mirror of
https://github.com/Z3Prover/z3
synced 2025-04-10 19:27:06 +00:00
This commit is contained in:
parent
331658f208
commit
8f95ee01e1
|
@ -193,7 +193,6 @@ int main(int argc, char ** argv) {
|
|||
TST(polynomial);
|
||||
TST(upolynomial);
|
||||
TST(algebraic);
|
||||
TST(polynomial_factorization);
|
||||
TST(prime_generator);
|
||||
TST(permutation);
|
||||
TST(nlsat);
|
||||
|
|
|
@ -18,7 +18,6 @@ Notes:
|
|||
--*/
|
||||
#if !defined(__clang__)
|
||||
#include"polynomial.h"
|
||||
#include"polynomial_factorization.h"
|
||||
#include"polynomial_var2value.h"
|
||||
#include"polynomial_cache.h"
|
||||
#include"linear_eq_solver.h"
|
||||
|
|
|
@ -1,746 +0,0 @@
|
|||
/*++
|
||||
Copyright (c) 2011 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
polynomial_factorization.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
Testing of factorization.
|
||||
|
||||
Author:
|
||||
|
||||
Dejan (t-dejanj) 2011-11-29
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
#include"upolynomial_factorization_int.h"
|
||||
#include"timeit.h"
|
||||
#include"polynomial.h"
|
||||
#include"rlimit.h"
|
||||
#if 0
|
||||
#include"polynomial_factorization.h"
|
||||
#endif
|
||||
|
||||
using std::cout;
|
||||
using std::endl;
|
||||
|
||||
// some prime numbers
|
||||
unsigned primes[] = {
|
||||
2, 3, 5, 7, 11, 13, 17, 19, 23, 29
|
||||
};
|
||||
|
||||
// [i,l]: how many factors the Knuth example has over p_i, when i = 0 it's Z, p_1 = 2, for l=0 distinct, for l = 1 total
|
||||
unsigned knuth_factors[2][11] = {
|
||||
// x^8 + x^6 + 10*x^4 + 10*x^3 + 8*x^2 + 2*x + 8
|
||||
{2, 2, 3, 3, 2, 3, 1, 4, 3, 1, 1},
|
||||
{8, 2, 3, 3, 2, 3, 1, 4, 3, 1, 1},
|
||||
};
|
||||
|
||||
// [k,l,i]: how many factors the S_k has over p_i, when i = 0 it's Z, p_1 = 2, for l=0 distinct, for l = 1 total
|
||||
unsigned swinnerton_dyer_factors[5][2][11] = {
|
||||
// S1 = (x^2) - 2
|
||||
{
|
||||
// 2, 3, 5, 7,11,13,17,19,23,29, Z
|
||||
{1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1},
|
||||
{2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1}
|
||||
},
|
||||
// S2 = (x^4) - 10*(x^2) + 1
|
||||
{
|
||||
{1, 1, 2, 2, 2, 2, 2, 2, 4, 2, 1},
|
||||
{4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 1}
|
||||
},
|
||||
// S3 = (x^8) - 40*(x^6) + 352*(x^4) - 960*(x^2) + 576
|
||||
{
|
||||
{1, 2, 2, 4, 4, 4, 4, 4, 4, 4, 1},
|
||||
{8, 6, 4, 4, 4, 4, 4, 4, 4, 4, 1}
|
||||
},
|
||||
// S4 = (x^16) - 136*(x^14) + 6476*(x^12) - 141912*(x^10) + 1513334*(x^8) - 7453176*(x^6) + 13950764*(x^4) - 5596840*(x^2) + 46225
|
||||
{
|
||||
{1, 4, 3, 4, 8, 8, 8, 8, 8, 8, 1},
|
||||
{16, 12, 10, 8, 8, 8, 8, 8, 8, 8, 1}
|
||||
},
|
||||
// SA = S1*S2*S3*S4
|
||||
{
|
||||
//p = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, Z
|
||||
{ 2, 6, 3, 6, 15, 11, 16, 15, 18, 15, 1},
|
||||
{30, 21, 17, 16, 15, 15, 16, 15, 18, 15, 1}
|
||||
}
|
||||
};
|
||||
|
||||
int random_polynomial[20][2][11] = {
|
||||
{
|
||||
// 3*x^10 + 2*x^9 + 4*x^8 + 4*x^7 + 4*x^6 + x^5 + 3*x^2 + 3*x
|
||||
{ 4, 3, 4, 4, 3, 4, 4, 4, 3, 4, 2 },
|
||||
{ 7, 7, 4, 4, 3, 4, 4, 4, 3, 4, 2 },
|
||||
},
|
||||
{
|
||||
// 4*x^9 + 4*x^8 + x^7 + x^6 + 2*x^5 + 3*x^4 + 4*x^2 + 4*x
|
||||
{ 2, 2, 3, 3, 4, 2, 5, 3, 4, 2, 2 },
|
||||
{ 5, 2, 3, 3, 4, 2, 5, 3, 5, 2, 2 },
|
||||
},
|
||||
{
|
||||
// 3*x^10 + 4*x^9 + 3*x^8 + x^6 + 4*x^5 + 4*x^4 + x^2
|
||||
{ 3, 2, 4, 4, 5, 3, 4, 2, 4, 5, 2 },
|
||||
{ 6, 3, 5, 5, 6, 4, 5, 3, 5, 7, 3 },
|
||||
},
|
||||
{
|
||||
// x^10 + 4*x^9 + x^8 + 3*x^7 + 3*x^4 + 3*x^3 + x^2 + 4*x
|
||||
{ 3, 4, 4, 3, 3, 3, 4, 4, 5, 3, 2 },
|
||||
{ 8, 4, 4, 3, 3, 3, 4, 4, 5, 3, 2 },
|
||||
},
|
||||
{
|
||||
// x^9 + 2*x^8 + 3*x^7 + x^6 + 2*x^5 + 4*x^4 + 3*x^2
|
||||
{ 3, 3, 3, 3, 4, 4, 4, 3, 3, 4, 2 },
|
||||
{ 5, 6, 4, 5, 5, 6, 5, 4, 4, 5, 3 },
|
||||
},
|
||||
{
|
||||
// x^10 + x^9 + 4*x^7 + x^6 + 3*x^5 + x^4 + x^3 + x
|
||||
{ 3, 2, 3, 3, 3, 5, 3, 2, 4, 4, 2 },
|
||||
{ 3, 2, 3, 3, 3, 5, 3, 2, 4, 4, 2 },
|
||||
},
|
||||
{
|
||||
// 4*x^10 + 4*x^9 + x^8 + 2*x^7 + 3*x^6 + 4*x^5 + 3*x^4 + x^3 + 2*x^2 + 4*x
|
||||
{ 3, 3, 2, 5, 3, 4, 2, 4, 5, 5, 2 },
|
||||
{ 5, 3, 2, 5, 3, 4, 2, 4, 5, 5, 2 },
|
||||
},
|
||||
{
|
||||
// 3*x^10 + 4*x^9 + 3*x^8 + x^7 + x^6 + 2*x^5 + x^4 + 2*x^3 + 2*x^2 + x
|
||||
{ 3, 4, 6, 4, 4, 4, 4, 6, 6, 4, 3 },
|
||||
{ 4, 4, 7, 4, 4, 4, 4, 6, 6, 4, 3 },
|
||||
},
|
||||
{
|
||||
// 4*x^10 + x^9 + x^7 + 2*x^5 + 3*x^3 + x^2 + 4*x
|
||||
{ 3, 3, 3, 4, 4, 5, 4, 5, 2, 4, 2 },
|
||||
{ 4, 4, 3, 4, 4, 5, 4, 5, 2, 4, 2 },
|
||||
},
|
||||
{
|
||||
// x^10 + 3*x^9 + 3*x^8 + x^7 + 3*x^6 + 3*x^5 + 3*x^4 + x^2 + 3*x
|
||||
{ 2, 3, 4, 4, 3, 3, 4, 3, 3, 4, 2 },
|
||||
{ 2, 4, 5, 4, 3, 3, 4, 3, 3, 4, 2 },
|
||||
},
|
||||
{
|
||||
// x^10 + x^9 + 2*x^8 + x^7 + 4*x^6 + 2*x^5 + 3*x^4 + 4*x^3 + x^2 + 2*x
|
||||
{ 3, 4, 4, 3, 3, 3, 3, 4, 5, 3, 2 },
|
||||
{ 4, 4, 4, 3, 3, 3, 3, 4, 5, 3, 2 },
|
||||
},
|
||||
{
|
||||
// 3*x^9 + x^8 + 3*x^7 + 3*x^6 + x^5 + 2*x^4 + 4*x^3 + 4*x^2 + 3*x
|
||||
{ 4, 3, 3, 3, 5, 3, 6, 4, 2, 2, 2 },
|
||||
{ 6, 4, 3, 3, 5, 3, 6, 4, 2, 2, 2 },
|
||||
},
|
||||
{
|
||||
// 2*x^10 + 3*x^9 + 2*x^8 + 4*x^7 + x^6 + 3*x^5 + 2*x^3 + 3*x^2 + 2*x + 2
|
||||
{ 3, 3, 3, 5, 4, 5, 6, 7, 4, 6, 3 },
|
||||
{ 8, 4, 3, 7, 4, 5, 6, 7, 4, 7, 3 },
|
||||
},
|
||||
{
|
||||
// 3*x^10 + x^9 + 4*x^8 + 2*x^7 + x^6 + 4*x^5 + x^4 + 3*x^3 + x + 2
|
||||
{ 3, 3, 3, 2, 6, 4, 4, 4, 3, 3, 2 },
|
||||
{ 3, 3, 3, 2, 6, 5, 4, 5, 3, 3, 2 },
|
||||
},
|
||||
{
|
||||
// 4*x^10 + 2*x^9 + x^8 + x^6 + x^5 + 3*x^4 + 4*x^3 + x^2 + x
|
||||
{ 3, 4, 2, 4, 4, 4, 4, 2, 3, 3, 2 },
|
||||
{ 6, 4, 2, 4, 4, 4, 4, 2, 3, 3, 2 },
|
||||
},
|
||||
{
|
||||
// 4*x^10 + 2*x^7 + 4*x^6 + 2*x^3 + x
|
||||
{ 1, 3, 3, 3, 4, 4, 4, 3, 3, 2, 2 },
|
||||
{ 1, 3, 3, 3, 4, 4, 4, 3, 3, 2, 2 },
|
||||
},
|
||||
{
|
||||
// 4*x^10 + x^9 + x^8 + 4*x^7 + 4*x^4 + 2*x^2 + x + 4
|
||||
{ 3, 4, 2, 5, 3, 6, 3, 6, 3, 3, 2 },
|
||||
{ 3, 6, 2, 5, 3, 6, 3, 6, 3, 3, 2 },
|
||||
},
|
||||
{
|
||||
// 3*x^10 + 2*x^8 + x^7 + x^6 + 3*x^4 + 3*x^3 + 4*x^2 + 3*x
|
||||
{ 4, 3, 4, 3, 3, 3, 2, 4, 4, 3, 2 },
|
||||
{ 5, 4, 4, 3, 3, 3, 2, 4, 4, 3, 2 },
|
||||
},
|
||||
{
|
||||
// x^10 + 2*x^9 + 2*x^6 + 4*x^3 + 4*x^2
|
||||
{ 1, 2, 2, 3, 3, 4, 3, 3, 3, 3, 2 },
|
||||
{ 10, 3, 3, 4, 4, 6, 4, 4, 4, 4, 3 },
|
||||
},
|
||||
{
|
||||
// x^10 + 2*x^9 + 2*x^8 + 4*x^7 + 4*x^6 + x^5 + x^3 + x^2 + 3*x
|
||||
{ 2, 4, 2, 3, 3, 3, 5, 5, 6, 2, 2 },
|
||||
{ 2, 5, 2, 3, 3, 3, 5, 5, 6, 2, 2 },
|
||||
}
|
||||
};
|
||||
|
||||
#if 0
|
||||
static void tst_square_free_finite_1() {
|
||||
polynomial::numeral_manager nm;
|
||||
reslimit rl; polynomial::manager pm(rl, nm);
|
||||
|
||||
// example from Knuth, p. 442
|
||||
polynomial_ref x(pm);
|
||||
x = pm.mk_polynomial(pm.mk_var());
|
||||
|
||||
// polynomials \prod_{i < p} (x - i)^i
|
||||
for (unsigned prime_i = 0; prime_i < 5; ++ prime_i)
|
||||
{
|
||||
int p = primes[prime_i];
|
||||
|
||||
// make the polynomial
|
||||
polynomial_ref f(pm);
|
||||
f = x - 1;
|
||||
for (int i = 2; i < p; ++ i) {
|
||||
f = f*((x + (-i))^i);
|
||||
}
|
||||
cout << "Factoring " << f << " into square-free over Z_" << p << endl;
|
||||
|
||||
// convert to univariate over Z_p
|
||||
upolynomial::zp_manager upm(nm);
|
||||
upm.set_zp(p);
|
||||
upolynomial::numeral_vector f_u;
|
||||
upm.to_numeral_vector(f, f_u);
|
||||
|
||||
cout << "Input: "; upm.display(cout, f_u); cout << endl;
|
||||
|
||||
// factor it
|
||||
upolynomial::zp_factors f_factors(upm);
|
||||
cout << "Start: " << f_factors << endl;
|
||||
|
||||
upolynomial::zp_square_free_factor(upm, f_u, f_factors);
|
||||
|
||||
upolynomial::numeral_vector mult;
|
||||
f_factors.multiply(mult);
|
||||
cout << "Multiplied: "; upm.display(cout, mult); cout << endl;
|
||||
|
||||
SASSERT(upm.eq(mult, f_u));
|
||||
|
||||
// remove the temps
|
||||
upm.reset(f_u);
|
||||
upm.reset(mult);
|
||||
}
|
||||
}
|
||||
|
||||
static void tst_factor_finite_1() {
|
||||
|
||||
polynomial::numeral_manager nm;
|
||||
reslimit rl; polynomial::manager pm(rl, nm);
|
||||
|
||||
// example from Knuth, p. 442
|
||||
polynomial_ref x(pm);
|
||||
x = pm.mk_polynomial(pm.mk_var());
|
||||
polynomial_ref K(pm);
|
||||
K = (x^8) + (x^6) + 10*(x^4) + 10*(x^3) + 8*(x^2) + 2*x + 8;
|
||||
|
||||
// factor them for all the prime numbers
|
||||
for (unsigned prime_i = 0; prime_i < sizeof(primes)/sizeof(unsigned); ++ prime_i)
|
||||
{
|
||||
// make the Z_p
|
||||
unsigned prime = primes[prime_i];
|
||||
upolynomial::zp_manager upm(nm);
|
||||
upm.set_zp(prime);
|
||||
|
||||
// make the polynomial in Z_p
|
||||
upolynomial::numeral_vector K_u;
|
||||
upm.to_numeral_vector(K, K_u);
|
||||
|
||||
cout << "Factoring " << K << "("; upm.display(cout, K_u); cout << ") in Z_" << prime << endl;
|
||||
cout << "Expecting " << knuth_factors[0][prime_i] << " distinct factors, " << knuth_factors[1][prime_i] << " total" << endl;
|
||||
|
||||
// factor it
|
||||
upolynomial::zp_factors factors(upm);
|
||||
/* bool factorized = */ upolynomial::zp_factor(upm, K_u, factors);
|
||||
|
||||
// check the result
|
||||
unsigned distinct = factors.distinct_factors();
|
||||
unsigned total = factors.total_factors();
|
||||
|
||||
cout << "Got " << factors << endl;
|
||||
cout << "Thats " << distinct << " distinct factors, " << total << " total" << endl;
|
||||
|
||||
SASSERT(knuth_factors[0][prime_i] == distinct);
|
||||
SASSERT(knuth_factors[1][prime_i] == total);
|
||||
|
||||
upolynomial::numeral_vector multiplied;
|
||||
factors.multiply(multiplied);
|
||||
SASSERT(upm.eq(K_u, multiplied));
|
||||
upm.reset(multiplied);
|
||||
|
||||
// remove the temp
|
||||
upm.reset(K_u);
|
||||
}
|
||||
}
|
||||
|
||||
static void tst_factor_finite_2() {
|
||||
|
||||
polynomial::numeral_manager nm;
|
||||
reslimit rl; polynomial::manager pm(rl, nm);
|
||||
|
||||
polynomial_ref x(pm);
|
||||
x = pm.mk_polynomial(pm.mk_var());
|
||||
|
||||
// Swinnerton-Dyer polynomials (irreducible, modular factors of degree at most 2)
|
||||
polynomial_ref S1 = (x^2) - 2;
|
||||
polynomial_ref S2 = (x^4) - 10*(x^2) + 1;
|
||||
polynomial_ref S3 = (x^8) - 40*(x^6) + 352*(x^4) - 960*(x^2) + 576;
|
||||
polynomial_ref S4 = (x^16) - 136*(x^14) + 6476*(x^12) - 141912*(x^10) + 1513334*(x^8) - 7453176*(x^6) + 13950764*(x^4) - 5596840*(x^2) + 46225;
|
||||
|
||||
vector<polynomial_ref> S;
|
||||
S.push_back(S1);
|
||||
S.push_back(S2);
|
||||
S.push_back(S3);
|
||||
S.push_back(S4);
|
||||
S.push_back(S1*S2*S3*S4);
|
||||
|
||||
// factor all the S_i them for all the prime numbers
|
||||
for (unsigned S_i = 0; S_i < S.size(); ++ S_i) {
|
||||
for (unsigned prime_i = 0; prime_i < sizeof(primes)/sizeof(unsigned); ++ prime_i) {
|
||||
unsigned prime = primes[prime_i];
|
||||
|
||||
upolynomial::zp_manager upm(nm);
|
||||
upm.set_zp(prime);
|
||||
|
||||
upolynomial::numeral_vector S_i_u;
|
||||
upm.to_numeral_vector(S[S_i], S_i_u);
|
||||
|
||||
cout << "Factoring "; upm.display(cout, S_i_u); cout << " over Z_" << prime << endl;
|
||||
cout << "Expecting " << swinnerton_dyer_factors[S_i][0][prime_i] << " distinct factors, " << swinnerton_dyer_factors[S_i][1][prime_i] << " total" << endl;
|
||||
|
||||
upolynomial::zp_factors factors(upm);
|
||||
upolynomial::zp_factor(upm, S_i_u, factors);
|
||||
|
||||
// check the result
|
||||
unsigned distinct = factors.distinct_factors();
|
||||
unsigned total = factors.total_factors();
|
||||
|
||||
cout << "Got " << factors << endl;
|
||||
cout << "Thats " << distinct << " distinct factors, " << total << " total" << endl;
|
||||
|
||||
SASSERT(swinnerton_dyer_factors[S_i][0][prime_i] == distinct);
|
||||
SASSERT(swinnerton_dyer_factors[S_i][1][prime_i] == total);
|
||||
|
||||
upolynomial::numeral_vector multiplied;
|
||||
factors.multiply(multiplied);
|
||||
SASSERT(upm.eq(S_i_u, multiplied));
|
||||
upm.reset(multiplied);
|
||||
|
||||
// remove the temp
|
||||
upm.reset(S_i_u);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void tst_factor_finite_3() {
|
||||
|
||||
polynomial::numeral_manager nm;
|
||||
reslimit rl; polynomial::manager pm(rl, nm);
|
||||
|
||||
polynomial_ref x(pm);
|
||||
x = pm.mk_polynomial(pm.mk_var());
|
||||
|
||||
// random polynomials
|
||||
vector<polynomial_ref> random_p;
|
||||
random_p.push_back( 3*(x^10) + 2*(x^9) + 4*(x^8) + 4*(x^7) + 4*(x^6) + 1*(x^5) + 3*(x^2) + 3*x + 0 );
|
||||
random_p.push_back( 4*(x^9) + 4*(x^8) + 1*(x^7) + 1*(x^6) + 2*(x^5) + 3*(x^4) + 4*(x^2) + 4*x + 0 );
|
||||
random_p.push_back( 3*(x^10) + 4*(x^9) + 3*(x^8) + 1*(x^6) + 4*(x^5) + 4*(x^4) + 1*(x^2) + 0 );
|
||||
random_p.push_back( 1*(x^10) + 4*(x^9) + 1*(x^8) + 3*(x^7) + 3*(x^4) + 3*(x^3) + 1*(x^2) + 4*x + 0 );
|
||||
random_p.push_back( 1*(x^9) + 2*(x^8) + 3*(x^7) + 1*(x^6) + 2*(x^5) + 4*(x^4) + 3*(x^2) + 0 );
|
||||
random_p.push_back( 1*(x^10) + 1*(x^9) + 4*(x^7) + 1*(x^6) + 3*(x^5) + 1*(x^4) + 1*(x^3) + 1*x + 0 );
|
||||
random_p.push_back( 4*(x^10) + 4*(x^9) + 1*(x^8) + 2*(x^7) + 3*(x^6) + 4*(x^5) + 3*(x^4) + 1*(x^3) + 2*(x^2) + 4*x + 0 );
|
||||
random_p.push_back( 3*(x^10) + 4*(x^9) + 3*(x^8) + 1*(x^7) + 1*(x^6) + 2*(x^5) + 1*(x^4) + 2*(x^3) + 2*(x^2) + 1*x + 0 );
|
||||
random_p.push_back( 4*(x^10) + 1*(x^9) + 1*(x^7) + 2*(x^5) + 3*(x^3) + 1*(x^2) + 4*x + 0 );
|
||||
random_p.push_back( 1*(x^10) + 3*(x^9) + 3*(x^8) + 1*(x^7) + 3*(x^6) + 3*(x^5) + 3*(x^4) + 1*(x^2) + 3*x + 0 );
|
||||
random_p.push_back( 1*(x^10) + 1*(x^9) + 2*(x^8) + 1*(x^7) + 4*(x^6) + 2*(x^5) + 3*(x^4) + 4*(x^3) + 1*(x^2) + 2*x + 0 );
|
||||
random_p.push_back( 3*(x^9) + 1*(x^8) + 3*(x^7) + 3*(x^6) + 1*(x^5) + 2*(x^4) + 4*(x^3) + 4*(x^2) + 3*x + 0 );
|
||||
random_p.push_back( 2*(x^10) + 3*(x^9) + 2*(x^8) + 4*(x^7) + 1*(x^6) + 3*(x^5) + 2*(x^3) + 3*(x^2) + 2*x + 2 );
|
||||
random_p.push_back( 3*(x^10) + 1*(x^9) + 4*(x^8) + 2*(x^7) + 1*(x^6) + 4*(x^5) + 1*(x^4) + 3*(x^3) + 1*x + 2 );
|
||||
random_p.push_back( 4*(x^10) + 2*(x^9) + 1*(x^8) + 1*(x^6) + 1*(x^5) + 3*(x^4) + 4*(x^3) + 1*(x^2) + 1*x + 0 );
|
||||
random_p.push_back( 4*(x^10) + 2*(x^7) + 4*(x^6) + 2*(x^3) + 1*x + 0 );
|
||||
random_p.push_back( 4*(x^10) + 1*(x^9) + 1*(x^8) + 4*(x^7) + 4*(x^4) + 2*(x^2) + 1*x + 4 );
|
||||
random_p.push_back( 3*(x^10) + 2*(x^8) + 1*(x^7) + 1*(x^6) + 3*(x^4) + 3*(x^3) + 4*(x^2) + 3*x + 0 );
|
||||
random_p.push_back( 1*(x^10) + 2*(x^9) + 2*(x^6) + 4*(x^3) + 4*(x^2) + 0 );
|
||||
random_p.push_back( 1*(x^10) + 2*(x^9) + 2*(x^8) + 4*(x^7) + 4*(x^6) + 1*(x^5) + 1*(x^3) + 1*(x^2) + 3*x + 0 );
|
||||
|
||||
// factor all the randoms them for all the prime numbers
|
||||
for (unsigned random_i = 0; random_i < random_p.size(); ++ random_i) {
|
||||
for (unsigned prime_i = 0; prime_i < sizeof(primes)/sizeof(unsigned); ++ prime_i) {
|
||||
unsigned prime = primes[prime_i];
|
||||
|
||||
upolynomial::zp_manager upm(nm);
|
||||
upm.set_zp(prime);
|
||||
|
||||
upolynomial::numeral_vector poly;
|
||||
upm.to_numeral_vector(random_p[random_i], poly);
|
||||
|
||||
cout << "Factoring "; upm.display(cout, poly); cout << " over Z_" << prime << endl;
|
||||
cout << "Expecting " << swinnerton_dyer_factors[random_i][0][prime_i] << " distinct factors, " << random_polynomial[random_i][1][prime_i] << " total" << endl;
|
||||
|
||||
upolynomial::zp_factors factors(upm);
|
||||
upolynomial::zp_factor(upm, poly, factors);
|
||||
|
||||
// check the result
|
||||
unsigned distinct = factors.distinct_factors();
|
||||
unsigned total = factors.total_factors();
|
||||
|
||||
cout << "Got " << factors << endl;
|
||||
cout << "Thats " << distinct << " distinct factors, " << total << " total" << endl;
|
||||
|
||||
// SASSERT(random_polynomial[random_i][0][prime_i] == distinct);
|
||||
// SASSERT(random_polynomial[random_i][1][prime_i] == total);
|
||||
|
||||
upolynomial::numeral_vector multiplied;
|
||||
factors.multiply(multiplied);
|
||||
bool equal = upm.eq(poly, multiplied);
|
||||
cout << (equal ? "equal" : "not equal") << endl;
|
||||
SASSERT(equal);
|
||||
upm.reset(multiplied);
|
||||
|
||||
// remove the temp
|
||||
upm.reset(poly);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void tst_factor_enumeration() {
|
||||
polynomial::numeral_manager nm;
|
||||
reslimit rl; polynomial::manager pm(rl, nm);
|
||||
|
||||
polynomial_ref x(pm);
|
||||
x = pm.mk_polynomial(pm.mk_var());
|
||||
|
||||
vector<polynomial_ref> factors;
|
||||
for (int i = 0; i < 5; ++ i) {
|
||||
polynomial_ref factor(pm);
|
||||
factor = x + i;
|
||||
factors.push_back(factor);
|
||||
}
|
||||
|
||||
upolynomial::manager upm(nm);
|
||||
|
||||
upolynomial::zp_manager upm_13(nm);
|
||||
upm_13.set_zp(13);
|
||||
upolynomial::zp_factors factors_13(upm_13);
|
||||
|
||||
upolynomial::numeral constant;
|
||||
nm.set(constant, 10);
|
||||
factors_13.set_constant(constant);
|
||||
|
||||
for (unsigned i = 0; i < 5; ++ i) {
|
||||
upolynomial::numeral_vector ufactor;
|
||||
upm_13.to_numeral_vector(factors[i], ufactor);
|
||||
factors_13.push_back(ufactor, 1);
|
||||
upm.reset(ufactor);
|
||||
}
|
||||
|
||||
cout << "All: " << factors_13 << endl;
|
||||
|
||||
upolynomial::factorization_degree_set degrees(factors_13);
|
||||
degrees.display(cout); cout << endl;
|
||||
|
||||
scoped_mpz_vector left(nm), right(nm);
|
||||
upolynomial::ufactorization_combination_iterator it(factors_13, degrees);
|
||||
unsigned i = 0;
|
||||
it.display(cout);
|
||||
bool remove = false;
|
||||
while (it.next(remove)) {
|
||||
it.left(left);
|
||||
it.right(right);
|
||||
cout << "Left " << i << ": "; upm.display(cout, left); cout << endl;
|
||||
cout << "Right " << i << ": "; upm.display(cout, right); cout << endl;
|
||||
i ++;
|
||||
if (i % 3 == 0) {
|
||||
remove = true;
|
||||
} else {
|
||||
remove = false;
|
||||
}
|
||||
it.display(cout);
|
||||
}
|
||||
// SASSERT(i == 15);
|
||||
|
||||
return;
|
||||
|
||||
for (unsigned i = 0; i < 5; ++ i) {
|
||||
factors_13.set_degree(i, factors_13.get_degree(i) + i);
|
||||
}
|
||||
cout << "Different: " << factors_13 << " of degree " << factors_13.get_degree() << endl;
|
||||
upolynomial::factorization_degree_set degrees1(factors_13);
|
||||
degrees1.display(cout); cout << endl; // [0, ..., 15]
|
||||
|
||||
polynomial_ref tmp1 = (x^3) + 1;
|
||||
polynomial_ref tmp2 = (x^5) + 2;
|
||||
polynomial_ref tmp3 = (x^7) + 3;
|
||||
upolynomial::numeral_vector up1, up2, up3;
|
||||
upm_13.to_numeral_vector(tmp1, up1);
|
||||
upm_13.to_numeral_vector(tmp2, up2);
|
||||
upm_13.to_numeral_vector(tmp3, up3);
|
||||
upolynomial::zp_factors tmp(upm_13);
|
||||
tmp.push_back(up1, 1);
|
||||
tmp.push_back(up2, 1);
|
||||
tmp.push_back(up3, 1);
|
||||
upm_13.reset(up1);
|
||||
upm_13.reset(up2);
|
||||
upm_13.reset(up3);
|
||||
|
||||
cout << "Different: " << tmp << " of degree " << tmp.get_degree() << endl;
|
||||
upolynomial::factorization_degree_set degrees2(tmp);
|
||||
degrees2.display(cout); cout << endl;
|
||||
|
||||
tmp1 = (x^2) + 1;
|
||||
tmp2 = (x^10) + 2;
|
||||
tmp3 = x + 3;
|
||||
upm_13.to_numeral_vector(tmp1, up1);
|
||||
upm_13.to_numeral_vector(tmp2, up2);
|
||||
upm_13.to_numeral_vector(tmp3, up3);
|
||||
tmp.clear();
|
||||
tmp.push_back(up1, 2);
|
||||
tmp.push_back(up2, 1);
|
||||
tmp.push_back(up3, 1);
|
||||
cout << "Different: " << tmp << " of degree " << tmp.get_degree() << endl;
|
||||
upm_13.reset(up1);
|
||||
upm_13.reset(up2);
|
||||
upm_13.reset(up3);
|
||||
upolynomial::factorization_degree_set degrees3(tmp);
|
||||
degrees3.display(cout); cout << endl;
|
||||
degrees1.intersect(degrees3);
|
||||
degrees1.display(cout); cout << endl;
|
||||
}
|
||||
|
||||
static void tst_factor_square_free_univariate_1(unsigned max_length) {
|
||||
|
||||
polynomial::numeral_manager nm;
|
||||
upolynomial::numeral test;
|
||||
upolynomial::numeral p;
|
||||
nm.set(test, -9);
|
||||
nm.set(p, 5);
|
||||
nm.mod(test, p, test);
|
||||
|
||||
reslimit rl; polynomial::manager pm(rl, nm);
|
||||
|
||||
polynomial_ref x(pm);
|
||||
x = pm.mk_polynomial(pm.mk_var());
|
||||
|
||||
cout << "R.<x> = QQ['x']" << endl;
|
||||
|
||||
// let's start with \prod (p_i x^{p_{i+1} - p_{i+1})
|
||||
unsigned n_primes = sizeof(primes)/sizeof(unsigned);
|
||||
max_length = std::min(max_length, n_primes);
|
||||
for(unsigned length = 1; length < max_length; ++ length) {
|
||||
|
||||
// starting from prime_i going for length
|
||||
for(unsigned start_i = 0; start_i < n_primes; ++ start_i) {
|
||||
|
||||
polynomial_ref f(pm);
|
||||
|
||||
bool first = true;
|
||||
for (unsigned prime_i = 0; prime_i < length; ++ prime_i) {
|
||||
int p1 = primes[(start_i + prime_i) % n_primes];
|
||||
int p2 = primes[(start_i + prime_i + 1) % n_primes];
|
||||
if (first) {
|
||||
f = (p1*(x^p2) - p2);
|
||||
first = false;
|
||||
} else {
|
||||
f = f*(p1*(x^p2) - p2);
|
||||
}
|
||||
}
|
||||
|
||||
upolynomial::manager upm(nm);
|
||||
scoped_mpz_vector f_u(nm);
|
||||
upm.to_numeral_vector(f, f_u);
|
||||
|
||||
cout << "factoring "; upm.display(cout, f_u); cout << endl;
|
||||
cout << "expecting " << length << " factors ";
|
||||
upolynomial::factors factors(upm);
|
||||
/* bool ok = */ upolynomial::factor_square_free(upm, f_u, factors);
|
||||
cout << "got " << factors << endl;
|
||||
|
||||
SASSERT(factors.distinct_factors() == length);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
static void tst_factor_square_free_univariate_2() {
|
||||
polynomial::numeral_manager nm;
|
||||
reslimit rl; polynomial::manager pm(rl, nm);
|
||||
|
||||
polynomial_ref x(pm);
|
||||
x = pm.mk_polynomial(pm.mk_var());
|
||||
|
||||
// Swinnerton-Dyer polynomials (irreducible, modular factors of degree at most 2)
|
||||
polynomial_ref S1 = (x^2) - 2;
|
||||
polynomial_ref S2 = (x^4) - 10*(x^2) + 1;
|
||||
polynomial_ref S3 = (x^8) - 40*(x^6) + 352*(x^4) - 960*(x^2) + 576;
|
||||
polynomial_ref S4 = (x^16) - 136*(x^14) + 6476*(x^12) - 141912*(x^10) + 1513334*(x^8) - 7453176*(x^6) + 13950764*(x^4) - 5596840*(x^2) + 46225;
|
||||
|
||||
vector<polynomial_ref> S;
|
||||
S.push_back(S1);
|
||||
S.push_back(S2);
|
||||
S.push_back(S3);
|
||||
S.push_back(S4);
|
||||
|
||||
upolynomial::manager upm(nm);
|
||||
|
||||
// factor all the S_i them for all the prime numbers
|
||||
for (unsigned S_i = 0; S_i < S.size(); ++ S_i) {
|
||||
upolynomial::numeral_vector S_i_u;
|
||||
upm.to_numeral_vector(S[S_i], S_i_u);
|
||||
|
||||
cout << "Factoring "; upm.display(cout, S_i_u); cout << " over Z " << endl;
|
||||
upolynomial::factors factors(upm);
|
||||
upolynomial::factor_square_free(upm, S_i_u, factors);
|
||||
|
||||
// check the result
|
||||
cout << "Got " << factors << endl;
|
||||
|
||||
// remove the temp
|
||||
upm.reset(S_i_u);
|
||||
}
|
||||
}
|
||||
|
||||
static void tst_factor_square_free_univariate_3() {
|
||||
polynomial::numeral_manager nm;
|
||||
reslimit rl; polynomial::manager pm(rl, nm);
|
||||
|
||||
polynomial_ref x(pm);
|
||||
x = pm.mk_polynomial(pm.mk_var());
|
||||
|
||||
polynomial_ref deg70 = (x^70) - 6*(x^65) - (x^60) + 60*(x^55) - 54*(x^50) - 230*(x^45) + 274*(x^40) + 542*(x^35) - 615*(x^30) - 1120*(x^25) + 1500*(x^20) - 160*(x^15) - 395*(x^10) + 76*(x^5) + 34;
|
||||
|
||||
upolynomial::manager upm(nm);
|
||||
upolynomial::numeral_vector deg70_u;
|
||||
|
||||
upm.to_numeral_vector(deg70, deg70_u);
|
||||
|
||||
cout << "Factoring "; upm.display(cout, deg70_u); cout << " over Z " << endl;
|
||||
upolynomial::factors factors(upm);
|
||||
upolynomial::factor_square_free(upm, deg70_u, factors);
|
||||
|
||||
cout << "Got " << factors << endl;
|
||||
|
||||
upm.reset(deg70_u);
|
||||
}
|
||||
#endif
|
||||
|
||||
void tst_factor_swinnerton_dyer_big(unsigned max) {
|
||||
polynomial::numeral_manager nm;
|
||||
reslimit rl; polynomial::manager pm(rl, nm);
|
||||
|
||||
polynomial_ref x(pm);
|
||||
x = pm.mk_polynomial(pm.mk_var());
|
||||
|
||||
vector<polynomial_ref> roots;
|
||||
vector<polynomial::var> vars;
|
||||
|
||||
unsigned n = std::min(max, static_cast<unsigned>(sizeof(primes)/sizeof(unsigned)));
|
||||
for(unsigned prime_i = 0; prime_i < n; ++ prime_i) {
|
||||
|
||||
int prime = primes[prime_i];
|
||||
|
||||
cout << "Computing Swinnerton-Dyer[" << prime_i + 1 << "]" << endl;
|
||||
|
||||
polynomial_ref y(pm);
|
||||
vars.push_back(pm.mk_var());
|
||||
y = pm.mk_polynomial(vars.back());
|
||||
|
||||
polynomial_ref p(pm);
|
||||
p = (y^2) - prime;
|
||||
roots.push_back(p);
|
||||
|
||||
polynomial_ref computation = x;
|
||||
for (unsigned i = 0; i < roots.size(); ++ i) {
|
||||
polynomial_ref var(pm);
|
||||
var = pm.mk_polynomial(vars[i]);
|
||||
computation = computation - var;
|
||||
}
|
||||
|
||||
{
|
||||
timeit timer(true, "computing swinnerton-dyer");
|
||||
|
||||
for (unsigned i = 0; i < roots.size(); ++ i) {
|
||||
polynomial_ref tmp(pm);
|
||||
pm.resultant(computation, roots[i], vars[i], tmp);
|
||||
computation = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
cout << "Computed Swinnerton-Dyer[" << prime_i + 1 << "], degree = " << pm.total_degree(computation) << ", size = " << pm.size(computation) << endl;
|
||||
|
||||
cout << "Starting factoring " << endl;
|
||||
|
||||
{
|
||||
timeit timer(true, "factoring swinnerton-dyer");
|
||||
|
||||
reslimit rl;
|
||||
upolynomial::manager upm(rl, nm);
|
||||
scoped_mpz_vector sd_u(nm);
|
||||
upm.to_numeral_vector(computation, sd_u);
|
||||
upolynomial::factors factors(upm);
|
||||
upolynomial::factor_square_free(upm, sd_u, factors);
|
||||
cout << "Got " << factors.distinct_factors() << " factors" << endl;
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
static void tst_factor_square_free_multivariate_1(unsigned max_n) {
|
||||
#if 0
|
||||
polynomial::numeral_manager nm;
|
||||
upolynomial::numeral test;
|
||||
upolynomial::numeral p;
|
||||
nm.set(test, -9);
|
||||
nm.set(p, 5);
|
||||
nm.mod(test, p, test);
|
||||
|
||||
reslimit rl; polynomial::manager pm(rl, nm);
|
||||
|
||||
polynomial_ref x(pm);
|
||||
x = pm.mk_polynomial(pm.mk_var());
|
||||
|
||||
polynomial_ref y(pm);
|
||||
y = pm.mk_polynomial(pm.mk_var());
|
||||
|
||||
// lets start simple x^n - y^n
|
||||
for (unsigned prime_i = 0; prime_i < sizeof(primes)/sizeof(unsigned); ++ prime_i) {
|
||||
unsigned prime = primes[prime_i];
|
||||
|
||||
if (prime > max_n) {
|
||||
break;
|
||||
}
|
||||
|
||||
polynomial_ref f = (x^prime) - (y^prime);
|
||||
cout << "factoring: " << f << endl;
|
||||
|
||||
// factor
|
||||
polynomial::factors factors(pm);
|
||||
polynomial::factor_square_free_primitive(f, factors);
|
||||
|
||||
cout << "got: " << factors << endl;
|
||||
}
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
void tst_polynomial_factorization() {
|
||||
|
||||
enable_trace("polynomial::factorization");
|
||||
// enable_trace("polynomial::factorization::bughunt");
|
||||
enable_trace("polynomial::factorization::multivariate");
|
||||
// enable_trace("upolynomial");
|
||||
|
||||
// Z_p square-free factorization tests
|
||||
// tst_square_free_finite_1();
|
||||
|
||||
// Z_p factorization tests
|
||||
// tst_factor_finite_1();
|
||||
// tst_factor_finite_2();
|
||||
// tst_factor_finite_3();
|
||||
|
||||
// Z factorization
|
||||
// tst_factor_enumeration();
|
||||
// tst_factor_square_free_univariate_1(3);
|
||||
// tst_factor_square_free_univariate_2();
|
||||
// tst_factor_square_free_univariate_3();
|
||||
// tst_factor_swinnerton_dyer_big(3);
|
||||
|
||||
// Multivariate factorization
|
||||
tst_factor_square_free_multivariate_1(3);
|
||||
}
|
Loading…
Reference in a new issue