mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 17:44:08 +00:00
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
1517ca907e
commit
8e2ad4e461
|
@ -182,5 +182,8 @@ foreach (_build_type ${_build_types_as_upper})
|
||||||
# Indicate that the executable is compatible with DEP
|
# Indicate that the executable is compatible with DEP
|
||||||
# See https://msdn.microsoft.com/en-us/library/ms235442.aspx
|
# See https://msdn.microsoft.com/en-us/library/ms235442.aspx
|
||||||
string(APPEND CMAKE_EXE_LINKER_FLAGS_${_build_type} " /NXCOMPAT")
|
string(APPEND CMAKE_EXE_LINKER_FLAGS_${_build_type} " /NXCOMPAT")
|
||||||
|
|
||||||
|
# per GitHub issue #2380, enable checksum
|
||||||
|
string(APPEND CMAKE_EXE_LINKER_FLAGS_${_build_type} " /RELEASE")
|
||||||
endif()
|
endif()
|
||||||
endforeach()
|
endforeach()
|
||||||
|
|
|
@ -98,6 +98,7 @@ JS_ENABLED=False
|
||||||
PYTHON_INSTALL_ENABLED=False
|
PYTHON_INSTALL_ENABLED=False
|
||||||
STATIC_LIB=False
|
STATIC_LIB=False
|
||||||
STATIC_BIN=False
|
STATIC_BIN=False
|
||||||
|
ADD_CHECKSUM=True
|
||||||
VER_MAJOR=None
|
VER_MAJOR=None
|
||||||
VER_MINOR=None
|
VER_MINOR=None
|
||||||
VER_BUILD=None
|
VER_BUILD=None
|
||||||
|
@ -2441,6 +2442,8 @@ def mk_config():
|
||||||
static_opt = '/MT'
|
static_opt = '/MT'
|
||||||
else:
|
else:
|
||||||
static_opt = '/MD'
|
static_opt = '/MD'
|
||||||
|
if ADD_CHECKSUM:
|
||||||
|
extra_opt = ' %s /RELEASE' % extra_opt
|
||||||
maybe_disable_dynamic_base = '/DYNAMICBASE' if ALWAYS_DYNAMIC_BASE else '/DYNAMICBASE:NO'
|
maybe_disable_dynamic_base = '/DYNAMICBASE' if ALWAYS_DYNAMIC_BASE else '/DYNAMICBASE:NO'
|
||||||
if DEBUG_MODE:
|
if DEBUG_MODE:
|
||||||
static_opt = static_opt + 'd'
|
static_opt = static_opt + 'd'
|
||||||
|
|
|
@ -344,9 +344,6 @@ private:
|
||||||
expr_ref query_result(dlctx.get_answer_as_formula(), m);
|
expr_ref query_result(dlctx.get_answer_as_formula(), m);
|
||||||
sbuffer<symbol> var_names;
|
sbuffer<symbol> var_names;
|
||||||
unsigned num_decls = 0;
|
unsigned num_decls = 0;
|
||||||
if (is_quantifier(m_target)) {
|
|
||||||
num_decls = to_quantifier(m_target)->get_num_decls();
|
|
||||||
}
|
|
||||||
ctx.display(ctx.regular_stream(), query_result, 0, num_decls, "X", var_names);
|
ctx.display(ctx.regular_stream(), query_result, 0, num_decls, "X", var_names);
|
||||||
ctx.regular_stream() << std::endl;
|
ctx.regular_stream() << std::endl;
|
||||||
}
|
}
|
||||||
|
|
|
@ -86,6 +86,7 @@ namespace qe {
|
||||||
nlsat::literal_vector m_assumptions;
|
nlsat::literal_vector m_assumptions;
|
||||||
u_map<expr*> m_asm2fml;
|
u_map<expr*> m_asm2fml;
|
||||||
expr_ref_vector m_trail;
|
expr_ref_vector m_trail;
|
||||||
|
app_ref m_delta0, m_delta1;
|
||||||
|
|
||||||
lbool check_sat() {
|
lbool check_sat() {
|
||||||
while (true) {
|
while (true) {
|
||||||
|
@ -511,6 +512,20 @@ namespace qe {
|
||||||
bool has_divs() const { return m_has_divs; }
|
bool has_divs() const { return m_has_divs; }
|
||||||
};
|
};
|
||||||
|
|
||||||
|
/*
|
||||||
|
Ackermanize division
|
||||||
|
|
||||||
|
For each p/q:
|
||||||
|
p = 0 & q = 0 => div = delta0
|
||||||
|
p != 0 & q = 0 => div = p*delta1
|
||||||
|
q != 0 => div*q = p
|
||||||
|
|
||||||
|
delta0 stands for 0/0
|
||||||
|
delta1 stands for 1/0
|
||||||
|
assumption: p * 1/0 = p/0 for p != 0,
|
||||||
|
so 2/0 != a * 1/0 & a = 2 is unsat by fiat.
|
||||||
|
*/
|
||||||
|
|
||||||
void purify(expr_ref& fml, div_rewriter_star& rw, expr_ref_vector& paxioms) {
|
void purify(expr_ref& fml, div_rewriter_star& rw, expr_ref_vector& paxioms) {
|
||||||
is_pure_proc is_pure(*this);
|
is_pure_proc is_pure(*this);
|
||||||
{
|
{
|
||||||
|
@ -520,14 +535,16 @@ namespace qe {
|
||||||
if (is_pure.has_divs()) {
|
if (is_pure.has_divs()) {
|
||||||
arith_util arith(m);
|
arith_util arith(m);
|
||||||
proof_ref pr(m);
|
proof_ref pr(m);
|
||||||
TRACE("qe", tout << fml << "\n";);
|
|
||||||
rw(fml, fml, pr);
|
rw(fml, fml, pr);
|
||||||
TRACE("qe", tout << fml << "\n";);
|
m_delta0 = m.mk_fresh_const("delta0", arith.mk_real());
|
||||||
|
m_delta1 = m.mk_fresh_const("delta1", arith.mk_real());
|
||||||
vector<div> const& divs = rw.divs();
|
vector<div> const& divs = rw.divs();
|
||||||
for (unsigned i = 0; i < divs.size(); ++i) {
|
for (unsigned i = 0; i < divs.size(); ++i) {
|
||||||
paxioms.push_back(
|
expr_ref den_is0(m.mk_eq(divs[i].den, arith.mk_real(0)), m);
|
||||||
m.mk_or(m.mk_eq(divs[i].den, arith.mk_numeral(rational(0), false)),
|
expr_ref num_is0(m.mk_eq(divs[i].num, arith.mk_real(0)), m);
|
||||||
m.mk_eq(divs[i].num, arith.mk_mul(divs[i].den, divs[i].name))));
|
paxioms.push_back(m.mk_or(den_is0, m.mk_eq(divs[i].num, arith.mk_mul(divs[i].den, divs[i].name))));
|
||||||
|
paxioms.push_back(m.mk_or(m.mk_not(den_is0), m.mk_not(num_is0), m.mk_eq(divs[i].name, m_delta0)));
|
||||||
|
paxioms.push_back(m.mk_or(m.mk_not(den_is0), num_is0, m.mk_eq(divs[i].name, arith.mk_mul(divs[i].num, m_delta1))));
|
||||||
for (unsigned j = i + 1; j < divs.size(); ++j) {
|
for (unsigned j = i + 1; j < divs.size(); ++j) {
|
||||||
paxioms.push_back(m.mk_or(m.mk_not(m.mk_eq(divs[i].den, divs[j].den)),
|
paxioms.push_back(m.mk_or(m.mk_not(m.mk_eq(divs[i].den, divs[j].den)),
|
||||||
m.mk_not(m.mk_eq(divs[i].num, divs[j].num)),
|
m.mk_not(m.mk_eq(divs[i].num, divs[j].num)),
|
||||||
|
@ -546,6 +563,8 @@ namespace qe {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
expr_ref ante = mk_and(paxioms);
|
expr_ref ante = mk_and(paxioms);
|
||||||
|
qvars[0].push_back(m_delta0);
|
||||||
|
qvars[0].push_back(m_delta1);
|
||||||
for (div const& d : rw.divs()) {
|
for (div const& d : rw.divs()) {
|
||||||
qvars[qvars.size()-2].push_back(d.name);
|
qvars[qvars.size()-2].push_back(d.name);
|
||||||
}
|
}
|
||||||
|
@ -555,6 +574,7 @@ namespace qe {
|
||||||
else {
|
else {
|
||||||
fml = m.mk_and(fml, ante);
|
fml = m.mk_and(fml, ante);
|
||||||
}
|
}
|
||||||
|
TRACE("qe", tout << fml << "\n";);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
@ -675,6 +695,7 @@ namespace qe {
|
||||||
if (m_a2b.is_var(v)) {
|
if (m_a2b.is_var(v)) {
|
||||||
SASSERT(m.is_bool(v));
|
SASSERT(m.is_bool(v));
|
||||||
nlsat::bool_var b = m_a2b.to_var(v);
|
nlsat::bool_var b = m_a2b.to_var(v);
|
||||||
|
TRACE("qe", tout << mk_pp(v, m) << " |-> b" << b << "\n";);
|
||||||
m_bound_bvars.back().push_back(b);
|
m_bound_bvars.back().push_back(b);
|
||||||
set_level(b, lvl);
|
set_level(b, lvl);
|
||||||
}
|
}
|
||||||
|
@ -703,14 +724,13 @@ namespace qe {
|
||||||
}
|
}
|
||||||
|
|
||||||
void init_expr2var(vector<app_ref_vector> const& qvars) {
|
void init_expr2var(vector<app_ref_vector> const& qvars) {
|
||||||
for (unsigned i = 0; i < qvars.size(); ++i) {
|
for (app_ref_vector const& qvs : qvars) {
|
||||||
init_expr2var(qvars[i]);
|
init_expr2var(qvs);
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
void init_expr2var(app_ref_vector const& qvars) {
|
void init_expr2var(app_ref_vector const& qvars) {
|
||||||
for (unsigned i = 0; i < qvars.size(); ++i) {
|
for (app* v : qvars) {
|
||||||
app* v = qvars[i];
|
|
||||||
if (m.is_bool(v)) {
|
if (m.is_bool(v)) {
|
||||||
m_a2b.insert(v, m_solver.mk_bool_var());
|
m_a2b.insert(v, m_solver.mk_bool_var());
|
||||||
}
|
}
|
||||||
|
@ -784,7 +804,9 @@ namespace qe {
|
||||||
m_cancel(false),
|
m_cancel(false),
|
||||||
m_answer(m),
|
m_answer(m),
|
||||||
m_answer_simplify(m),
|
m_answer_simplify(m),
|
||||||
m_trail(m)
|
m_trail(m),
|
||||||
|
m_delta0(m),
|
||||||
|
m_delta1(m)
|
||||||
{
|
{
|
||||||
m_solver.get_explain().set_signed_project(true);
|
m_solver.get_explain().set_signed_project(true);
|
||||||
m_nftactic = mk_tseitin_cnf_tactic(m);
|
m_nftactic = mk_tseitin_cnf_tactic(m);
|
||||||
|
|
|
@ -603,6 +603,7 @@ namespace smt {
|
||||||
theory_var internalize_to_int(app * n);
|
theory_var internalize_to_int(app * n);
|
||||||
void internalize_is_int(app * n);
|
void internalize_is_int(app * n);
|
||||||
theory_var internalize_numeral(app * n);
|
theory_var internalize_numeral(app * n);
|
||||||
|
theory_var internalize_numeral(app * n, numeral const& val);
|
||||||
theory_var internalize_term_core(app * n);
|
theory_var internalize_term_core(app * n);
|
||||||
void mk_axiom(expr * n1, expr * n2, bool simplify_conseq = true);
|
void mk_axiom(expr * n1, expr * n2, bool simplify_conseq = true);
|
||||||
void mk_idiv_mod_axioms(expr * dividend, expr * divisor);
|
void mk_idiv_mod_axioms(expr * dividend, expr * divisor);
|
||||||
|
|
|
@ -240,12 +240,23 @@ namespace smt {
|
||||||
return;
|
return;
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
rational _val;
|
rational _val1, _val2;
|
||||||
expr* arg1, *arg2;
|
expr* arg1, *arg2;
|
||||||
if (m_util.is_mul(m, arg1, arg2) && m_util.is_numeral(arg1, _val) && is_app(arg1) && is_app(arg2)) {
|
if (m_util.is_mul(m, arg1, arg2) && m_util.is_numeral(arg1, _val1) && is_app(arg1) && is_app(arg2)) {
|
||||||
SASSERT(m->get_num_args() == 2);
|
SASSERT(m->get_num_args() == 2);
|
||||||
numeral val(_val);
|
if (m_util.is_numeral(arg2, _val2)) {
|
||||||
theory_var v = internalize_term_core(to_app(arg2));
|
numeral val(_val1 + _val2);
|
||||||
|
theory_var v = internalize_numeral(m, val);
|
||||||
|
if (reflection_enabled()) {
|
||||||
|
internalize_term_core(to_app(arg1));
|
||||||
|
internalize_term_core(to_app(arg2));
|
||||||
|
mk_enode(m);
|
||||||
|
}
|
||||||
|
add_row_entry<true>(r_id, numeral::one(), v);
|
||||||
|
return;
|
||||||
|
}
|
||||||
|
numeral val(_val1);
|
||||||
|
theory_var v = internalize_term_core(to_app(arg2));
|
||||||
if (reflection_enabled()) {
|
if (reflection_enabled()) {
|
||||||
internalize_term_core(to_app(arg1));
|
internalize_term_core(to_app(arg1));
|
||||||
mk_enode(m);
|
mk_enode(m);
|
||||||
|
@ -329,6 +340,7 @@ namespace smt {
|
||||||
theory_var theory_arith<Ext>::internalize_mul(app * m) {
|
theory_var theory_arith<Ext>::internalize_mul(app * m) {
|
||||||
rational _val;
|
rational _val;
|
||||||
SASSERT(m_util.is_mul(m));
|
SASSERT(m_util.is_mul(m));
|
||||||
|
SASSERT(!m_util.is_numeral(m->get_arg(1)));
|
||||||
if (m_util.is_numeral(m->get_arg(0), _val)) {
|
if (m_util.is_numeral(m->get_arg(0), _val)) {
|
||||||
SASSERT(m->get_num_args() == 2);
|
SASSERT(m->get_num_args() == 2);
|
||||||
numeral val(_val);
|
numeral val(_val);
|
||||||
|
@ -713,6 +725,11 @@ namespace smt {
|
||||||
rational _val;
|
rational _val;
|
||||||
VERIFY(m_util.is_numeral(n, _val));
|
VERIFY(m_util.is_numeral(n, _val));
|
||||||
numeral val(_val);
|
numeral val(_val);
|
||||||
|
return internalize_numeral(n, val);
|
||||||
|
}
|
||||||
|
|
||||||
|
template<typename Ext>
|
||||||
|
theory_var theory_arith<Ext>::internalize_numeral(app * n, numeral const& val) {
|
||||||
SASSERT(!get_context().e_internalized(n));
|
SASSERT(!get_context().e_internalized(n));
|
||||||
enode * e = mk_enode(n);
|
enode * e = mk_enode(n);
|
||||||
// internalizer is marking enodes as interpreted whenever the associated ast is a value and a constant.
|
// internalizer is marking enodes as interpreted whenever the associated ast is a value and a constant.
|
||||||
|
|
|
@ -5923,10 +5923,11 @@ void theory_seq::propagate_not_suffix(expr* e) {
|
||||||
e1 < e2 => e1 = empty or e1 = xcy
|
e1 < e2 => e1 = empty or e1 = xcy
|
||||||
e1 < e2 => e1 = empty or c < d
|
e1 < e2 => e1 = empty or c < d
|
||||||
e1 < e2 => e2 = xdz
|
e1 < e2 => e2 = xdz
|
||||||
!(e1 < e2) => e1 = e2 or e2 = empty or e2 = xcy
|
!(e1 < e2) => e1 = e2 or e2 = empty or e2 = xdz
|
||||||
!(e1 < e2) => e1 = e2 or e2 = empty or c < d
|
!(e1 < e2) => e1 = e2 or e2 = empty or d < c
|
||||||
!(e1 < e2) => e1 = e2 or e1 = xdz
|
!(e1 < e2) => e1 = e2 or e1 = xcy
|
||||||
|
|
||||||
|
optional:
|
||||||
e1 < e2 or e1 = e2 or e2 < e1
|
e1 < e2 or e1 = e2 or e2 < e1
|
||||||
!(e1 = e2) or !(e1 < e2)
|
!(e1 = e2) or !(e1 < e2)
|
||||||
!(e1 = e2) or !(e2 < e1)
|
!(e1 = e2) or !(e2 < e1)
|
||||||
|
@ -5952,15 +5953,14 @@ void theory_seq::add_lt_axiom(expr* n) {
|
||||||
literal eq = mk_eq(e1, e2, false);
|
literal eq = mk_eq(e1, e2, false);
|
||||||
literal e1xcy = mk_eq(e1, xcy, false);
|
literal e1xcy = mk_eq(e1, xcy, false);
|
||||||
literal e2xdz = mk_eq(e2, xdz, false);
|
literal e2xdz = mk_eq(e2, xdz, false);
|
||||||
literal e2xcy = mk_eq(e2, xcy, false);
|
|
||||||
literal e1xdz = mk_eq(e1, xdz, false);
|
|
||||||
literal ltcd = mk_literal(m_util.mk_lt(c, d));
|
literal ltcd = mk_literal(m_util.mk_lt(c, d));
|
||||||
|
literal ltdc = mk_literal(m_util.mk_lt(d, c));
|
||||||
add_axiom(~lt, e2xdz);
|
add_axiom(~lt, e2xdz);
|
||||||
add_axiom(~lt, emp1, e1xcy);
|
add_axiom(~lt, emp1, e1xcy);
|
||||||
add_axiom(~lt, emp1, ltcd);
|
add_axiom(~lt, emp1, ltcd);
|
||||||
add_axiom(lt, eq, e1xdz);
|
add_axiom(lt, eq, e1xcy);
|
||||||
add_axiom(lt, eq, emp2, ltcd);
|
add_axiom(lt, eq, emp2, ltdc);
|
||||||
add_axiom(lt, eq, emp2, e2xcy);
|
add_axiom(lt, eq, emp2, e2xdz);
|
||||||
if (e1->get_id() <= e2->get_id()) {
|
if (e1->get_id() <= e2->get_id()) {
|
||||||
literal gt = mk_literal(m_util.str.mk_lex_lt(e2, e1));
|
literal gt = mk_literal(m_util.str.mk_lex_lt(e2, e1));
|
||||||
add_axiom(lt, eq, gt);
|
add_axiom(lt, eq, gt);
|
||||||
|
|
Loading…
Reference in a new issue