3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-07-30 16:03:16 +00:00

Add intblast solver

This commit is contained in:
Nikolaj Bjorner 2023-12-15 13:50:38 -08:00
parent 0520558fc0
commit 9293923b8a
28 changed files with 1621 additions and 58 deletions

View file

@ -70,6 +70,8 @@ enum arith_op_kind {
OP_ASINH,
OP_ACOSH,
OP_ATANH,
// Bit-vector functions
OP_ARITH_BAND,
// constants
OP_PI,
OP_E,
@ -235,26 +237,10 @@ public:
family_id get_family_id() const { return arith_family_id; }
bool is_arith_expr(expr const * n) const { return is_app(n) && to_app(n)->get_family_id() == arith_family_id; }
bool is_irrational_algebraic_numeral(expr const * n) const;
bool is_unsigned(expr const * n, unsigned& u) const {
rational val;
bool is_int = true;
return is_numeral(n, val, is_int) && is_int && val.is_unsigned() && (u = val.get_unsigned(), true);
}
bool is_numeral(expr const * n, rational & val, bool & is_int) const;
bool is_numeral(expr const * n, rational & val) const { bool is_int; return is_numeral(n, val, is_int); }
bool is_numeral(expr const * n) const { return is_app_of(n, arith_family_id, OP_NUM); }
bool is_zero(expr const * n) const { rational val; return is_numeral(n, val) && val.is_zero(); }
bool is_minus_one(expr * n) const { rational tmp; return is_numeral(n, tmp) && tmp.is_minus_one(); }
// return true if \c n is a term of the form (* -1 r)
bool is_times_minus_one(expr * n, expr * & r) const {
if (is_mul(n) && to_app(n)->get_num_args() == 2 && is_minus_one(to_app(n)->get_arg(0))) {
r = to_app(n)->get_arg(1);
return true;
}
return false;
}
bool is_irrational_algebraic_numeral(expr const* n) const;
bool is_numeral(expr const* n) const { return is_app_of(n, arith_family_id, OP_NUM); }
bool is_int_expr(expr const * e) const;
bool is_le(expr const * n) const { return is_app_of(n, arith_family_id, OP_LE); }
@ -309,6 +295,16 @@ public:
bool is_int_real(sort const * s) const { return s->get_family_id() == arith_family_id; }
bool is_int_real(expr const * n) const { return is_int_real(n->get_sort()); }
bool is_band(expr const* n) const { return is_app_of(n, arith_family_id, OP_ARITH_BAND); }
bool is_band(expr const* n, unsigned& sz, expr*& x, expr*& y) {
if (!is_band(n))
return false;
x = to_app(n)->get_arg(0);
y = to_app(n)->get_arg(1);
sz = to_app(n)->get_parameter(0).get_int();
return true;
}
bool is_sin(expr const* n) const { return is_app_of(n, arith_family_id, OP_SIN); }
bool is_cos(expr const* n) const { return is_app_of(n, arith_family_id, OP_COS); }
bool is_tan(expr const* n) const { return is_app_of(n, arith_family_id, OP_TAN); }
@ -387,13 +383,32 @@ public:
return *m_plugin;
}
algebraic_numbers::manager & am() {
algebraic_numbers::manager & am() const {
return plugin().am();
}
// return true if \c n is a term of the form (* -1 r)
bool is_zero(expr const* n) const { rational val; return is_numeral(n, val) && val.is_zero(); }
bool is_minus_one(expr* n) const { rational tmp; return is_numeral(n, tmp) && tmp.is_minus_one(); }
bool is_times_minus_one(expr* n, expr*& r) const {
if (is_mul(n) && to_app(n)->get_num_args() == 2 && is_minus_one(to_app(n)->get_arg(0))) {
r = to_app(n)->get_arg(1);
return true;
}
return false;
}
bool is_unsigned(expr const* n, unsigned& u) const {
rational val;
bool is_int = true;
return is_numeral(n, val, is_int) && is_int && val.is_unsigned() && (u = val.get_unsigned(), true);
}
bool is_numeral(expr const* n) const { return arith_recognizers::is_numeral(n); }
bool is_numeral(expr const* n, rational& val, bool& is_int) const;
bool is_numeral(expr const* n, rational& val) const { bool is_int; return is_numeral(n, val, is_int); }
bool convert_int_numerals_to_real() const { return plugin().convert_int_numerals_to_real(); }
bool is_irrational_algebraic_numeral2(expr const * n, algebraic_numbers::anum & val);
algebraic_numbers::anum const & to_irrational_algebraic_numeral(expr const * n);
bool is_irrational_algebraic_numeral2(expr const * n, algebraic_numbers::anum & val) const;
algebraic_numbers::anum const & to_irrational_algebraic_numeral(expr const * n) const;
sort * mk_int() { return m_manager.mk_sort(arith_family_id, INT_SORT); }
sort * mk_real() { return m_manager.mk_sort(arith_family_id, REAL_SORT); }
@ -471,6 +486,8 @@ public:
app * mk_power(expr* arg1, expr* arg2) { return m_manager.mk_app(arith_family_id, OP_POWER, arg1, arg2); }
app * mk_power0(expr* arg1, expr* arg2) { return m_manager.mk_app(arith_family_id, OP_POWER0, arg1, arg2); }
app* mk_band(unsigned n, expr* arg1, expr* arg2) { parameter p(n); expr* args[2] = { arg1, arg2 }; return m_manager.mk_app(arith_family_id, OP_ARITH_BAND, 1, &p, 2, args); }
app * mk_sin(expr * arg) { return m_manager.mk_app(arith_family_id, OP_SIN, arg); }
app * mk_cos(expr * arg) { return m_manager.mk_app(arith_family_id, OP_COS, arg); }
app * mk_tan(expr * arg) { return m_manager.mk_app(arith_family_id, OP_TAN, arg); }
@ -498,11 +515,11 @@ public:
if none of them are numerals, then the left-hand-side has a smaller id than the right hand side.
*/
app * mk_eq(expr * lhs, expr * rhs) {
if (is_numeral(lhs) || (!is_numeral(rhs) && lhs->get_id() > rhs->get_id()))
if (arith_recognizers::is_numeral(lhs) || (!arith_recognizers::is_numeral(rhs) && lhs->get_id() > rhs->get_id()))
std::swap(lhs, rhs);
if (lhs == rhs)
return m_manager.mk_true();
if (is_numeral(lhs) && is_numeral(rhs)) {
if (arith_recognizers::is_numeral(lhs) && arith_recognizers::is_numeral(rhs)) {
SASSERT(lhs != rhs);
return m_manager.mk_false();
}