diff --git a/src/util/lp/lp_core_solver_base.h b/src/util/lp/lp_core_solver_base.h index 64f6f5696..425013eb0 100644 --- a/src/util/lp/lp_core_solver_base.h +++ b/src/util/lp/lp_core_solver_base.h @@ -575,7 +575,7 @@ public: } std::ostream& print_column_info(unsigned j, std::ostream & out) const { - out << "j = " << j << ",\tname = "<< column_name(j) << "\t"; + out << "[" << j << "],\tname = "<< column_name(j) << "\t"; switch (m_column_types[j]) { case column_type::fixed: case column_type::boxed: diff --git a/src/util/lp/nla_basics_lemmas.cpp b/src/util/lp/nla_basics_lemmas.cpp index b3270754c..4346c8b1c 100644 --- a/src/util/lp/nla_basics_lemmas.cpp +++ b/src/util/lp/nla_basics_lemmas.cpp @@ -57,7 +57,7 @@ void basics::generate_zero_lemmas(const monomial& m) { TRACE("nla_solver_details", tout << "zero_j = " << zero_j << ", sign = " << sign << "\n";); if (sign == 0) { // have to generate a non-convex lemma add_trival_zero_lemma(zero_j, m); - } else { + } else { // here we know the sign of zero_j generate_strict_case_zero_lemma(m, zero_j, sign); } for (lpvar j : fixed_zeros) @@ -88,7 +88,7 @@ void basics::get_non_strict_sign(lpvar j, int& sign) const { void basics::basic_sign_lemma_model_based_one_mon(const monomial& m, int product_sign) { if (product_sign == 0) { - TRACE("nla_solver_bl", tout << "zero product sign\n";); + TRACE("nla_solver_bl", tout << "zero product sign: " << pp_mon(_(), m)<< "\n"; ); generate_zero_lemmas(m); } else { add_empty_lemma(); @@ -188,7 +188,7 @@ void basics::generate_strict_case_zero_lemma(const monomial& m, unsigned zero_j, // we know all the signs add_empty_lemma(); c().mk_ineq(zero_j, (sign_of_zj == 1? llc::GT : llc::LT)); - for (unsigned j : m.rvars()){ + for (unsigned j : m.vars()){ if (j != zero_j) { negate_strict_sign(j); } @@ -203,7 +203,7 @@ void basics::add_fixed_zero_lemma(const monomial& m, lpvar j) { TRACE("nla_solver", c().print_lemma(tout);); } void basics::negate_strict_sign(lpvar j) { - TRACE("nla_solver_details", c().print_var(j, tout);); + TRACE("nla_solver_details", tout << pp_var(c(), j) << "\n";); if (!vvr(j).is_zero()) { int sign = nla::rat_sign(vvr(j)); c().mk_ineq(j, (sign == 1? llc::LE : llc::GE)); @@ -494,7 +494,7 @@ void basics::basic_lemma_for_mon_zero_model_based(const monomial& rm, const fact } void basics::basic_lemma_for_mon_model_based(const monomial& rm) { - TRACE("nla_solver_bl", tout << "rm = " << rm;); + TRACE("nla_solver_bl", tout << "rm = " << pp_mon(_(), rm) << "\n";); if (vvr(rm).is_zero()) { for (auto factorization : factorization_factory_imp(rm, c())) { if (factorization.is_empty()) diff --git a/src/util/lp/nla_order_lemmas.cpp b/src/util/lp/nla_order_lemmas.cpp index fb4725dc8..829f09096 100644 --- a/src/util/lp/nla_order_lemmas.cpp +++ b/src/util/lp/nla_order_lemmas.cpp @@ -108,7 +108,7 @@ void order::order_lemma_on_factor_binomial_rm(const monomial& ac, bool k, const void order::order_lemma_on_binomial_ac_bd(const monomial& ac, bool k, const monomial& bd, const factor& b, lpvar d) { TRACE("nla_solver", - tout << "ac=" << pp_mon(c(), ac) << "\nrm= " << bd << ", b= " << pp_fac(c(), b) << ", d= " << pp_var(c(), d) << "\n";); + tout << "ac=" << pp_mon(_(), ac) << "\nrm= " << pp_mon(_(), bd) << ", b= " << pp_fac(_(), b) << ", d= " << pp_var(_(), d) << "\n";); bool p = !k; lpvar a = ac.vars()[p]; lpvar c = ac.vars()[k];