mirror of
https://github.com/Z3Prover/z3
synced 2025-04-23 17:15:31 +00:00
add special procedures for UTVPI and horn arithmetic
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
4f9247a28a
commit
9158fb17c1
12 changed files with 3397 additions and 208 deletions
409
src/util/inf_eps_rational.h
Normal file
409
src/util/inf_eps_rational.h
Normal file
|
@ -0,0 +1,409 @@
|
|||
/*++
|
||||
Copyright (c) 2013 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
inf_eps_rational.h
|
||||
|
||||
Abstract:
|
||||
|
||||
Rational numbers with infinity and epsilon.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2013-4-23.
|
||||
|
||||
Revision History:
|
||||
|
||||
--*/
|
||||
#ifndef _INF_EPS_RATIONAL_H_
|
||||
#define _INF_EPS_RATIONAL_H_
|
||||
#include<stdlib.h>
|
||||
#include<string>
|
||||
#include"debug.h"
|
||||
#include"vector.h"
|
||||
#include"rational.h"
|
||||
|
||||
template<typename Numeral>
|
||||
class inf_eps_rational {
|
||||
rational m_infty;
|
||||
Numeral m_r;
|
||||
public:
|
||||
|
||||
unsigned hash() const {
|
||||
return m_infty.hash() ^ m_r.hash();
|
||||
}
|
||||
|
||||
struct hash_proc { unsigned operator()(inf_eps_rational const& r) const { return r.hash(); } };
|
||||
|
||||
struct eq_proc { bool operator()(inf_eps_rational const& r1, inf_eps_rational const& r2) const { return r1 == r2; } };
|
||||
|
||||
void swap(inf_eps_rational & n) {
|
||||
m_infty.swap(n.m_infty);
|
||||
m_r.swap(n.m_r);
|
||||
}
|
||||
|
||||
std::string to_string() const {
|
||||
if (m_infty.is_zero()) {
|
||||
return m_r.to_string();
|
||||
}
|
||||
std::string si;
|
||||
if (m_infty.is_one()) {
|
||||
si = "oo";
|
||||
}
|
||||
else if (m_infty.is_minus_one()) {
|
||||
si = "-oo";
|
||||
}
|
||||
else {
|
||||
si = m_infty.to_string() += "*oo";
|
||||
}
|
||||
if (m_r.is_zero()) {
|
||||
return si;
|
||||
}
|
||||
std::string s = "(";
|
||||
s += si;
|
||||
s += " + ";
|
||||
s += m_r.to_string();
|
||||
s += ")";
|
||||
return s;
|
||||
}
|
||||
|
||||
inf_eps_rational():
|
||||
m_infty(),
|
||||
m_r()
|
||||
{}
|
||||
|
||||
inf_eps_rational(const inf_eps_rational & r):
|
||||
m_infty(r.m_infty),
|
||||
m_r(r.m_r)
|
||||
{}
|
||||
|
||||
explicit inf_eps_rational(int n):
|
||||
m_infty(),
|
||||
m_r(n)
|
||||
{}
|
||||
|
||||
explicit inf_eps_rational(Numeral const& r):
|
||||
m_infty(),
|
||||
m_r(r)
|
||||
{}
|
||||
|
||||
explicit inf_eps_rational(rational const& i, Numeral const& r):
|
||||
m_infty(i),
|
||||
m_r(r) {
|
||||
}
|
||||
|
||||
~inf_eps_rational() {}
|
||||
|
||||
/**
|
||||
\brief Set inf_eps_rational to 0.
|
||||
*/
|
||||
void reset() {
|
||||
m_infty.reset();
|
||||
m_r.reset();
|
||||
}
|
||||
|
||||
bool is_int() const {
|
||||
return m_infty.is_zero() && m_r.is_int();
|
||||
}
|
||||
|
||||
bool is_int64() const {
|
||||
return m_infty.is_zero() && m_r.is_int64();
|
||||
}
|
||||
|
||||
bool is_uint64() const {
|
||||
return m_infty.is_zero() && m_r.is_uint64();
|
||||
}
|
||||
|
||||
bool is_rational() const { return m_infty.is_zero() && m_r.is_rational(); }
|
||||
|
||||
int64 get_int64() const {
|
||||
SASSERT(is_int64());
|
||||
return m_r.get_int64();
|
||||
}
|
||||
|
||||
uint64 get_uint64() const {
|
||||
SASSERT(is_uint64());
|
||||
return m_r.get_uint64();
|
||||
}
|
||||
|
||||
rational const& get_rational() const {
|
||||
return m_r.get_rational();
|
||||
}
|
||||
|
||||
rational const& get_infinitesimal() const {
|
||||
return m_r.get_infinitesimal();
|
||||
}
|
||||
|
||||
rational const& get_infinity() const {
|
||||
return m_infty;
|
||||
}
|
||||
|
||||
inf_eps_rational & operator=(const inf_eps_rational & r) {
|
||||
m_infty = r.m_infty;
|
||||
m_r = r.m_r;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inf_eps_rational & operator=(const rational & r) {
|
||||
m_infty.reset();
|
||||
m_r = r;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inf_eps_rational & operator+=(const inf_eps_rational & r) {
|
||||
m_infty += r.m_infty;
|
||||
m_r += r.m_r;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inf_eps_rational & operator-=(const inf_eps_rational & r) {
|
||||
m_infty -= r.m_infty;
|
||||
m_r -= r.m_r;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inf_eps_rational & operator+=(const rational & r) {
|
||||
m_r += r;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inf_eps_rational & operator-=(const rational & r) {
|
||||
m_r -= r;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inf_eps_rational & operator*=(const rational & r1) {
|
||||
m_infty *= r1;
|
||||
m_r *= r1;
|
||||
return *this;
|
||||
}
|
||||
|
||||
inf_eps_rational & operator/=(const rational & r) {
|
||||
m_infty /= r;
|
||||
m_r /= r;
|
||||
return *this;
|
||||
}
|
||||
|
||||
|
||||
inf_eps_rational & operator++() {
|
||||
++m_r;
|
||||
return *this;
|
||||
}
|
||||
|
||||
const inf_eps_rational operator++(int) { inf_eps_rational tmp(*this); ++(*this); return tmp; }
|
||||
|
||||
inf_eps_rational & operator--() {
|
||||
--m_r;
|
||||
return *this;
|
||||
}
|
||||
|
||||
const inf_eps_rational operator--(int) { inf_eps_rational tmp(*this); --(*this); return tmp; }
|
||||
|
||||
friend inline bool operator==(const inf_eps_rational & r1, const inf_eps_rational & r2) {
|
||||
return r1.m_infty == r2.m_infty && r1.m_r == r2.m_r;
|
||||
}
|
||||
|
||||
friend inline bool operator==(const rational & r1, const inf_eps_rational & r2) {
|
||||
return r1 == r2.m_infty && r2.m_r.is_zero();
|
||||
}
|
||||
|
||||
friend inline bool operator==(const inf_eps_rational & r1, const rational & r2) {
|
||||
return r1.m_infty == r2 && r1.m_r.is_zero();
|
||||
}
|
||||
|
||||
friend inline bool operator<(const inf_eps_rational & r1, const inf_eps_rational & r2) {
|
||||
return
|
||||
(r1.m_infty < r2.m_infty) ||
|
||||
(r1.m_infty == r2.m_infty && r1.m_r < r2.m_r);
|
||||
}
|
||||
|
||||
friend inline bool operator<(const rational & r1, const inf_eps_rational & r2) {
|
||||
return
|
||||
r2.m_infty.is_pos() ||
|
||||
(r2.m_infty.is_zero() && r1 < r2.m_r);
|
||||
}
|
||||
|
||||
friend inline bool operator<(const inf_eps_rational & r1, const rational & r2) {
|
||||
return
|
||||
r1.m_infty.is_neg() ||
|
||||
(r1.m_infty.is_zero() && r1.m_r < r2);
|
||||
}
|
||||
|
||||
void neg() {
|
||||
m_infty.neg();
|
||||
m_r.neg();
|
||||
}
|
||||
|
||||
bool is_zero() const {
|
||||
return m_infty.is_zero() && m_r.is_zero();
|
||||
}
|
||||
|
||||
bool is_one() const {
|
||||
return m_infty.is_zero() && m_r.is_one();
|
||||
}
|
||||
|
||||
bool is_minus_one() const {
|
||||
return m_infty.is_zero() && m_r.is_minus_one();
|
||||
}
|
||||
|
||||
bool is_neg() const {
|
||||
return
|
||||
m_infty.is_neg() ||
|
||||
(m_infty.is_zero() && m_r.is_neg());
|
||||
}
|
||||
|
||||
bool is_pos() const {
|
||||
return
|
||||
m_infty.is_pos() ||
|
||||
(m_infty.is_zero() && m_r.is_pos());
|
||||
}
|
||||
|
||||
bool is_nonneg() const {
|
||||
return
|
||||
m_infty.is_pos() ||
|
||||
(m_infty.is_zero() && m_r.is_nonneg());
|
||||
}
|
||||
|
||||
bool is_nonpos() const {
|
||||
return
|
||||
m_infty.is_neg() ||
|
||||
(m_infty.is_zero() && m_r.is_nonpos());
|
||||
}
|
||||
|
||||
friend inline rational floor(const inf_eps_rational & r) {
|
||||
SASSERT(r.m_infty.is_zero());
|
||||
return floor(r.m_r);
|
||||
}
|
||||
|
||||
friend inline rational ceil(const inf_eps_rational & r) {
|
||||
SASSERT(r.m_infty.is_zero());
|
||||
return ceil(r.m_r);
|
||||
}
|
||||
|
||||
|
||||
// Perform: this += c * k
|
||||
void addmul(const rational & c, const inf_eps_rational & k) {
|
||||
m_infty.addmul(c, k.m_infty);
|
||||
m_r.addmul(c, k.m_r);
|
||||
}
|
||||
|
||||
// Perform: this += c * k
|
||||
void submul(const rational & c, const inf_eps_rational & k) {
|
||||
m_infty.submul(c, k.m_infty);
|
||||
m_r.submul(c, k.m_r);
|
||||
}
|
||||
};
|
||||
|
||||
template<typename N>
|
||||
inline bool operator!=(const inf_eps_rational<N> & r1, const inf_eps_rational<N> & r2) {
|
||||
return !operator==(r1, r2);
|
||||
}
|
||||
|
||||
template<typename N>
|
||||
inline bool operator!=(const rational & r1, const inf_eps_rational<N> & r2) {
|
||||
return !operator==(r1, r2);
|
||||
}
|
||||
|
||||
template<typename N>
|
||||
inline bool operator!=(const inf_eps_rational<N> & r1, const rational & r2) {
|
||||
return !operator==(r1, r2);
|
||||
}
|
||||
|
||||
template<typename N>
|
||||
inline bool operator>(const inf_eps_rational<N> & r1, const inf_eps_rational<N> & r2) {
|
||||
return operator<(r2, r1);
|
||||
}
|
||||
|
||||
template<typename N>
|
||||
inline bool operator>(const inf_eps_rational<N> & r1, const rational & r2) {
|
||||
return operator<(r2, r1);
|
||||
}
|
||||
|
||||
template<typename N>
|
||||
inline bool operator>(const rational & r1, const inf_eps_rational<N> & r2) {
|
||||
return operator<(r2, r1);
|
||||
}
|
||||
|
||||
template<typename N>
|
||||
inline bool operator<=(const inf_eps_rational<N> & r1, const inf_eps_rational<N> & r2) {
|
||||
return !operator>(r1, r2);
|
||||
}
|
||||
|
||||
template<typename N>
|
||||
inline bool operator<=(const rational & r1, const inf_eps_rational<N> & r2) {
|
||||
return !operator>(r1, r2);
|
||||
}
|
||||
|
||||
template<typename N>
|
||||
inline bool operator<=(const inf_eps_rational<N> & r1, const rational & r2) {
|
||||
return !operator>(r1, r2);
|
||||
}
|
||||
|
||||
template<typename N>
|
||||
inline bool operator>=(const inf_eps_rational<N> & r1, const inf_eps_rational<N> & r2) {
|
||||
return !operator<(r1, r2);
|
||||
}
|
||||
|
||||
template<typename N>
|
||||
inline bool operator>=(const rational & r1, const inf_eps_rational<N> & r2) {
|
||||
return !operator<(r1, r2);
|
||||
}
|
||||
|
||||
template<typename N>
|
||||
inline bool operator>=(const inf_eps_rational<N> & r1, const rational & r2) {
|
||||
return !operator<(r1, r2);
|
||||
}
|
||||
|
||||
template<typename N>
|
||||
inline inf_eps_rational<N> operator+(const inf_eps_rational<N> & r1, const inf_eps_rational<N> & r2) {
|
||||
return inf_eps_rational<N>(r1) += r2;
|
||||
}
|
||||
|
||||
template<typename N>
|
||||
inline inf_eps_rational<N> operator-(const inf_eps_rational<N> & r1, const inf_eps_rational<N> & r2) {
|
||||
return inf_eps_rational<N>(r1) -= r2;
|
||||
}
|
||||
|
||||
template<typename N>
|
||||
inline inf_eps_rational<N> operator-(const inf_eps_rational<N> & r) {
|
||||
inf_eps_rational<N> result(r);
|
||||
result.neg();
|
||||
return result;
|
||||
}
|
||||
|
||||
template<typename N>
|
||||
inline inf_eps_rational<N> operator*(const rational & r1, const inf_eps_rational<N> & r2) {
|
||||
inf_eps_rational<N> result(r2);
|
||||
result *= r1;
|
||||
return result;
|
||||
}
|
||||
|
||||
template<typename N>
|
||||
inline inf_eps_rational<N> operator*(const inf_eps_rational<N> & r1, const rational & r2) {
|
||||
return r2 * r1;
|
||||
}
|
||||
|
||||
template<typename N>
|
||||
inline inf_eps_rational<N> operator/(const inf_eps_rational<N> & r1, const rational & r2) {
|
||||
inf_eps_rational<N> result(r1);
|
||||
result /= r2;
|
||||
return result;
|
||||
}
|
||||
|
||||
template<typename N>
|
||||
inline std::ostream & operator<<(std::ostream & target, const inf_eps_rational<N> & r) {
|
||||
target << r.to_string();
|
||||
return target;
|
||||
}
|
||||
|
||||
template<typename N>
|
||||
inline inf_eps_rational<N> abs(const inf_eps_rational<N> & r) {
|
||||
inf_eps_rational<N> result(r);
|
||||
if (result.is_neg()) {
|
||||
result.neg();
|
||||
}
|
||||
return result;
|
||||
}
|
||||
|
||||
#endif /* _INF_EPS_RATIONAL_H_ */
|
Loading…
Add table
Add a link
Reference in a new issue