3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-27 19:05:51 +00:00

merge LRA

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2017-05-09 10:46:11 -07:00
parent 085d31dca2
commit 911b24784a
120 changed files with 23069 additions and 15 deletions

View file

@ -0,0 +1,210 @@
/*
Copyright (c) 2017 Microsoft Corporation
Author: Lev Nachmanson
*/
#pragma once
#include "util/vector.h"
#include "util/lp/permutation_matrix.h"
#include <unordered_map>
#include "util/lp/static_matrix.h"
#include <set>
#include <utility>
#include <string>
#include <algorithm>
#include <queue>
#include "util/lp/indexed_value.h"
#include "util/lp/indexed_vector.h"
#include <functional>
#include "util/lp/lp_settings.h"
#include "util/lp/eta_matrix.h"
#include "util/lp/binary_heap_upair_queue.h"
#include "util/lp/sparse_matrix.h"
namespace lean {
template <typename T, typename X>
class square_dense_submatrix : public tail_matrix<T, X> {
// the submatrix uses the permutations of the parent matrix to access the elements
struct ref {
unsigned m_i_offset;
square_dense_submatrix & m_s;
ref(unsigned i, square_dense_submatrix & s) :
m_i_offset((i - s.m_index_start) * s.m_dim), m_s(s){}
T & operator[] (unsigned j) {
lean_assert(j >= m_s.m_index_start);
return m_s.m_v[m_i_offset + m_s.adjust_column(j) - m_s.m_index_start];
}
const T & operator[] (unsigned j) const {
lean_assert(j >= m_s.m_index_start);
return m_s.m_v[m_i_offset + m_s.adjust_column(j) - m_s.m_index_start];
}
};
public:
unsigned m_index_start;
unsigned m_dim;
vector<T> m_v;
sparse_matrix<T, X> * m_parent = nullptr;
permutation_matrix<T, X> m_row_permutation;
indexed_vector<T> m_work_vector;
public:
permutation_matrix<T, X> m_column_permutation;
bool is_active() const { return m_parent != nullptr; }
square_dense_submatrix() {}
square_dense_submatrix (sparse_matrix<T, X> *parent_matrix, unsigned index_start);
void init(sparse_matrix<T, X> *parent_matrix, unsigned index_start);
bool is_dense() const { return true; }
ref operator[] (unsigned i) {
lean_assert(i >= m_index_start);
lean_assert(i < m_parent->dimension());
return ref(i, *this);
}
int find_pivot_column_in_row(unsigned i) const;
void swap_columns(unsigned i, unsigned j) {
if (i != j)
m_column_permutation.transpose_from_left(i, j);
}
unsigned adjust_column(unsigned col) const{
if (col >= m_column_permutation.size())
return col;
return m_column_permutation.apply_reverse(col);
}
unsigned adjust_column_inverse(unsigned col) const{
if (col >= m_column_permutation.size())
return col;
return m_column_permutation[col];
}
unsigned adjust_row(unsigned row) const{
if (row >= m_row_permutation.size())
return row;
return m_row_permutation[row];
}
unsigned adjust_row_inverse(unsigned row) const{
if (row >= m_row_permutation.size())
return row;
return m_row_permutation.apply_reverse(row);
}
void pivot(unsigned i, lp_settings & settings);
void pivot_row_to_row(unsigned i, unsigned row, lp_settings & settings);;
void divide_row_by_pivot(unsigned i);
void update_parent_matrix(lp_settings & settings);
void update_existing_or_delete_in_parent_matrix_for_row(unsigned i, lp_settings & settings);
void push_new_elements_to_parent_matrix(lp_settings & settings);
template <typename L>
L row_by_vector_product(unsigned i, const vector<L> & v);
template <typename L>
L column_by_vector_product(unsigned j, const vector<L> & v);
template <typename L>
L row_by_indexed_vector_product(unsigned i, const indexed_vector<L> & v);
template <typename L>
void apply_from_left_local(indexed_vector<L> & w, lp_settings & settings);
template <typename L>
void apply_from_left_to_vector(vector<L> & w);
bool is_L_matrix() const;
void apply_from_left_to_T(indexed_vector<T> & w, lp_settings & settings) {
apply_from_left_local(w, settings);
}
void apply_from_right(indexed_vector<T> & w) {
#if 1==0
indexed_vector<T> wcopy = w;
apply_from_right(wcopy.m_data);
wcopy.m_index.clear();
if (numeric_traits<T>::precise()) {
for (unsigned i = 0; i < m_parent->dimension(); i++) {
if (!is_zero(wcopy.m_data[i]))
wcopy.m_index.push_back(i);
}
} else {
for (unsigned i = 0; i < m_parent->dimension(); i++) {
T & v = wcopy.m_data[i];
if (!lp_settings::is_eps_small_general(v, 1e-14)){
wcopy.m_index.push_back(i);
} else {
v = zero_of_type<T>();
}
}
}
lean_assert(wcopy.is_OK());
apply_from_right(w.m_data);
w.m_index.clear();
if (numeric_traits<T>::precise()) {
for (unsigned i = 0; i < m_parent->dimension(); i++) {
if (!is_zero(w.m_data[i]))
w.m_index.push_back(i);
}
} else {
for (unsigned i = 0; i < m_parent->dimension(); i++) {
T & v = w.m_data[i];
if (!lp_settings::is_eps_small_general(v, 1e-14)){
w.m_index.push_back(i);
} else {
v = zero_of_type<T>();
}
}
}
#else
lean_assert(w.is_OK());
lean_assert(m_work_vector.is_OK());
m_work_vector.resize(w.data_size());
m_work_vector.clear();
lean_assert(m_work_vector.is_OK());
unsigned end = m_index_start + m_dim;
for (unsigned k : w.m_index) {
// find j such that k = adjust_row_inverse(j)
unsigned j = adjust_row(k);
if (j < m_index_start || j >= end) {
m_work_vector.set_value(w[k], adjust_column_inverse(j));
} else { // j >= m_index_start and j < end
unsigned offset = (j - m_index_start) * m_dim; // this is the row start
const T& wv = w[k];
for (unsigned col = m_index_start; col < end; col++, offset ++) {
unsigned adj_col = adjust_column_inverse(col);
m_work_vector.add_value_at_index(adj_col, m_v[offset] * wv);
}
}
}
m_work_vector.clean_up();
lean_assert(m_work_vector.is_OK());
w = m_work_vector;
#endif
}
void apply_from_left(vector<X> & w, lp_settings & /*settings*/) {
apply_from_left_to_vector(w);// , settings);
}
void apply_from_right(vector<T> & w);
#ifdef LEAN_DEBUG
T get_elem (unsigned i, unsigned j) const;
unsigned row_count() const { return m_parent->row_count();}
unsigned column_count() const { return row_count();}
void set_number_of_rows(unsigned) {}
void set_number_of_columns(unsigned) {};
#endif
void conjugate_by_permutation(permutation_matrix<T, X> & q);
};
}