
|
||||
rational N = bv_size(e);
|
||||
expr* signx = a.mk_ge(x, a.mk_int(N / 2));
|
||||
expr* signy = a.mk_ge(y, a.mk_int(N / 2));
|
||||
case OP_BSMOD: {
|
||||
expr* x = umod(e, 0), *y = umod(e, 1);
|
||||
rational N = bv_size(e);
|
||||
expr* signx = a.mk_ge(x, a.mk_int(N/2));
|
||||
expr* signy = a.mk_ge(y, a.mk_int(N/2));
|
||||
expr* u = a.mk_mod(x, y);
|
||||
// u = 0 -> 0
|
||||
// y = 0 -> x
|
||||
|
@ -759,14 +911,14 @@ namespace intblast {
|
|||
// x < 0, y >= 0 -> y - u
|
||||
// x >= 0, y < 0 -> y + u
|
||||
// x >= 0, y >= 0 -> u
|
||||
r = a.mk_uminus(u);
|
||||
r = m.mk_ite(m.mk_and(m.mk_not(signx), signy), a.mk_add(u, y), r);
|
||||
r = a.mk_uminus(u);
|
||||
r = m.mk_ite(m.mk_and(m.mk_not(signx), signy), add(u, y), r);
|
||||
r = m.mk_ite(m.mk_and(signx, m.mk_not(signy)), a.mk_sub(y, u), r);
|
||||
r = m.mk_ite(m.mk_and(m.mk_not(signx), m.mk_not(signy)), u, r);
|
||||
r = m.mk_ite(m.mk_eq(u, a.mk_int(0)), a.mk_int(0), r);
|
||||
r = m.mk_ite(m.mk_eq(y, a.mk_int(0)), x, r);
|
||||
break;
|
||||
}
|
||||
}
|
||||
case OP_BSDIV_I:
|
||||
case OP_BSDIV: {
|
||||
// d = udiv(abs(x), abs(y))
|
||||
|
@ -800,9 +952,9 @@ namespace intblast {
|
|||
expr* absy = m.mk_ite(signy, a.mk_sub(a.mk_int(N), y), y);
|
||||
expr* d = a.mk_idiv(absx, absy);
|
||||
d = m.mk_ite(m.mk_iff(signx, signy), d, a.mk_uminus(d));
|
||||
r = a.mk_sub(x, a.mk_mul(d, y));
|
||||
r = a.mk_sub(x, mul(d, y));
|
||||
r = m.mk_ite(m.mk_eq(y, a.mk_int(0)), x, r);
|
||||
break;
|
||||
break;
|
||||
}
|
||||
case OP_ROTATE_LEFT: {
|
||||
auto n = e->get_parameter(0).get_int();
|
||||
|
@ -815,11 +967,11 @@ namespace intblast {
|
|||
r = rotate_left(sz - n);
|
||||
break;
|
||||
}
|
||||
case OP_EXT_ROTATE_LEFT: {
|
||||
case OP_EXT_ROTATE_LEFT: {
|
||||
unsigned sz = bv.get_bv_size(e);
|
||||
expr* y = umod(e, 1);
|
||||
r = a.mk_int(0);
|
||||
for (unsigned i = 0; i < sz; ++i)
|
||||
for (unsigned i = 0; i < sz; ++i)
|
||||
r = m.mk_ite(m.mk_eq(a.mk_int(i), y), rotate_left(i), r);
|
||||
break;
|
||||
}
|
||||
|
@ -827,7 +979,7 @@ namespace intblast {
|
|||
unsigned sz = bv.get_bv_size(e);
|
||||
expr* y = umod(e, 1);
|
||||
r = a.mk_int(0);
|
||||
for (unsigned i = 0; i < sz; ++i)
|
||||
for (unsigned i = 0; i < sz; ++i)
|
||||
r = m.mk_ite(m.mk_eq(a.mk_int(i), y), rotate_left(sz - i), r);
|
||||
break;
|
||||
}
|
||||
|
@ -838,9 +990,9 @@ namespace intblast {
|
|||
rational N = bv_size(e->get_arg(0));
|
||||
rational N0 = N;
|
||||
for (unsigned i = 1; i < n; ++i)
|
||||
r = a.mk_add(a.mk_mul(a.mk_int(N), x), r), N *= N0;
|
||||
r = add(mul(a.mk_int(N), x), r), N *= N0;
|
||||
break;
|
||||
}
|
||||
}
|
||||
case OP_BREDOR: {
|
||||
r = umod(e->get_arg(0), 0);
|
||||
r = m.mk_not(m.mk_eq(r, a.mk_int(0)));
|
||||
|
@ -864,8 +1016,15 @@ namespace intblast {
|
|||
bool has_bv_arg = any_of(*e, [&](expr* arg) { return bv.is_bv(arg); });
|
||||
if (has_bv_arg) {
|
||||
expr* bv_expr = e->get_arg(0);
|
||||
m_args[0] = a.mk_sub(arg(0), arg(1));
|
||||
set_translated(e, m.mk_eq(umod(bv_expr, 0), a.mk_int(0)));
|
||||
rational N = rational::power_of_two(bv.get_bv_size(bv_expr));
|
||||
if (a.is_numeral(arg(0)) || a.is_numeral(arg(1)) ||
|
||||
is_bounded(arg(0), N) || is_bounded(arg(1), N)) {
|
||||
set_translated(e, m.mk_eq(umod(bv_expr, 0), umod(bv_expr, 1)));
|
||||
}
|
||||
else {
|
||||
m_args[0] = a.mk_sub(arg(0), arg(1));
|
||||
set_translated(e, m.mk_eq(umod(bv_expr, 0), a.mk_int(0)));
|
||||
}
|
||||
}
|
||||
else
|
||||
set_translated(e, m.mk_eq(arg(0), arg(1)));
|
||||
|
@ -874,8 +1033,8 @@ namespace intblast {
|
|||
set_translated(e, m.mk_ite(arg(0), arg(1), arg(2)));
|
||||
else if (m_is_plugin)
|
||||
set_translated(e, e);
|
||||
else
|
||||
set_translated(e, m.mk_app(e->get_decl(), m_args));
|
||||
else
|
||||
set_translated(e, m.mk_app(e->get_decl(), m_args));
|
||||
}
|
||||
|
||||
rational solver::get_value(expr* e) const {
|
||||
|
@ -903,12 +1062,6 @@ namespace intblast {
|
|||
if (!is_app(n->get_expr()))
|
||||
return false;
|
||||
app* e = to_app(n->get_expr());
|
||||
expr *th, * el, * c;
|
||||
if (m.is_ite(e, c, th, el)) {
|
||||
dep.add(n, expr2enode(th)->get_root());
|
||||
dep.add(n, expr2enode(el)->get_root());
|
||||
return true;
|
||||
}
|
||||
if (n->num_args() == 0) {
|
||||
dep.insert(n, nullptr);
|
||||
return true;
|
||||
|
@ -925,7 +1078,6 @@ namespace intblast {
|
|||
void solver::add_value_solver(euf::enode* n, model& mdl, expr_ref_vector& values) {
|
||||
expr* e = n->get_expr();
|
||||
SASSERT(bv.is_bv(e));
|
||||
|
||||
if (bv.is_numeral(e)) {
|
||||
values.setx(n->get_root_id(), e);
|
||||
return;
|
||||
|
@ -947,15 +1099,6 @@ namespace intblast {
|
|||
|
||||
void solver::add_value_plugin(euf::enode* n, model& mdl, expr_ref_vector& values) {
|
||||
expr_ref value(m);
|
||||
expr* e = n->get_expr(), *c, *th, *el;
|
||||
while (m.is_ite(e, c, th, el)) {
|
||||
auto thn = expr2enode(th);
|
||||
if (thn->get_root() == n->get_root())
|
||||
e = th;
|
||||
else
|
||||
e = el;
|
||||
n = expr2enode(e);
|
||||
}
|
||||
if (n->interpreted())
|
||||
value = n->get_expr();
|
||||
else if (to_app(n->get_expr())->get_family_id() == bv.get_family_id()) {
|
||||
|
@ -975,35 +1118,12 @@ namespace intblast {
|
|||
rational r;
|
||||
VERIFY(av.get_value(b2i->get_expr(), r));
|
||||
value = bv.mk_numeral(r, bv.get_bv_size(n->get_expr()));
|
||||
verbose_stream() << ctx.bpp(n) << " := " << value << "\n";
|
||||
}
|
||||
values.set(n->get_root_id(), value);
|
||||
TRACE("model", tout << "add_value " << ctx.bpp(n) << " := " << value << "\n");
|
||||
}
|
||||
|
||||
void solver::finalize_model(model& mdl) {
|
||||
for (auto n : ctx.get_egraph().nodes()) {
|
||||
expr* e = n->get_expr();
|
||||
if (!bv.is_bv(e))
|
||||
continue;
|
||||
if (!is_translated(e))
|
||||
continue;
|
||||
expr* f = translated(e);
|
||||
rational r1, r2;
|
||||
expr_ref val1 = mdl(e);
|
||||
expr_ref val2 = mdl(f);
|
||||
if (bv.is_numeral(val1, r1) && a.is_numeral(val2, r2) && r1 != r2) {
|
||||
rational N = rational::power_of_two(bv.get_bv_size(e));
|
||||
r2 = mod(r2, N);
|
||||
if (r1 == r2)
|
||||
continue;
|
||||
verbose_stream() << "value mismatch : " << mk_bounded_pp(e, m) << " := " << val1 << "\n";
|
||||
verbose_stream() << mk_bounded_pp(f, m) << " := " << r2 << "\n";
|
||||
for (expr* arg : *to_app(e))
|
||||
verbose_stream() << mk_bounded_pp(arg, m) << " := " << mdl(arg) << "\n";
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
sat::literal_vector const& solver::unsat_core() {
|
||||
return m_core;
|
||||
}
|
||||
|
|
|
@ -73,6 +73,11 @@ namespace intblast {
|
|||
|
||||
expr* umod(expr* bv_expr, unsigned i);
|
||||
expr* smod(expr* bv_expr, unsigned i);
|
||||
bool is_bounded(expr* v, rational const& N);
|
||||
bool is_non_negative(expr* bv_expr, expr* e);
|
||||
expr_ref mul(expr* x, expr* y);
|
||||
expr_ref add(expr* x, expr* y);
|
||||
expr* amod(expr* bv_expr, expr* x, rational const& N);
|
||||
rational bv_size(expr* bv_expr);
|
||||
|
||||
void translate_expr(expr* e);
|
||||
|
@ -100,6 +105,10 @@ namespace intblast {
|
|||
|
||||
~solver() override {}
|
||||
|
||||
lbool check_axiom(sat::literal_vector const& lits);
|
||||
lbool check_core(sat::literal_vector const& lits, euf::enode_pair_vector const& eqs);
|
||||
lbool check_propagation(sat::literal lit, sat::literal_vector const& lits, euf::enode_pair_vector const& eqs);
|
||||
|
||||
lbool check_solver_state();
|
||||
|
||||
sat::literal_vector const& unsat_core();
|
||||
|
@ -108,8 +117,6 @@ namespace intblast {
|
|||
|
||||
bool add_dep(euf::enode* n, top_sort<euf::enode>& dep) override;
|
||||
|
||||
void finalize_model(model& mdl) override;
|
||||
|
||||
std::ostream& display(std::ostream& out) const override;
|
||||
|
||||
void collect_statistics(statistics& st) const override;
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue