3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-22 16:45:31 +00:00

fill in details on max sat

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2013-10-16 02:07:30 -07:00
parent 45eda6c6ad
commit 8ae0b06912
2 changed files with 80 additions and 39 deletions

View file

@ -38,26 +38,24 @@ namespace opt {
class fu_malik {
ast_manager& m;
solver& s;
expr_ref_vector& m_soft;
expr_ref_vector m_soft;
expr_ref_vector m_aux;
public:
fu_malik(ast_manager& m, solver& s, expr_ref_vector& soft):
fu_malik(ast_manager& m, solver& s, expr_ref_vector const& soft):
m(m),
s(s),
m_soft(soft),
m_aux_vars(m)
m_aux(m)
{
m_aux.reset();
for (unsigned i = 0; i < m_soft.size(); i++) {
m_aux.push_back(m.mk_fresh_const("p",m.mk_bool()));
s.assert_expr(m.mk_or(m_soft[i].get(), m_aux[i].get()));
m_aux.push_back(m.mk_fresh_const("p", m.mk_bool_sort()));
s.assert_expr(m.mk_or(soft[i], m_aux[i].get()));
}
}
/**
\brief Implement one step of the Fu&Malik algorithm.
See fu_malik_maxsat function for more details.
\brief One step of the Fu&Malik algorithm.
Input: soft constraints + aux-vars (aka answer literals)
Output: done/not-done when not done return updated set of soft-constraints and aux-vars.
@ -85,7 +83,7 @@ namespace opt {
s.get_unsat_core(core);
// update soft-constraints and aux_vars
for (i = 0; i < m_soft.size(); i++) {
for (unsigned i = 0; i < m_soft.size(); i++) {
bool found = false;
for (unsigned j = 0; !found && j < core.size(); ++j) {
@ -108,36 +106,49 @@ namespace opt {
private:
void assert_at_most_one(expr_ref_vector const& block_vars) {
expr_ref has_one(m), no_one(m), at_most_one(m);
mk_at_most_one(block_vars.size(), block_vars.c_ptr(), has_one, no_one);
at_most_one = m.mk_or(has_one, no_one);
s.assert_expr(at_most_one);
}
#if 0
expr_ref mk_at_most_one(unsigned n, expr* const * vars) {
if (n <= 1) {
return expr_ref(m.mk_true(), m);
void mk_at_most_one(unsigned n, expr* const * vars, expr_ref& has_one, expr_ref& no_one) {
if (n == 1) {
has_one = vars[0];
no_one = m.mk_not(vars[0]);
}
else {
unsigned mid = n/2;
expr_ref has_one1(m), has_one2(m), no_one1(m), no_one2(m);
mk_at_most_one(mid, vars, has_one1, no_one1);
mk_at_most_one(n-mid, vars+mid, has_one2, no_one2);
has_one = m.mk_or(m.mk_and(has_one1, no_one2), m.mk_and(has_one2, no_one1));
no_one = m.mk_and(no_one1, no_one2);
}
unsigned mid = n/2;
}
#endif
};
// TBD: the vector of soft constraints gets updated
// but we really want to return the maximal set of
// original soft constraints that are satisfied.
// so we need to read out of the model what soft constraints
// were satisfied.
lbool fu_malik_maxsat(solver& s, expr_ref_vector& soft_constraints) {
ast_manager m = soft_constraints.get_manager();
lbool is_sat = s.check();
if (is_sat != l_true) {
return is_sat;
lbool is_sat = s.check_sat(0,0);
if (!soft_constraints.empty() && is_sat == l_true) {
s.push();
fu_malik fm(m, s, soft_constraints);
while (!fm.step());
s.pop(1);
}
if (soft_constraints.empty()) {
return is_sat;
}
s.push();
fu_malik fm(m, s, soft_constraints);
while (!fm.step());
s.pop();
// we are done and soft_constraints has been updated with the max-sat assignment.
// we are done and soft_constraints has
// been updated with the max-sat assignment.
return is_sat;
}
};

View file

@ -18,6 +18,8 @@ Notes:
#include "opt_cmds.h"
#include "cmd_context.h"
#include "ast_pp.h"
#include "smt_solver.h"
#include "fu_malik.h"
class opt_context {
ast_manager& m;
@ -35,7 +37,7 @@ public:
m_weights.push_back(w);
}
expr_ref_vector const& formulas() const { return m_formulas; }
expr_ref_vector const & formulas() const { return m_formulas; }
vector<rational> const& weights() const { return m_weights; }
};
@ -93,7 +95,6 @@ public:
}
virtual void execute(cmd_context & ctx) {
std::cout << "TODO: " << mk_pp(m_formula, ctx.m()) << " " << m_weight << "\n";
m_opt_ctx->add_formula(m_formula, m_weight);
reset(ctx);
}
@ -141,22 +142,51 @@ public:
}
virtual void execute(cmd_context & ctx) {
ast_manager& m = m_term.get_manager();
std::cout << "TODO: " << mk_pp(m_term, ctx.m()) << "\n";
// Here is how to retrieve the soft constraints
m_opt_ctx->formulas();
m_opt_ctx->weights();
get_background(ctx);
// reset m_opt_ctx?
}
expr_ref_vector const& fmls = m_opt_ctx->formulas();
vector<rational> const& ws = m_opt_ctx->weights();
// TODO: move most functionaltiy to separate module, because it is going to grow..
ref<solver> s;
symbol logic;
params_ref p;
p.set_bool("model", true);
p.set_bool("unsat_core", true);
s = mk_smt_solver(m, p, logic);
private:
void get_background(cmd_context& ctx) {
ptr_vector<expr>::const_iterator it = ctx.begin_assertions();
ptr_vector<expr>::const_iterator end = ctx.end_assertions();
for (; it != end; ++it) {
// Need a solver object that supports soft constraints
// m_solver.assert_expr(*it);
s->assert_expr(*it);
}
expr_ref_vector fmls_copy(fmls);
if (is_maxsat_problem(ws)) {
lbool is_sat = opt::fu_malik_maxsat(*s, fmls_copy);
std::cout << "is-sat: " << is_sat << "\n";
if (is_sat == l_true) {
for (unsigned i = 0; i < fmls_copy.size(); ++i) {
std::cout << mk_pp(fmls_copy[i].get(), m) << "\n";
}
}
}
else {
NOT_IMPLEMENTED_YET();
}
// handle optimization criterion.
}
private:
bool is_maxsat_problem(vector<rational> const& ws) const {
for (unsigned i = 0; i < ws.size(); ++i) {
if (!ws[i].is_one()) {
return false;
}
}
return true;
}
};