3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-10 19:27:06 +00:00

Removed polynomial factorization test cases. Relates to and fixes .

This commit is contained in:
Christoph M. Wintersteiger 2017-01-10 14:02:59 +00:00
parent 331658f208
commit 8f95ee01e1
3 changed files with 0 additions and 748 deletions

View file

@ -193,7 +193,6 @@ int main(int argc, char ** argv) {
TST(polynomial);
TST(upolynomial);
TST(algebraic);
TST(polynomial_factorization);
TST(prime_generator);
TST(permutation);
TST(nlsat);

View file

@ -18,7 +18,6 @@ Notes:
--*/
#if !defined(__clang__)
#include"polynomial.h"
#include"polynomial_factorization.h"
#include"polynomial_var2value.h"
#include"polynomial_cache.h"
#include"linear_eq_solver.h"

View file

@ -1,746 +0,0 @@
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
polynomial_factorization.cpp
Abstract:
Testing of factorization.
Author:
Dejan (t-dejanj) 2011-11-29
Notes:
--*/
#include"upolynomial_factorization_int.h"
#include"timeit.h"
#include"polynomial.h"
#include"rlimit.h"
#if 0
#include"polynomial_factorization.h"
#endif
using std::cout;
using std::endl;
// some prime numbers
unsigned primes[] = {
2, 3, 5, 7, 11, 13, 17, 19, 23, 29
};
// [i,l]: how many factors the Knuth example has over p_i, when i = 0 it's Z, p_1 = 2, for l=0 distinct, for l = 1 total
unsigned knuth_factors[2][11] = {
// x^8 + x^6 + 10*x^4 + 10*x^3 + 8*x^2 + 2*x + 8
{2, 2, 3, 3, 2, 3, 1, 4, 3, 1, 1},
{8, 2, 3, 3, 2, 3, 1, 4, 3, 1, 1},
};
// [k,l,i]: how many factors the S_k has over p_i, when i = 0 it's Z, p_1 = 2, for l=0 distinct, for l = 1 total
unsigned swinnerton_dyer_factors[5][2][11] = {
// S1 = (x^2) - 2
{
// 2, 3, 5, 7,11,13,17,19,23,29, Z
{1, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1},
{2, 1, 1, 2, 1, 1, 2, 1, 2, 1, 1}
},
// S2 = (x^4) - 10*(x^2) + 1
{
{1, 1, 2, 2, 2, 2, 2, 2, 4, 2, 1},
{4, 2, 2, 2, 2, 2, 2, 2, 4, 2, 1}
},
// S3 = (x^8) - 40*(x^6) + 352*(x^4) - 960*(x^2) + 576
{
{1, 2, 2, 4, 4, 4, 4, 4, 4, 4, 1},
{8, 6, 4, 4, 4, 4, 4, 4, 4, 4, 1}
},
// S4 = (x^16) - 136*(x^14) + 6476*(x^12) - 141912*(x^10) + 1513334*(x^8) - 7453176*(x^6) + 13950764*(x^4) - 5596840*(x^2) + 46225
{
{1, 4, 3, 4, 8, 8, 8, 8, 8, 8, 1},
{16, 12, 10, 8, 8, 8, 8, 8, 8, 8, 1}
},
// SA = S1*S2*S3*S4
{
//p = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, Z
{ 2, 6, 3, 6, 15, 11, 16, 15, 18, 15, 1},
{30, 21, 17, 16, 15, 15, 16, 15, 18, 15, 1}
}
};
int random_polynomial[20][2][11] = {
{
// 3*x^10 + 2*x^9 + 4*x^8 + 4*x^7 + 4*x^6 + x^5 + 3*x^2 + 3*x
{ 4, 3, 4, 4, 3, 4, 4, 4, 3, 4, 2 },
{ 7, 7, 4, 4, 3, 4, 4, 4, 3, 4, 2 },
},
{
// 4*x^9 + 4*x^8 + x^7 + x^6 + 2*x^5 + 3*x^4 + 4*x^2 + 4*x
{ 2, 2, 3, 3, 4, 2, 5, 3, 4, 2, 2 },
{ 5, 2, 3, 3, 4, 2, 5, 3, 5, 2, 2 },
},
{
// 3*x^10 + 4*x^9 + 3*x^8 + x^6 + 4*x^5 + 4*x^4 + x^2
{ 3, 2, 4, 4, 5, 3, 4, 2, 4, 5, 2 },
{ 6, 3, 5, 5, 6, 4, 5, 3, 5, 7, 3 },
},
{
// x^10 + 4*x^9 + x^8 + 3*x^7 + 3*x^4 + 3*x^3 + x^2 + 4*x
{ 3, 4, 4, 3, 3, 3, 4, 4, 5, 3, 2 },
{ 8, 4, 4, 3, 3, 3, 4, 4, 5, 3, 2 },
},
{
// x^9 + 2*x^8 + 3*x^7 + x^6 + 2*x^5 + 4*x^4 + 3*x^2
{ 3, 3, 3, 3, 4, 4, 4, 3, 3, 4, 2 },
{ 5, 6, 4, 5, 5, 6, 5, 4, 4, 5, 3 },
},
{
// x^10 + x^9 + 4*x^7 + x^6 + 3*x^5 + x^4 + x^3 + x
{ 3, 2, 3, 3, 3, 5, 3, 2, 4, 4, 2 },
{ 3, 2, 3, 3, 3, 5, 3, 2, 4, 4, 2 },
},
{
// 4*x^10 + 4*x^9 + x^8 + 2*x^7 + 3*x^6 + 4*x^5 + 3*x^4 + x^3 + 2*x^2 + 4*x
{ 3, 3, 2, 5, 3, 4, 2, 4, 5, 5, 2 },
{ 5, 3, 2, 5, 3, 4, 2, 4, 5, 5, 2 },
},
{
// 3*x^10 + 4*x^9 + 3*x^8 + x^7 + x^6 + 2*x^5 + x^4 + 2*x^3 + 2*x^2 + x
{ 3, 4, 6, 4, 4, 4, 4, 6, 6, 4, 3 },
{ 4, 4, 7, 4, 4, 4, 4, 6, 6, 4, 3 },
},
{
// 4*x^10 + x^9 + x^7 + 2*x^5 + 3*x^3 + x^2 + 4*x
{ 3, 3, 3, 4, 4, 5, 4, 5, 2, 4, 2 },
{ 4, 4, 3, 4, 4, 5, 4, 5, 2, 4, 2 },
},
{
// x^10 + 3*x^9 + 3*x^8 + x^7 + 3*x^6 + 3*x^5 + 3*x^4 + x^2 + 3*x
{ 2, 3, 4, 4, 3, 3, 4, 3, 3, 4, 2 },
{ 2, 4, 5, 4, 3, 3, 4, 3, 3, 4, 2 },
},
{
// x^10 + x^9 + 2*x^8 + x^7 + 4*x^6 + 2*x^5 + 3*x^4 + 4*x^3 + x^2 + 2*x
{ 3, 4, 4, 3, 3, 3, 3, 4, 5, 3, 2 },
{ 4, 4, 4, 3, 3, 3, 3, 4, 5, 3, 2 },
},
{
// 3*x^9 + x^8 + 3*x^7 + 3*x^6 + x^5 + 2*x^4 + 4*x^3 + 4*x^2 + 3*x
{ 4, 3, 3, 3, 5, 3, 6, 4, 2, 2, 2 },
{ 6, 4, 3, 3, 5, 3, 6, 4, 2, 2, 2 },
},
{
// 2*x^10 + 3*x^9 + 2*x^8 + 4*x^7 + x^6 + 3*x^5 + 2*x^3 + 3*x^2 + 2*x + 2
{ 3, 3, 3, 5, 4, 5, 6, 7, 4, 6, 3 },
{ 8, 4, 3, 7, 4, 5, 6, 7, 4, 7, 3 },
},
{
// 3*x^10 + x^9 + 4*x^8 + 2*x^7 + x^6 + 4*x^5 + x^4 + 3*x^3 + x + 2
{ 3, 3, 3, 2, 6, 4, 4, 4, 3, 3, 2 },
{ 3, 3, 3, 2, 6, 5, 4, 5, 3, 3, 2 },
},
{
// 4*x^10 + 2*x^9 + x^8 + x^6 + x^5 + 3*x^4 + 4*x^3 + x^2 + x
{ 3, 4, 2, 4, 4, 4, 4, 2, 3, 3, 2 },
{ 6, 4, 2, 4, 4, 4, 4, 2, 3, 3, 2 },
},
{
// 4*x^10 + 2*x^7 + 4*x^6 + 2*x^3 + x
{ 1, 3, 3, 3, 4, 4, 4, 3, 3, 2, 2 },
{ 1, 3, 3, 3, 4, 4, 4, 3, 3, 2, 2 },
},
{
// 4*x^10 + x^9 + x^8 + 4*x^7 + 4*x^4 + 2*x^2 + x + 4
{ 3, 4, 2, 5, 3, 6, 3, 6, 3, 3, 2 },
{ 3, 6, 2, 5, 3, 6, 3, 6, 3, 3, 2 },
},
{
// 3*x^10 + 2*x^8 + x^7 + x^6 + 3*x^4 + 3*x^3 + 4*x^2 + 3*x
{ 4, 3, 4, 3, 3, 3, 2, 4, 4, 3, 2 },
{ 5, 4, 4, 3, 3, 3, 2, 4, 4, 3, 2 },
},
{
// x^10 + 2*x^9 + 2*x^6 + 4*x^3 + 4*x^2
{ 1, 2, 2, 3, 3, 4, 3, 3, 3, 3, 2 },
{ 10, 3, 3, 4, 4, 6, 4, 4, 4, 4, 3 },
},
{
// x^10 + 2*x^9 + 2*x^8 + 4*x^7 + 4*x^6 + x^5 + x^3 + x^2 + 3*x
{ 2, 4, 2, 3, 3, 3, 5, 5, 6, 2, 2 },
{ 2, 5, 2, 3, 3, 3, 5, 5, 6, 2, 2 },
}
};
#if 0
static void tst_square_free_finite_1() {
polynomial::numeral_manager nm;
reslimit rl; polynomial::manager pm(rl, nm);
// example from Knuth, p. 442
polynomial_ref x(pm);
x = pm.mk_polynomial(pm.mk_var());
// polynomials \prod_{i < p} (x - i)^i
for (unsigned prime_i = 0; prime_i < 5; ++ prime_i)
{
int p = primes[prime_i];
// make the polynomial
polynomial_ref f(pm);
f = x - 1;
for (int i = 2; i < p; ++ i) {
f = f*((x + (-i))^i);
}
cout << "Factoring " << f << " into square-free over Z_" << p << endl;
// convert to univariate over Z_p
upolynomial::zp_manager upm(nm);
upm.set_zp(p);
upolynomial::numeral_vector f_u;
upm.to_numeral_vector(f, f_u);
cout << "Input: "; upm.display(cout, f_u); cout << endl;
// factor it
upolynomial::zp_factors f_factors(upm);
cout << "Start: " << f_factors << endl;
upolynomial::zp_square_free_factor(upm, f_u, f_factors);
upolynomial::numeral_vector mult;
f_factors.multiply(mult);
cout << "Multiplied: "; upm.display(cout, mult); cout << endl;
SASSERT(upm.eq(mult, f_u));
// remove the temps
upm.reset(f_u);
upm.reset(mult);
}
}
static void tst_factor_finite_1() {
polynomial::numeral_manager nm;
reslimit rl; polynomial::manager pm(rl, nm);
// example from Knuth, p. 442
polynomial_ref x(pm);
x = pm.mk_polynomial(pm.mk_var());
polynomial_ref K(pm);
K = (x^8) + (x^6) + 10*(x^4) + 10*(x^3) + 8*(x^2) + 2*x + 8;
// factor them for all the prime numbers
for (unsigned prime_i = 0; prime_i < sizeof(primes)/sizeof(unsigned); ++ prime_i)
{
// make the Z_p
unsigned prime = primes[prime_i];
upolynomial::zp_manager upm(nm);
upm.set_zp(prime);
// make the polynomial in Z_p
upolynomial::numeral_vector K_u;
upm.to_numeral_vector(K, K_u);
cout << "Factoring " << K << "("; upm.display(cout, K_u); cout << ") in Z_" << prime << endl;
cout << "Expecting " << knuth_factors[0][prime_i] << " distinct factors, " << knuth_factors[1][prime_i] << " total" << endl;
// factor it
upolynomial::zp_factors factors(upm);
/* bool factorized = */ upolynomial::zp_factor(upm, K_u, factors);
// check the result
unsigned distinct = factors.distinct_factors();
unsigned total = factors.total_factors();
cout << "Got " << factors << endl;
cout << "Thats " << distinct << " distinct factors, " << total << " total" << endl;
SASSERT(knuth_factors[0][prime_i] == distinct);
SASSERT(knuth_factors[1][prime_i] == total);
upolynomial::numeral_vector multiplied;
factors.multiply(multiplied);
SASSERT(upm.eq(K_u, multiplied));
upm.reset(multiplied);
// remove the temp
upm.reset(K_u);
}
}
static void tst_factor_finite_2() {
polynomial::numeral_manager nm;
reslimit rl; polynomial::manager pm(rl, nm);
polynomial_ref x(pm);
x = pm.mk_polynomial(pm.mk_var());
// Swinnerton-Dyer polynomials (irreducible, modular factors of degree at most 2)
polynomial_ref S1 = (x^2) - 2;
polynomial_ref S2 = (x^4) - 10*(x^2) + 1;
polynomial_ref S3 = (x^8) - 40*(x^6) + 352*(x^4) - 960*(x^2) + 576;
polynomial_ref S4 = (x^16) - 136*(x^14) + 6476*(x^12) - 141912*(x^10) + 1513334*(x^8) - 7453176*(x^6) + 13950764*(x^4) - 5596840*(x^2) + 46225;
vector<polynomial_ref> S;
S.push_back(S1);
S.push_back(S2);
S.push_back(S3);
S.push_back(S4);
S.push_back(S1*S2*S3*S4);
// factor all the S_i them for all the prime numbers
for (unsigned S_i = 0; S_i < S.size(); ++ S_i) {
for (unsigned prime_i = 0; prime_i < sizeof(primes)/sizeof(unsigned); ++ prime_i) {
unsigned prime = primes[prime_i];
upolynomial::zp_manager upm(nm);
upm.set_zp(prime);
upolynomial::numeral_vector S_i_u;
upm.to_numeral_vector(S[S_i], S_i_u);
cout << "Factoring "; upm.display(cout, S_i_u); cout << " over Z_" << prime << endl;
cout << "Expecting " << swinnerton_dyer_factors[S_i][0][prime_i] << " distinct factors, " << swinnerton_dyer_factors[S_i][1][prime_i] << " total" << endl;
upolynomial::zp_factors factors(upm);
upolynomial::zp_factor(upm, S_i_u, factors);
// check the result
unsigned distinct = factors.distinct_factors();
unsigned total = factors.total_factors();
cout << "Got " << factors << endl;
cout << "Thats " << distinct << " distinct factors, " << total << " total" << endl;
SASSERT(swinnerton_dyer_factors[S_i][0][prime_i] == distinct);
SASSERT(swinnerton_dyer_factors[S_i][1][prime_i] == total);
upolynomial::numeral_vector multiplied;
factors.multiply(multiplied);
SASSERT(upm.eq(S_i_u, multiplied));
upm.reset(multiplied);
// remove the temp
upm.reset(S_i_u);
}
}
}
static void tst_factor_finite_3() {
polynomial::numeral_manager nm;
reslimit rl; polynomial::manager pm(rl, nm);
polynomial_ref x(pm);
x = pm.mk_polynomial(pm.mk_var());
// random polynomials
vector<polynomial_ref> random_p;
random_p.push_back( 3*(x^10) + 2*(x^9) + 4*(x^8) + 4*(x^7) + 4*(x^6) + 1*(x^5) + 3*(x^2) + 3*x + 0 );
random_p.push_back( 4*(x^9) + 4*(x^8) + 1*(x^7) + 1*(x^6) + 2*(x^5) + 3*(x^4) + 4*(x^2) + 4*x + 0 );
random_p.push_back( 3*(x^10) + 4*(x^9) + 3*(x^8) + 1*(x^6) + 4*(x^5) + 4*(x^4) + 1*(x^2) + 0 );
random_p.push_back( 1*(x^10) + 4*(x^9) + 1*(x^8) + 3*(x^7) + 3*(x^4) + 3*(x^3) + 1*(x^2) + 4*x + 0 );
random_p.push_back( 1*(x^9) + 2*(x^8) + 3*(x^7) + 1*(x^6) + 2*(x^5) + 4*(x^4) + 3*(x^2) + 0 );
random_p.push_back( 1*(x^10) + 1*(x^9) + 4*(x^7) + 1*(x^6) + 3*(x^5) + 1*(x^4) + 1*(x^3) + 1*x + 0 );
random_p.push_back( 4*(x^10) + 4*(x^9) + 1*(x^8) + 2*(x^7) + 3*(x^6) + 4*(x^5) + 3*(x^4) + 1*(x^3) + 2*(x^2) + 4*x + 0 );
random_p.push_back( 3*(x^10) + 4*(x^9) + 3*(x^8) + 1*(x^7) + 1*(x^6) + 2*(x^5) + 1*(x^4) + 2*(x^3) + 2*(x^2) + 1*x + 0 );
random_p.push_back( 4*(x^10) + 1*(x^9) + 1*(x^7) + 2*(x^5) + 3*(x^3) + 1*(x^2) + 4*x + 0 );
random_p.push_back( 1*(x^10) + 3*(x^9) + 3*(x^8) + 1*(x^7) + 3*(x^6) + 3*(x^5) + 3*(x^4) + 1*(x^2) + 3*x + 0 );
random_p.push_back( 1*(x^10) + 1*(x^9) + 2*(x^8) + 1*(x^7) + 4*(x^6) + 2*(x^5) + 3*(x^4) + 4*(x^3) + 1*(x^2) + 2*x + 0 );
random_p.push_back( 3*(x^9) + 1*(x^8) + 3*(x^7) + 3*(x^6) + 1*(x^5) + 2*(x^4) + 4*(x^3) + 4*(x^2) + 3*x + 0 );
random_p.push_back( 2*(x^10) + 3*(x^9) + 2*(x^8) + 4*(x^7) + 1*(x^6) + 3*(x^5) + 2*(x^3) + 3*(x^2) + 2*x + 2 );
random_p.push_back( 3*(x^10) + 1*(x^9) + 4*(x^8) + 2*(x^7) + 1*(x^6) + 4*(x^5) + 1*(x^4) + 3*(x^3) + 1*x + 2 );
random_p.push_back( 4*(x^10) + 2*(x^9) + 1*(x^8) + 1*(x^6) + 1*(x^5) + 3*(x^4) + 4*(x^3) + 1*(x^2) + 1*x + 0 );
random_p.push_back( 4*(x^10) + 2*(x^7) + 4*(x^6) + 2*(x^3) + 1*x + 0 );
random_p.push_back( 4*(x^10) + 1*(x^9) + 1*(x^8) + 4*(x^7) + 4*(x^4) + 2*(x^2) + 1*x + 4 );
random_p.push_back( 3*(x^10) + 2*(x^8) + 1*(x^7) + 1*(x^6) + 3*(x^4) + 3*(x^3) + 4*(x^2) + 3*x + 0 );
random_p.push_back( 1*(x^10) + 2*(x^9) + 2*(x^6) + 4*(x^3) + 4*(x^2) + 0 );
random_p.push_back( 1*(x^10) + 2*(x^9) + 2*(x^8) + 4*(x^7) + 4*(x^6) + 1*(x^5) + 1*(x^3) + 1*(x^2) + 3*x + 0 );
// factor all the randoms them for all the prime numbers
for (unsigned random_i = 0; random_i < random_p.size(); ++ random_i) {
for (unsigned prime_i = 0; prime_i < sizeof(primes)/sizeof(unsigned); ++ prime_i) {
unsigned prime = primes[prime_i];
upolynomial::zp_manager upm(nm);
upm.set_zp(prime);
upolynomial::numeral_vector poly;
upm.to_numeral_vector(random_p[random_i], poly);
cout << "Factoring "; upm.display(cout, poly); cout << " over Z_" << prime << endl;
cout << "Expecting " << swinnerton_dyer_factors[random_i][0][prime_i] << " distinct factors, " << random_polynomial[random_i][1][prime_i] << " total" << endl;
upolynomial::zp_factors factors(upm);
upolynomial::zp_factor(upm, poly, factors);
// check the result
unsigned distinct = factors.distinct_factors();
unsigned total = factors.total_factors();
cout << "Got " << factors << endl;
cout << "Thats " << distinct << " distinct factors, " << total << " total" << endl;
// SASSERT(random_polynomial[random_i][0][prime_i] == distinct);
// SASSERT(random_polynomial[random_i][1][prime_i] == total);
upolynomial::numeral_vector multiplied;
factors.multiply(multiplied);
bool equal = upm.eq(poly, multiplied);
cout << (equal ? "equal" : "not equal") << endl;
SASSERT(equal);
upm.reset(multiplied);
// remove the temp
upm.reset(poly);
}
}
}
static void tst_factor_enumeration() {
polynomial::numeral_manager nm;
reslimit rl; polynomial::manager pm(rl, nm);
polynomial_ref x(pm);
x = pm.mk_polynomial(pm.mk_var());
vector<polynomial_ref> factors;
for (int i = 0; i < 5; ++ i) {
polynomial_ref factor(pm);
factor = x + i;
factors.push_back(factor);
}
upolynomial::manager upm(nm);
upolynomial::zp_manager upm_13(nm);
upm_13.set_zp(13);
upolynomial::zp_factors factors_13(upm_13);
upolynomial::numeral constant;
nm.set(constant, 10);
factors_13.set_constant(constant);
for (unsigned i = 0; i < 5; ++ i) {
upolynomial::numeral_vector ufactor;
upm_13.to_numeral_vector(factors[i], ufactor);
factors_13.push_back(ufactor, 1);
upm.reset(ufactor);
}
cout << "All: " << factors_13 << endl;
upolynomial::factorization_degree_set degrees(factors_13);
degrees.display(cout); cout << endl;
scoped_mpz_vector left(nm), right(nm);
upolynomial::ufactorization_combination_iterator it(factors_13, degrees);
unsigned i = 0;
it.display(cout);
bool remove = false;
while (it.next(remove)) {
it.left(left);
it.right(right);
cout << "Left " << i << ": "; upm.display(cout, left); cout << endl;
cout << "Right " << i << ": "; upm.display(cout, right); cout << endl;
i ++;
if (i % 3 == 0) {
remove = true;
} else {
remove = false;
}
it.display(cout);
}
// SASSERT(i == 15);
return;
for (unsigned i = 0; i < 5; ++ i) {
factors_13.set_degree(i, factors_13.get_degree(i) + i);
}
cout << "Different: " << factors_13 << " of degree " << factors_13.get_degree() << endl;
upolynomial::factorization_degree_set degrees1(factors_13);
degrees1.display(cout); cout << endl; // [0, ..., 15]
polynomial_ref tmp1 = (x^3) + 1;
polynomial_ref tmp2 = (x^5) + 2;
polynomial_ref tmp3 = (x^7) + 3;
upolynomial::numeral_vector up1, up2, up3;
upm_13.to_numeral_vector(tmp1, up1);
upm_13.to_numeral_vector(tmp2, up2);
upm_13.to_numeral_vector(tmp3, up3);
upolynomial::zp_factors tmp(upm_13);
tmp.push_back(up1, 1);
tmp.push_back(up2, 1);
tmp.push_back(up3, 1);
upm_13.reset(up1);
upm_13.reset(up2);
upm_13.reset(up3);
cout << "Different: " << tmp << " of degree " << tmp.get_degree() << endl;
upolynomial::factorization_degree_set degrees2(tmp);
degrees2.display(cout); cout << endl;
tmp1 = (x^2) + 1;
tmp2 = (x^10) + 2;
tmp3 = x + 3;
upm_13.to_numeral_vector(tmp1, up1);
upm_13.to_numeral_vector(tmp2, up2);
upm_13.to_numeral_vector(tmp3, up3);
tmp.clear();
tmp.push_back(up1, 2);
tmp.push_back(up2, 1);
tmp.push_back(up3, 1);
cout << "Different: " << tmp << " of degree " << tmp.get_degree() << endl;
upm_13.reset(up1);
upm_13.reset(up2);
upm_13.reset(up3);
upolynomial::factorization_degree_set degrees3(tmp);
degrees3.display(cout); cout << endl;
degrees1.intersect(degrees3);
degrees1.display(cout); cout << endl;
}
static void tst_factor_square_free_univariate_1(unsigned max_length) {
polynomial::numeral_manager nm;
upolynomial::numeral test;
upolynomial::numeral p;
nm.set(test, -9);
nm.set(p, 5);
nm.mod(test, p, test);
reslimit rl; polynomial::manager pm(rl, nm);
polynomial_ref x(pm);
x = pm.mk_polynomial(pm.mk_var());
cout << "R.<x> = QQ['x']" << endl;
// let's start with \prod (p_i x^{p_{i+1} - p_{i+1})
unsigned n_primes = sizeof(primes)/sizeof(unsigned);
max_length = std::min(max_length, n_primes);
for(unsigned length = 1; length < max_length; ++ length) {
// starting from prime_i going for length
for(unsigned start_i = 0; start_i < n_primes; ++ start_i) {
polynomial_ref f(pm);
bool first = true;
for (unsigned prime_i = 0; prime_i < length; ++ prime_i) {
int p1 = primes[(start_i + prime_i) % n_primes];
int p2 = primes[(start_i + prime_i + 1) % n_primes];
if (first) {
f = (p1*(x^p2) - p2);
first = false;
} else {
f = f*(p1*(x^p2) - p2);
}
}
upolynomial::manager upm(nm);
scoped_mpz_vector f_u(nm);
upm.to_numeral_vector(f, f_u);
cout << "factoring "; upm.display(cout, f_u); cout << endl;
cout << "expecting " << length << " factors ";
upolynomial::factors factors(upm);
/* bool ok = */ upolynomial::factor_square_free(upm, f_u, factors);
cout << "got " << factors << endl;
SASSERT(factors.distinct_factors() == length);
}
}
}
static void tst_factor_square_free_univariate_2() {
polynomial::numeral_manager nm;
reslimit rl; polynomial::manager pm(rl, nm);
polynomial_ref x(pm);
x = pm.mk_polynomial(pm.mk_var());
// Swinnerton-Dyer polynomials (irreducible, modular factors of degree at most 2)
polynomial_ref S1 = (x^2) - 2;
polynomial_ref S2 = (x^4) - 10*(x^2) + 1;
polynomial_ref S3 = (x^8) - 40*(x^6) + 352*(x^4) - 960*(x^2) + 576;
polynomial_ref S4 = (x^16) - 136*(x^14) + 6476*(x^12) - 141912*(x^10) + 1513334*(x^8) - 7453176*(x^6) + 13950764*(x^4) - 5596840*(x^2) + 46225;
vector<polynomial_ref> S;
S.push_back(S1);
S.push_back(S2);
S.push_back(S3);
S.push_back(S4);
upolynomial::manager upm(nm);
// factor all the S_i them for all the prime numbers
for (unsigned S_i = 0; S_i < S.size(); ++ S_i) {
upolynomial::numeral_vector S_i_u;
upm.to_numeral_vector(S[S_i], S_i_u);
cout << "Factoring "; upm.display(cout, S_i_u); cout << " over Z " << endl;
upolynomial::factors factors(upm);
upolynomial::factor_square_free(upm, S_i_u, factors);
// check the result
cout << "Got " << factors << endl;
// remove the temp
upm.reset(S_i_u);
}
}
static void tst_factor_square_free_univariate_3() {
polynomial::numeral_manager nm;
reslimit rl; polynomial::manager pm(rl, nm);
polynomial_ref x(pm);
x = pm.mk_polynomial(pm.mk_var());
polynomial_ref deg70 = (x^70) - 6*(x^65) - (x^60) + 60*(x^55) - 54*(x^50) - 230*(x^45) + 274*(x^40) + 542*(x^35) - 615*(x^30) - 1120*(x^25) + 1500*(x^20) - 160*(x^15) - 395*(x^10) + 76*(x^5) + 34;
upolynomial::manager upm(nm);
upolynomial::numeral_vector deg70_u;
upm.to_numeral_vector(deg70, deg70_u);
cout << "Factoring "; upm.display(cout, deg70_u); cout << " over Z " << endl;
upolynomial::factors factors(upm);
upolynomial::factor_square_free(upm, deg70_u, factors);
cout << "Got " << factors << endl;
upm.reset(deg70_u);
}
#endif
void tst_factor_swinnerton_dyer_big(unsigned max) {
polynomial::numeral_manager nm;
reslimit rl; polynomial::manager pm(rl, nm);
polynomial_ref x(pm);
x = pm.mk_polynomial(pm.mk_var());
vector<polynomial_ref> roots;
vector<polynomial::var> vars;
unsigned n = std::min(max, static_cast<unsigned>(sizeof(primes)/sizeof(unsigned)));
for(unsigned prime_i = 0; prime_i < n; ++ prime_i) {
int prime = primes[prime_i];
cout << "Computing Swinnerton-Dyer[" << prime_i + 1 << "]" << endl;
polynomial_ref y(pm);
vars.push_back(pm.mk_var());
y = pm.mk_polynomial(vars.back());
polynomial_ref p(pm);
p = (y^2) - prime;
roots.push_back(p);
polynomial_ref computation = x;
for (unsigned i = 0; i < roots.size(); ++ i) {
polynomial_ref var(pm);
var = pm.mk_polynomial(vars[i]);
computation = computation - var;
}
{
timeit timer(true, "computing swinnerton-dyer");
for (unsigned i = 0; i < roots.size(); ++ i) {
polynomial_ref tmp(pm);
pm.resultant(computation, roots[i], vars[i], tmp);
computation = tmp;
}
}
cout << "Computed Swinnerton-Dyer[" << prime_i + 1 << "], degree = " << pm.total_degree(computation) << ", size = " << pm.size(computation) << endl;
cout << "Starting factoring " << endl;
{
timeit timer(true, "factoring swinnerton-dyer");
reslimit rl;
upolynomial::manager upm(rl, nm);
scoped_mpz_vector sd_u(nm);
upm.to_numeral_vector(computation, sd_u);
upolynomial::factors factors(upm);
upolynomial::factor_square_free(upm, sd_u, factors);
cout << "Got " << factors.distinct_factors() << " factors" << endl;
}
}
}
static void tst_factor_square_free_multivariate_1(unsigned max_n) {
#if 0
polynomial::numeral_manager nm;
upolynomial::numeral test;
upolynomial::numeral p;
nm.set(test, -9);
nm.set(p, 5);
nm.mod(test, p, test);
reslimit rl; polynomial::manager pm(rl, nm);
polynomial_ref x(pm);
x = pm.mk_polynomial(pm.mk_var());
polynomial_ref y(pm);
y = pm.mk_polynomial(pm.mk_var());
// lets start simple x^n - y^n
for (unsigned prime_i = 0; prime_i < sizeof(primes)/sizeof(unsigned); ++ prime_i) {
unsigned prime = primes[prime_i];
if (prime > max_n) {
break;
}
polynomial_ref f = (x^prime) - (y^prime);
cout << "factoring: " << f << endl;
// factor
polynomial::factors factors(pm);
polynomial::factor_square_free_primitive(f, factors);
cout << "got: " << factors << endl;
}
#endif
}
void tst_polynomial_factorization() {
enable_trace("polynomial::factorization");
// enable_trace("polynomial::factorization::bughunt");
enable_trace("polynomial::factorization::multivariate");
// enable_trace("upolynomial");
// Z_p square-free factorization tests
// tst_square_free_finite_1();
// Z_p factorization tests
// tst_factor_finite_1();
// tst_factor_finite_2();
// tst_factor_finite_3();
// Z factorization
// tst_factor_enumeration();
// tst_factor_square_free_univariate_1(3);
// tst_factor_square_free_univariate_2();
// tst_factor_square_free_univariate_3();
// tst_factor_swinnerton_dyer_big(3);
// Multivariate factorization
tst_factor_square_free_multivariate_1(3);
}