3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-29 20:05:51 +00:00

merge LRA

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2017-05-09 10:46:11 -07:00
parent 085d31dca2
commit 911b24784a
120 changed files with 23069 additions and 15 deletions

339
src/util/lp/lp_settings.h Normal file
View file

@ -0,0 +1,339 @@
/*
Copyright (c) 2017 Microsoft Corporation
Author: Lev Nachmanson
*/
#pragma once
#include "util/vector.h"
#include <string>
#include <algorithm>
#include <limits>
#include <sys/timeb.h>
#include <iomanip>
#include "util/lp/lp_utils.h"
namespace lean {
typedef unsigned var_index;
typedef unsigned constraint_index;
typedef unsigned row_index;
enum class column_type {
free_column = 0,
low_bound = 1,
upper_bound = 2,
boxed = 3,
fixed = 4
};
enum class simplex_strategy_enum {
tableau_rows = 0,
tableau_costs = 1,
no_tableau = 2
};
std::string column_type_to_string(column_type t);
enum lp_status {
UNKNOWN,
INFEASIBLE,
TENTATIVE_UNBOUNDED,
UNBOUNDED,
TENTATIVE_DUAL_UNBOUNDED,
DUAL_UNBOUNDED,
OPTIMAL,
FEASIBLE,
FLOATING_POINT_ERROR,
TIME_EXHAUSTED,
ITERATIONS_EXHAUSTED,
EMPTY,
UNSTABLE
};
// when the ratio of the vector lenth to domain size to is greater than the return value we switch to solve_By_for_T_indexed_only
template <typename X>
unsigned ratio_of_index_size_to_all_size() {
if (numeric_traits<X>::precise())
return 10;
return 120;
}
const char* lp_status_to_string(lp_status status);
inline std::ostream& operator<<(std::ostream& out, lp_status status) {
return out << lp_status_to_string(status);
}
lp_status lp_status_from_string(std::string status);
enum non_basic_column_value_position { at_low_bound, at_upper_bound, at_fixed, free_of_bounds, not_at_bound };
template <typename X> bool is_epsilon_small(const X & v, const double& eps); // forward definition
int get_millisecond_count();
int get_millisecond_span(int start_time);
unsigned my_random();
void my_random_init(long unsigned seed);
class lp_resource_limit {
public:
virtual bool get_cancel_flag() = 0;
};
struct stats {
unsigned m_total_iterations;
unsigned m_iters_with_no_cost_growing;
unsigned m_num_factorizations;
unsigned m_num_of_implied_bounds;
unsigned m_need_to_solve_inf;
stats() { reset(); }
void reset() { memset(this, 0, sizeof(*this)); }
};
struct lp_settings {
private:
class default_lp_resource_limit : public lp_resource_limit {
lp_settings& m_settings;
int m_start_time;
public:
default_lp_resource_limit(lp_settings& s): m_settings(s), m_start_time(get_millisecond_count()) {}
virtual bool get_cancel_flag() {
int span_in_mills = get_millisecond_span(m_start_time);
return (span_in_mills / 1000.0 > m_settings.time_limit);
}
};
default_lp_resource_limit m_default_resource_limit;
lp_resource_limit* m_resource_limit;
// used for debug output
std::ostream* m_debug_out = &std::cout;
// used for messages, for example, the computation progress messages
std::ostream* m_message_out = &std::cout;
stats m_stats;
public:
unsigned reps_in_scaler = 20;
// when the absolute value of an element is less than pivot_epsilon
// in pivoting, we treat it as a zero
double pivot_epsilon = 0.00000001;
// see Chatal, page 115
double positive_price_epsilon = 1e-7;
// a quatation "if some choice of the entering vairable leads to an eta matrix
// whose diagonal element in the eta column is less than e2 (entering_diag_epsilon) in magnitude, the this choice is rejected ...
double entering_diag_epsilon = 1e-8;
int c_partial_pivoting = 10; // this is the constant c from page 410
unsigned depth_of_rook_search = 4;
bool using_partial_pivoting = true;
// dissertation of Achim Koberstein
// if Bx - b is different at any component more that refactor_epsilon then we refactor
double refactor_tolerance = 1e-4;
double pivot_tolerance = 1e-6;
double zero_tolerance = 1e-12;
double drop_tolerance = 1e-14;
double tolerance_for_artificials = 1e-4;
double can_be_taken_to_basis_tolerance = 0.00001;
unsigned percent_of_entering_to_check = 5; // we try to find a profitable column in a percentage of the columns
bool use_scaling = true;
double scaling_maximum = 1;
double scaling_minimum = 0.5;
double harris_feasibility_tolerance = 1e-7; // page 179 of Istvan Maros
double ignore_epsilon_of_harris = 10e-5;
unsigned max_number_of_iterations_with_no_improvements = 2000000;
unsigned max_total_number_of_iterations = 20000000;
double time_limit = std::numeric_limits<double>::max(); // the maximum time limit of the total run time in seconds
// dual section
double dual_feasibility_tolerance = 1e-7; // // page 71 of the PhD thesis of Achim Koberstein
double primal_feasibility_tolerance = 1e-7; // page 71 of the PhD thesis of Achim Koberstein
double relative_primal_feasibility_tolerance = 1e-9; // page 71 of the PhD thesis of Achim Koberstein
bool m_bound_propagation = true;
bool bound_progation() const {
return m_bound_propagation;
}
bool& bound_propagation() {
return m_bound_propagation;
}
lp_settings() : m_default_resource_limit(*this), m_resource_limit(&m_default_resource_limit) {}
void set_resource_limit(lp_resource_limit& lim) { m_resource_limit = &lim; }
bool get_cancel_flag() const { return m_resource_limit->get_cancel_flag(); }
void set_debug_ostream(std::ostream* out) { m_debug_out = out; }
void set_message_ostream(std::ostream* out) { m_message_out = out; }
std::ostream* get_debug_ostream() { return m_debug_out; }
std::ostream* get_message_ostream() { return m_message_out; }
stats& st() { return m_stats; }
stats const& st() const { return m_stats; }
template <typename T> static bool is_eps_small_general(const T & t, const double & eps) {
return (!numeric_traits<T>::precise())? is_epsilon_small<T>(t, eps) : numeric_traits<T>::is_zero(t);
}
template <typename T>
bool abs_val_is_smaller_than_dual_feasibility_tolerance(T const & t) {
return is_eps_small_general<T>(t, dual_feasibility_tolerance);
}
template <typename T>
bool abs_val_is_smaller_than_primal_feasibility_tolerance(T const & t) {
return is_eps_small_general<T>(t, primal_feasibility_tolerance);
}
template <typename T>
bool abs_val_is_smaller_than_can_be_taken_to_basis_tolerance(T const & t) {
return is_eps_small_general<T>(t, can_be_taken_to_basis_tolerance);
}
template <typename T>
bool abs_val_is_smaller_than_drop_tolerance(T const & t) const {
return is_eps_small_general<T>(t, drop_tolerance);
}
template <typename T>
bool abs_val_is_smaller_than_zero_tolerance(T const & t) {
return is_eps_small_general<T>(t, zero_tolerance);
}
template <typename T>
bool abs_val_is_smaller_than_refactor_tolerance(T const & t) {
return is_eps_small_general<T>(t, refactor_tolerance);
}
template <typename T>
bool abs_val_is_smaller_than_pivot_tolerance(T const & t) {
return is_eps_small_general<T>(t, pivot_tolerance);
}
template <typename T>
bool abs_val_is_smaller_than_harris_tolerance(T const & t) {
return is_eps_small_general<T>(t, harris_feasibility_tolerance);
}
template <typename T>
bool abs_val_is_smaller_than_ignore_epslilon_for_harris(T const & t) {
return is_eps_small_general<T>(t, ignore_epsilon_of_harris);
}
template <typename T>
bool abs_val_is_smaller_than_artificial_tolerance(T const & t) {
return is_eps_small_general<T>(t, tolerance_for_artificials);
}
// the method of lar solver to use
bool presolve_with_double_solver_for_lar = true;
simplex_strategy_enum m_simplex_strategy = simplex_strategy_enum::tableau_rows;
simplex_strategy_enum simplex_strategy() const {
return m_simplex_strategy;
}
simplex_strategy_enum & simplex_strategy() {
return m_simplex_strategy;
}
bool use_tableau() const {
return m_simplex_strategy != simplex_strategy_enum::no_tableau;
}
bool use_tableau_rows() const {
return m_simplex_strategy == simplex_strategy_enum::tableau_rows;
}
int report_frequency = 1000;
bool print_statistics = false;
unsigned column_norms_update_frequency = 12000;
bool scale_with_ratio = true;
double density_threshold = 0.7; // need to tune it up, todo
#ifdef LEAN_DEBUG
static unsigned ddd; // used for debugging
#endif
bool use_breakpoints_in_feasibility_search = false;
unsigned random_seed = 1;
static unsigned long random_next;
unsigned max_row_length_for_bound_propagation = 300;
bool backup_costs = true;
}; // end of lp_settings class
#define LP_OUT(_settings_, _msg_) { if (_settings_.get_debug_ostream()) { *_settings_.get_debug_ostream() << _msg_; } }
template <typename T>
std::string T_to_string(const T & t) {
std::ostringstream strs;
strs << t;
return strs.str();
}
inline std::string T_to_string(const numeric_pair<mpq> & t) {
std::ostringstream strs;
double r = (t.x + t.y / mpq(1000)).get_double();
strs << r;
return strs.str();
}
inline std::string T_to_string(const mpq & t) {
std::ostringstream strs;
strs << t.get_double();
return strs.str();
}
template <typename T>
bool val_is_smaller_than_eps(T const & t, double const & eps) {
if (!numeric_traits<T>::precise()) {
return numeric_traits<T>::get_double(t) < eps;
}
return t <= numeric_traits<T>::zero();
}
template <typename T>
bool vectors_are_equal(T * a, vector<T> &b, unsigned n);
template <typename T>
bool vectors_are_equal(const vector<T> & a, const buffer<T> &b);
template <typename T>
bool vectors_are_equal(const vector<T> & a, const vector<T> &b);
template <typename T>
T abs (T const & v) { return v >= zero_of_type<T>() ? v : -v; }
template <typename X>
X max_abs_in_vector(vector<X>& t){
X r(zero_of_type<X>());
for (auto & v : t)
r = std::max(abs(v) , r);
return r;
}
inline void print_blanks(int n, std::ostream & out) {
while (n--) {out << ' '; }
}
// after a push of the last element we ensure that the vector increases
// we also suppose that before the last push the vector was increasing
inline void ensure_increasing(vector<unsigned> & v) {
lean_assert(v.size() > 0);
unsigned j = v.size() - 1;
for (; j > 0; j-- )
if (v[j] <= v[j - 1]) {
// swap
unsigned t = v[j];
v[j] = v[j-1];
v[j-1] = t;
} else {
break;
}
}
#if LEAN_DEBUG
bool D();
#endif
}