3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-27 10:55:50 +00:00

Polysat updates (#5444)

* Simplify adding lemmas

* Remove misleading constructor from tmp_assign.

The idea is that tmp_assign is only created on the stack and
short-lived.  Instead of having a convenience constructor that takes a
constraint_ref, it's clearer to have an explicit .get() at the call
site.

* Remove some log messages

* bugfix

* fix

* Add stub for conflict_core

* wip

* Add example by Clemens
This commit is contained in:
Jakob Rath 2021-07-30 20:14:19 +02:00 committed by GitHub
parent 2ef8ee25f1
commit 8a773d2bee
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
12 changed files with 302 additions and 116 deletions

View file

@ -522,6 +522,7 @@ namespace polysat {
LOG("Lemma: " << show_deref(lemma));
clause_ref new_lemma = resolve(v);
LOG("New Lemma: " << show_deref(new_lemma));
// SASSERT(new_lemma); // TODO: only for debugging, to have a breakpoint on resolution failure
if (!new_lemma) {
backtrack(i, lemma);
return;
@ -672,7 +673,7 @@ namespace polysat {
}
}
while (i-- > 0);
add_lemma_clause(lemma); // TODO: handle units correctly
add_lemma(lemma); // TODO: this lemma is stored but otherwise "lost" because it will not be activated / not added to any watch data structures
report_unsat();
}
@ -692,44 +693,27 @@ namespace polysat {
m_dm.linearize(conflict_dep, deps);
}
/**
* The polynomial p encodes an equality that the decision was infeasible.
* The effect of this function is that the assignment to v is undone and replaced
* by a new decision or unit propagation or conflict.
* We add 'p == 0' as a lemma. The lemma depends on the dependencies used
* to derive p, and the level of the lemma is the maximal level of the dependencies.
*/
void solver::learn_lemma(pvar v, clause_ref lemma) {
if (!lemma)
return;
LOG("Learning: " << show_deref(lemma));
SASSERT(lemma->size() > 0);
SASSERT(m_conflict_level <= m_justification[v].level());
if (lemma->size() == 1) {
constraint_ref c;
if (lemma->new_constraints().size() > 0) {
SASSERT_EQ(lemma->new_constraints().size(), 1);
c = lemma->new_constraints()[0];
}
else {
c = m_constraints.lookup(lemma->literals()[0].var());
}
SASSERT_EQ(lemma->literals()[0].var(), c->bvar());
SASSERT(c);
add_lemma_unit(c);
push_cjust(v, c.get());
activate_constraint_base(c.get(), !lemma->literals()[0].sign());
clause* cl = lemma.get();
add_lemma(std::move(lemma));
if (cl->size() == 1) {
sat::literal lit = cl->literals()[0];
constraint* c = m_constraints.lookup(lit.var());
c->set_unit_clause(cl);
push_cjust(v, c);
activate_constraint_base(c, !lit.sign());
}
else {
sat::literal lit = decide_bool(*cl);
SASSERT(lit != sat::null_literal);
constraint* c = m_constraints.lookup(lit.var());
push_cjust(v, c);
}
else
learn_lemma_clause(v, std::move(lemma));
}
void solver::learn_lemma_clause(pvar v, clause_ref lemma) {
SASSERT(lemma);
sat::literal lit = decide_bool(*lemma);
SASSERT(lit != sat::null_literal);
constraint* c = m_constraints.lookup(lit.var());
push_cjust(v, c);
add_lemma_clause(std::move(lemma));
}
// Guess a literal from the given clause; returns the guessed constraint
@ -750,7 +734,6 @@ namespace polysat {
return !c->is_currently_false(*this);
};
// constraint *choice = nullptr;
sat::literal choice = sat::null_literal;
unsigned num_choices = 0; // TODO: should probably cache this?
@ -789,12 +772,7 @@ namespace polysat {
rational val = m_value[v];
LOG_H3("Reverting decision: pvar " << v << " := " << val);
SASSERT(m_justification[v].is_decision());
constraints just(m_cjust[v]);
backjump(m_justification[v].level()-1);
// Since decision "v -> val" caused a conflict, we may keep all
// viability restrictions on v and additionally exclude val.
// TODO: viability restrictions on 'v' must have happened before decision on 'v'. Do we really need to save/restore m_viable here?
SASSERT(m_cjust[v] == just); // check this with assertion
m_viable.add_non_viable(v, val);
@ -815,7 +793,8 @@ namespace polysat {
// and then may lead to an assertion failure through this call to narrow.
// TODO: what to do with "unassigned" constraints at this point? (we probably should have resolved those away, even in the 'backtrack' case.)
// NOTE: they are constraints from clauses that were added to cjust… how to deal with that? should we add the whole clause to cjust?
if (!c->is_undef()) // TODO: this check to be removed once this is fixed properly.
SASSERT(!c->is_undef());
// if (!c->is_undef()) // TODO: this check to be removed once this is fixed properly.
c->narrow(*this);
if (is_conflict()) {
LOG_H1("Conflict during revert_decision/narrow!");
@ -902,7 +881,7 @@ namespace polysat {
m_conflict.reset();
clause* reason_cl = reason.get();
add_lemma_clause(std::move(reason));
add_lemma(std::move(reason));
propagate_bool(~lit, reason_cl);
if (is_conflict()) {
LOG_H1("Conflict during revert_bool_decision/propagate_bool!");
@ -924,7 +903,7 @@ namespace polysat {
if (reason->literals().size() == 1) {
SASSERT(reason->literals()[0] == lit);
constraint* c = m_constraints.lookup(lit.var());
m_redundant.push_back(c);
// m_redundant.push_back(c);
activate_constraint_base(c, !lit.sign());
}
else
@ -949,6 +928,7 @@ namespace polysat {
/// Used for external unit constraints and unit consequences.
void solver::activate_constraint_base(constraint* c, bool is_true) {
SASSERT(c);
LOG("\n" << *this);
// c must be in m_original or m_redundant so it can be deactivated properly when popping the base level
SASSERT_EQ(std::count(m_original.begin(), m_original.end(), c) + std::count(m_redundant.begin(), m_redundant.end(), c), 1);
sat::literal lit(c->bvar(), !is_true);
@ -1016,30 +996,22 @@ namespace polysat {
}
// Add lemma to storage but do not activate it
void solver::add_lemma_unit(constraint_ref lemma) {
void solver::add_lemma(clause_ref lemma) {
if (!lemma)
return;
LOG("Lemma: " << show_deref(lemma));
constraint* c = m_constraints.store(std::move(lemma));
insert_constraint(m_redundant, c);
// TODO: create unit clause
}
// Add lemma to storage but do not activate it
void solver::add_lemma_clause(clause_ref lemma) {
if (!lemma)
return;
// TODO: check for unit clauses!
LOG("Lemma: " << show_deref(lemma));
if (lemma->size() < 2) {
LOG_H1("TODO: this should be treated as unit constraint and asserted at the base level!");
}
// SASSERT(lemma->size() > 1);
SASSERT(lemma->size() > 0);
clause* cl = m_constraints.store(std::move(lemma));
m_redundant_clauses.push_back(cl);
if (cl->size() == 1) {
constraint* c = m_constraints.lookup(cl->literals()[0].var());
insert_constraint(m_redundant, c);
}
}
void solver::insert_constraint(ptr_vector<constraint>& cs, constraint* c) {
SASSERT(c);
LOG_V("INSERTING: " << *c);
cs.push_back(c);
for (unsigned i = cs.size() - 1; i-- > 0; ) {
auto* c1 = cs[i + 1];
@ -1082,17 +1054,17 @@ namespace polysat {
return m_base_levels.empty() ? 0 : m_base_levels.back();
}
bool solver::active_at_base_level(sat::bool_var bvar) const {
// NOTE: this active_at_base_level is actually not what we want!!!
// first of all, it might not really be a base level: could be a non-base level between previous base levels.
// in that case, how do we determine the right dependencies???
// secondly, we are interested in "unit clauses", not as much whether we assigned something on the base level...
// TODO: however, propagating stuff at the base level... need to be careful with dependencies there... might need to turn all base-level propagations into unit clauses...
VERIFY(false);
// bool res = m_bvars.is_assigned(bvar) && m_bvars.level(bvar) <= base_level();
// SASSERT_EQ(res, !!m_constraints.lookup(bvar)->unit_clause());
// return res;
}
// bool solver::active_at_base_level(sat::bool_var bvar) const {
// // NOTE: this active_at_base_level is actually not what we want!!!
// // first of all, it might not really be a base level: could be a non-base level between previous base levels.
// // in that case, how do we determine the right dependencies???
// // secondly, we are interested in "unit clauses", not as much whether we assigned something on the base level...
// // TODO: however, propagating stuff at the base level... need to be careful with dependencies there... might need to turn all base-level propagations into unit clauses...
// VERIFY(false);
// // bool res = m_bvars.is_assigned(bvar) && m_bvars.level(bvar) <= base_level();
// // SASSERT_EQ(res, !!m_constraints.lookup(bvar)->unit_clause());
// // return res;
// }
bool solver::try_eval(pdd const& p, rational& out_value) const {
pdd r = p.subst_val(assignment());