3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-05-04 14:25:46 +00:00

retire deprecated functionality

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2021-11-22 18:14:15 +01:00
parent 8ec5ccbb9a
commit 8db711bc3c
15 changed files with 395 additions and 1100 deletions

View file

@ -10,133 +10,349 @@ Author:
Nikolaj Bjorner (nbjorner) 2021-03-19
Jakob Rath 2021-04-6
Notes:
--*/
#include "util/debug.h"
#include "math/polysat/viable.h"
#include "math/polysat/solver.h"
namespace polysat {
viable::viable(solver& s):
s(s),
m_bdd(1000)
{}
viable::viable(solver& s) : s(s) {}
viable::~viable() {
for (entry* e : m_alloc)
dealloc(e);
}
void viable::push_viable(pvar v) {
s.m_trail.push_back(trail_instr_t::viable_add_i);
m_viable_trail.push_back(std::make_pair(v, m_viable[v]));
viable::entry* viable::alloc_entry() {
if (m_alloc.empty())
return alloc(entry);
auto* e = m_alloc.back();
e->side_cond.reset();
m_alloc.pop_back();
return e;
}
void viable::pop_viable() {
auto const & p = m_viable_trail.back();
m_viable.set(p.first, p.second);
m_viable_trail.pop_back();
auto& [v, e] = m_trail.back();
e->remove_from(m_viable[v], e);
m_alloc.push_back(e);
m_trail.pop_back();
}
void viable::push_viable() {
auto& [v, e] = m_trail.back();
SASSERT(e->prev() != e || !m_viable[v]);
SASSERT(e->prev() != e || e->next() == e);
if (e->prev() != e) {
e->prev()->insert_after(e);
if (e->interval.lo_val() < e->next()->interval.lo_val())
m_viable[v] = e;
}
else
m_viable[v] = e;
m_trail.pop_back();
}
// a*v + b == 0 or a*v + b != 0
void viable::intersect_eq(rational const& a, pvar v, rational const& b, bool is_positive) {
bddv const& x = var2bits(v).var();
if (b == 0 && a.is_odd()) {
// hacky test optimizing special case.
// general case is compute inverse(a)*-b for equality 2^k*a*x + b == 0
// then constrain x.
//
intersect_viable(v, is_positive ? x.all0() : !x.all0());
}
else if (a.is_odd()) {
rational a_inv;
VERIFY(a.mult_inverse(x.size(), a_inv));
bdd eq = x == mod(a_inv * -b, rational::power_of_two(x.size()));
intersect_viable(v, is_positive ? eq : !eq);
}
void viable::intersect(pvar v, signed_constraint const& c) {
auto& fi = s.m_forbidden_intervals;
entry* ne = alloc_entry();
if (!fi.get_interval(c, v, ne->interval, ne->side_cond) || ne->interval.is_currently_empty())
m_alloc.push_back(ne);
else {
IF_VERBOSE(10, verbose_stream() << a << "*x + " << b << "\n");
bddv lhs = a * x + b;
bdd xs = is_positive ? lhs.all0() : !lhs.all0();
intersect_viable(v, xs);
ne->src = c;
intersect(v, ne);
}
}
void viable::intersect_ule(pvar v, rational const& a, rational const& b, rational const& c, rational const& d, bool is_positive) {
bddv const& x = var2bits(v).var();
// hacky special case
if (a == 1 && b == 0 && c == 0 && d == 0)
// x <= 0
intersect_viable(v, is_positive ? x.all0() : !x.all0());
void viable::intersect(pvar v, entry* ne) {
entry* e = m_viable[v];
if (e && e->interval.is_full())
return;
if (ne->interval.is_currently_empty()) {
m_alloc.push_back(ne);
return;
}
auto create_entry = [&]() {
m_trail.push_back({ v, ne });
s.m_trail.push_back(trail_instr_t::viable_add_i);
ne->init(ne);
return ne;
};
auto remove_entry = [&](entry* e) {
m_trail.push_back({ v, e });
s.m_trail.push_back(trail_instr_t::viable_rem_i);
e->remove_from(m_viable[v], e);
};
//LOG("intersect " << ne->interval);
if (!e)
m_viable[v] = create_entry();
else {
IF_VERBOSE(10, verbose_stream() << a << "*x + " << b << (is_positive ? " <= " : " > ") << c << "*x + " << d << "\n");
bddv l = a * x + b;
bddv r = c * x + d;
bdd xs = is_positive ? (l <= r) : (l > r);
intersect_viable(v, xs);
entry* first = e;
do {
if (e->interval.contains(ne->interval)) {
m_alloc.push_back(ne);
return;
}
while (ne->interval.contains(e->interval)) {
entry* n = e->next();
remove_entry(e);
if (!m_viable[v]) {
m_viable[v] = create_entry();
return;
}
if (e == first)
first = n;
e = n;
}
SASSERT(e->interval.lo_val() != ne->interval.lo_val());
if (e->interval.lo_val() > ne->interval.lo_val()) {
if (first->prev()->interval.contains(ne->interval)) {
m_alloc.push_back(ne);
return;
}
e->insert_before(create_entry());
if (e == first)
m_viable[v] = e->prev();
SASSERT(well_formed(m_viable[v]));
return;
}
e = e->next();
}
while (e != first);
// otherwise, append to end of list
first->insert_before(create_entry());
}
SASSERT(well_formed(m_viable[v]));
}
bool viable::has_viable(pvar v) {
return !m_viable[v].is_false();
bool viable::has_viable(pvar v) {
auto* e = m_viable[v];
if (!e)
return true;
entry* first = e;
auto const& max_value = s.var2pdd(v).max_value();
do {
if (e->interval.is_full())
return false;
entry* n = e->next();
if (n == e)
return true;
if (e->interval.hi_val() < n->interval.lo_val())
return true;
if (n == first)
return e->interval.lo_val() <= e->interval.hi_val();
e = n;
}
while (e != first);
return false;
}
bool viable::is_viable(pvar v, rational const& val) {
return var2bits(v).contains(m_viable[v], val);
bool viable::is_viable(pvar v, rational const& val) {
auto* e = m_viable[v];
if (!e)
return true;
entry* first = e;
entry* last = first->prev();
if (last->interval.currently_contains(val))
return false;
for (; e != last; e = e->next()) {
if (e->interval.currently_contains(val))
return false;
if (val < e->interval.lo_val())
return true;
}
return true;
}
void viable::intersect_viable(pvar v, bdd vals) {
push_viable(v);
m_viable[v] &= vals;
if (m_viable[v].is_false())
s.set_conflict(v);
rational viable::min_viable(pvar v) {
rational lo(0);
auto* e = m_viable[v];
if (!e)
return lo;
entry* first = e;
entry* last = first->prev();
if (last->interval.currently_contains(lo))
lo = last->interval.hi_val();
do {
if (!e->interval.currently_contains(lo))
break;
lo = e->interval.hi_val();
e = e->next();
}
while (e != first);
SASSERT(is_viable(v, lo));
return lo;
}
dd::find_t viable::find_viable(pvar v, rational & val) {
return var2bits(v).find_hint(m_viable[v], s.m_value[v], val);
rational viable::max_viable(pvar v) {
rational hi = s.var2pdd(v).max_value();
auto* e = m_viable[v];
if (!e)
return hi;
entry* last = e->prev();
e = last;
do {
if (!e->interval.currently_contains(hi))
break;
hi = e->interval.lo_val() - 1;
e = e->prev();
}
while (e != last);
SASSERT(is_viable(v, hi));
return hi;
}
rational viable::min_viable(pvar v) {
return var2bits(v).min(m_viable[v]);
dd::find_t viable::find_viable(pvar v, rational& lo) {
lo = 0;
auto* e = m_viable[v];
if (!e)
return dd::find_t::multiple;
if (e->interval.is_full())
return dd::find_t::empty;
entry* first = e;
entry* last = first->prev();
if (last->interval.currently_contains(lo))
lo = last->interval.hi_val();
do {
if (!e->interval.currently_contains(lo))
break;
lo = e->interval.hi_val();
e = e->next();
}
while (e != first);
if (e->interval.currently_contains(lo))
return dd::find_t::empty;
rational hi = s.var2pdd(v).max_value();
e = last;
do {
if (!e->interval.currently_contains(hi))
break;
hi = e->interval.lo_val() - 1;
e = e->prev();
}
while (e != last);
if (lo == hi)
return dd::find_t::singleton;
else
return dd::find_t::multiple;
}
rational viable::max_viable(pvar v) {
return var2bits(v).max(m_viable[v]);
}
bool viable::resolve(pvar v, conflict& core) {
if (has_viable(v))
return false;
auto* e = m_viable[v];
entry* first = e;
SASSERT(e);
core.reset();
do {
// Build constraint: upper bound of each interval is not contained in the next interval,
// using the equivalence: t \in [l;h[ <=> t-l < h-l
entry* n = e->next();
if (!e->interval.is_full()) {
auto const& hi = e->interval.hi();
auto const& next_lo = n->interval.lo();
auto const& next_hi = n->interval.hi();
auto lhs = hi - next_lo;
auto rhs = next_hi - next_lo;
signed_constraint c = s.m_constraints.ult(lhs, rhs);
core.insert(c);
}
for (auto sc : e->side_cond)
core.insert(sc);
e->src->set_var_dependent(); // ?
core.insert(e->src);
e = n;
}
while (e != first);
dd::fdd const& viable::sz2bits(unsigned sz) {
m_bits.reserve(sz + 1);
auto* bits = m_bits[sz];
if (!bits) {
m_bits.set(sz, alloc(dd::fdd, m_bdd, sz));
bits = m_bits[sz];
core.set_bailout();
for (auto c : core) {
if (c.bvalue(s) == l_false) {
core.reset();
core.set(~c);
break;
}
}
return *bits;
}
void viable::log() {
// only for small problems
for (pvar v = 0; v < std::min(10u, m_viable.size()); ++v)
log(v);
return true;
}
void viable::log(pvar v) {
if (s.size(v) <= 5) {
vector<rational> xs;
for (rational x = rational::zero(); x < rational::power_of_two(s.size(v)); x += 1)
if (is_viable(v, x))
xs.push_back(x);
LOG("Viable for v" << v << ": " << xs);
}
if (!well_formed(m_viable[v]))
LOG("v" << v << " not well formed");
auto* e = m_viable[v];
if (!e)
return;
entry* first = e;
do {
LOG("v" << v << ": " << e->interval << " " << e->side_cond << " " << e->src);
e = e->next();
}
while (e != first);
}
dd::fdd const& viable::var2bits(pvar v) { return sz2bits(s.size(v)); }
void viable::log() {
for (pvar v = 0; v < std::min(10u, m_viable.size()); ++v)
log(v);
}
std::ostream& viable::display(std::ostream& out, pvar v) const {
auto* e = m_viable[v];
if (!e)
return out;
entry* first = e;
do {
out << "v" << v << ": " << e->interval << " " << e->side_cond << " " << e->src << "\n";
e = e->next();
}
while (e != first);
return out;
}
std::ostream& viable::display(std::ostream& out) const {
for (pvar v = 0; v < m_viable.size(); ++v)
display(out, v);
return out;
}
/*
* Lower bounds are strictly ascending.
* intervals don't contain each-other (since lower bounds are ascending,
* it suffices to check containment in one direction).
*/
bool viable::well_formed(entry* e) {
if (!e)
return true;
entry* first = e;
while (true) {
if (e->interval.is_full())
return e->next() == e;
if (e->interval.is_currently_empty())
return false;
auto* n = e->next();
if (n != e && e->interval.contains(n->interval))
return false;
if (n == first)
break;
if (e->interval.lo_val() >= n->interval.lo_val())
return false;
e = n;
}
return true;
}
}