3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-23 19:47:52 +00:00

handle non-linear division axioms, consolidate backtracking state in nla_core

this update enables new incremental linear axioms based on division terms.
It also consolidates some of the backtracking state in nla_core / emons to use stack traces instead of custom backtracking state.
This commit is contained in:
Nikolaj Bjorner 2023-01-29 17:22:57 -08:00
parent 4ffe3fab05
commit 8e37e2f913
9 changed files with 196 additions and 81 deletions

View file

@ -23,43 +23,128 @@ namespace nla {
m_core.trail().push(push_back_vector(m_idivisions));
}
void divisions::add_rdivision(lpvar r, lpvar x, lpvar y) {
m_rdivisions.push_back({ r, x, y });
m_core.trail().push(push_back_vector(m_rdivisions));
}
typedef lp::lar_term term;
// y1 >= y2 > 0 & x1 <= x2 => x1/y1 <= x2/y2
// y2 <= y1 < 0 & x1 >= x2 => x1/y1 <= x2/y2
// y2 <= y1 < 0 & x1 >= x2 >= 0 => x1/y1 <= x2/y2
// y2 <= y1 < 0 & x1 <= x2 <= 0 => x1/y1 >= x2/y2
void divisions::check(vector<lemma>& lemmas) {
core& c = m_core;
if (c.use_nra_model())
return;
auto monotonicity1 = [&](auto x1, auto& x1val, auto y1, auto& y1val, auto& r1, auto& r1val,
auto x2, auto& x2val, auto y2, auto& y2val, auto& r2, auto& r2val) {
if (y1val >= y2val && y2val > 0 && x1val <= x2val && r1val > r2val) {
new_lemma lemma(c, "y1 >= y2 > 0 & x1 <= x2 => x1/y1 <= x2/y2");
lemma |= ineq(term(y1, rational(-1), y2), llc::LT, 0);
lemma |= ineq(y2, llc::LE, 0);
lemma |= ineq(term(x1, rational(-1), x2), llc::GT, 0);
lemma |= ineq(term(r1, rational(-1), r2), llc::LE, 0);
return true;
}
return false;
};
auto monotonicity2 = [&](auto x1, auto& x1val, auto y1, auto& y1val, auto& r1, auto& r1val,
auto x2, auto& x2val, auto y2, auto& y2val, auto& r2, auto& r2val) {
if (y2val <= y1val && y1val < 0 && x1val >= x2val && x2val >= 0 && r1val > r2val) {
new_lemma lemma(c, "y2 <= y1 < 0 & x1 >= x2 >= 0 => x1/y1 <= x2/y2");
lemma |= ineq(term(y1, rational(-1), y2), llc::LT, 0);
lemma |= ineq(y1, llc::GE, 0);
lemma |= ineq(term(x1, rational(-1), x2), llc::LT, 0);
lemma |= ineq(x2, llc::LT, 0);
lemma |= ineq(term(r1, rational(-1), r2), llc::LE, 0);
return true;
}
return false;
};
auto monotonicity3 = [&](auto x1, auto& x1val, auto y1, auto& y1val, auto& r1, auto& r1val,
auto x2, auto& x2val, auto y2, auto& y2val, auto& r2, auto& r2val) {
if (y2val <= y1val && y1val < 0 && x1val <= x2val && x2val <= 0 && r1val < r2val) {
new_lemma lemma(c, "y2 <= y1 < 0 & x1 <= x2 <= 0 => x1/y1 >= x2/y2");
lemma |= ineq(term(y1, rational(-1), y2), llc::LT, 0);
lemma |= ineq(y1, llc::GE, 0);
lemma |= ineq(term(x1, rational(-1), x2), llc::GT, 0);
lemma |= ineq(x2, llc::GT, 0);
lemma |= ineq(term(r1, rational(-1), r2), llc::GE, 0);
return true;
}
return false;
};
auto monotonicity = [&](auto x1, auto& x1val, auto y1, auto& y1val, auto& r1, auto& r1val,
auto x2, auto& x2val, auto y2, auto& y2val, auto& r2, auto& r2val) {
if (monotonicity1(x1, x1val, y1, y1val, r1, r1val, x2, x2val, y2, y2val, r2, r2val))
return true;
if (monotonicity1(x2, x2val, y2, y2val, r2, r2val, x1, x1val, y1, y1val, r1, r1val))
return true;
if (monotonicity2(x1, x1val, y1, y1val, r1, r1val, x2, x2val, y2, y2val, r2, r2val))
return true;
if (monotonicity2(x2, x2val, y2, y2val, r2, r2val, x1, x1val, y1, y1val, r1, r1val))
return true;
if (monotonicity3(x1, x1val, y1, y1val, r1, r1val, x2, x2val, y2, y2val, r2, r2val))
return true;
if (monotonicity3(x2, x2val, y2, y2val, r2, r2val, x1, x1val, y1, y1val, r1, r1val))
return true;
return false;
};
for (auto const & [r, x, y] : m_idivisions) {
if (!c.is_relevant(r))
continue;
auto xval = c.val(x);
auto yval = c.val(y);
auto rval = c.val(r);
if (!c.var_is_int(x))
continue;
if (yval == 0)
continue;
// idiv semantics
if (rval == div(xval, yval))
if (!xval.is_int() || !yval.is_int() || yval == 0 || rval == div(xval, yval))
continue;
for (auto const& [r2, x2, y2] : m_idivisions) {
if (r2 == r)
continue;
if (!c.is_relevant(r2))
continue;
auto x2val = c.val(x2);
auto y2val = c.val(y2);
auto r2val = c.val(r2);
if (yval >= y2val && y2val > 0 && xval <= x2val && rval > r2val) {
new_lemma lemma(c, "y1 >= y2 > 0 & x1 <= x2 => x1/y1 <= x2/y2");
lemma |= ineq(term(y, rational(-1), y2), llc::LT, rational::zero());
lemma |= ineq(y2, llc::LE, rational::zero());
lemma |= ineq(term(x, rational(-1), x2), llc::GT, rational::zero());
lemma |= ineq(term(r, rational(-1), r2), llc::LE, rational::zero());
if (monotonicity(x, xval, y, yval, r, rval, x2, x2val, y2, y2val, r2, r2val))
return;
}
}
for (auto const& [r, x, y] : m_rdivisions) {
if (!c.is_relevant(r))
continue;
auto xval = c.val(x);
auto yval = c.val(y);
auto rval = c.val(r);
// / semantics
if (yval == 0 || rval == xval / yval)
continue;
for (auto const& [r2, x2, y2] : m_rdivisions) {
if (r2 == r)
continue;
if (!c.is_relevant(r2))
continue;
auto x2val = c.val(x2);
auto y2val = c.val(y2);
auto r2val = c.val(r2);
if (monotonicity(x, xval, y, yval, r, rval, x2, x2val, y2, y2val, r2, r2val))
return;
}
}
}
}
// if p is bounded, q a value, r = eval(p):
// p <= q * div(r, q) + q - 1 => div(p, q) <= div(r, q)
// p >= q * div(r, q) => div(r, q) <= div(p, q)
}