3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-22 00:26:38 +00:00

Polysat updates (#5444)

* Simplify adding lemmas

* Remove misleading constructor from tmp_assign.

The idea is that tmp_assign is only created on the stack and
short-lived.  Instead of having a convenience constructor that takes a
constraint_ref, it's clearer to have an explicit .get() at the call
site.

* Remove some log messages

* bugfix

* fix

* Add stub for conflict_core

* wip

* Add example by Clemens
This commit is contained in:
Jakob Rath 2021-07-30 20:14:19 +02:00 committed by GitHub
parent 2ef8ee25f1
commit 8a773d2bee
No known key found for this signature in database
GPG key ID: 4AEE18F83AFDEB23
12 changed files with 302 additions and 116 deletions

View file

@ -2,6 +2,7 @@ z3_add_component(polysat
SOURCES
boolean.cpp
clause_builder.cpp
conflict_core.cpp
constraint.cpp
eq_constraint.cpp
explain.cpp

View file

@ -0,0 +1,28 @@
/*++
Copyright (c) 2021 Microsoft Corporation
Module Name:
polysat conflict
Author:
Nikolaj Bjorner (nbjorner) 2021-03-19
Jakob Rath 2021-04-6
--*/
#include "math/polysat/conflict_core.h"
#include "math/polysat/solver.h"
#include "math/polysat/log.h"
#include "math/polysat/log_helper.h"
namespace polysat {
std::ostream& conflict_core::display(std::ostream& out) const {
out << "TODO: display conflict_core";
// depending on sign: A /\ B /\ C or ¬A \/ ¬B \/ ¬C
return out;
}
}

View file

@ -0,0 +1,66 @@
/*++
Copyright (c) 2021 Microsoft Corporation
Module Name:
polysat conflict
Author:
Nikolaj Bjorner (nbjorner) 2021-03-19
Jakob Rath 2021-04-6
--*/
#pragma once
#include "math/polysat/constraint.h"
namespace polysat {
/// Represents a conflict as core (~negation of clause).
///
/// TODO: can probably move some clause_builder functionality into this class.
class conflict_core {
// constraint_ref_vector m_constraints;
vector<constraint_literal> m_constraints;
bool m_needs_model = true; ///< True iff the conflict depends on the current variable assignment. (If so, additional constraints must be added to the final learned clause.)
public:
vector<constraint_literal> const& constraints() const {
return m_constraints;
}
bool empty() const {
return m_constraints.empty();
}
void reset() {
m_constraints.reset();
m_needs_model = true;
}
// for bailing out with a conflict at the base level
void set(std::nullptr_t) {
SASSERT(empty());
m_constraints.push_back({});
m_needs_model = false;
}
// void set(
// TODO: set core from conflicting units
// TODO: set clause
// TODO: use iterator instead (this method is needed for marking so duplicates don't necessarily have to be skipped)
unsigned_vector vars(constraint_manager const& cm) const {
unsigned_vector vars;
for (auto const& c : m_constraints)
vars.append(c->vars());
return vars;
}
std::ostream& display(std::ostream& out) const;
};
inline std::ostream& operator<<(std::ostream& out, conflict_core const& c) { return c.display(out); }
}

View file

@ -151,8 +151,9 @@ namespace polysat {
std::ostream& constraint::display_extra(std::ostream& out) const {
out << " @" << level() << " (b" << bvar() << ")";
if (is_undef())
out << " [inactive]";
if (is_positive()) out << " [pos]";
if (is_negative()) out << " [neg]";
if (is_undef()) out << " [inactive]";
return out;
}

View file

@ -166,7 +166,8 @@ namespace polysat {
sat::literal blit() const { SASSERT(!is_undef()); return m_status == l_true ? sat::literal(m_bvar) : ~sat::literal(m_bvar); }
void assign(bool is_true) {
SASSERT(m_status == l_undef /* || m_status == to_lbool(is_true) */);
SASSERT(m_status == l_undef || m_status == to_lbool(is_true));
// SASSERT(m_status == l_undef /* || m_status == to_lbool(is_true) */);
m_status = to_lbool(is_true);
// SASSERT(m_manager->m_bvars.value(bvar()) == l_undef || m_manager->m_bvars.value(bvar()) == m_status); // TODO: is this always true? maybe we sometimes want to check the opposite phase temporarily.
}
@ -176,7 +177,7 @@ namespace polysat {
bool is_negative() const { return m_status == l_false; }
clause* unit_clause() const { return m_unit_clause; }
void set_unit_clause(clause* cl) { SASSERT(cl); SASSERT(!m_unit_clause); m_unit_clause = cl; }
void set_unit_clause(clause* cl) { SASSERT(cl); SASSERT(!m_unit_clause || m_unit_clause == cl); m_unit_clause = cl; }
p_dependency* unit_dep() const;
/** Precondition: all variables other than v are assigned.
@ -351,6 +352,7 @@ namespace polysat {
constraint* m_constraint;
bool m_should_unassign = false;
public:
/// c must live longer than tmp_assign.
tmp_assign(constraint* c, sat::literal lit):
m_constraint(c) {
SASSERT(c);
@ -362,8 +364,6 @@ namespace polysat {
else
SASSERT_EQ(c->blit(), lit);
}
// NSB review: assumes life-time of c extends use in tmp_assign.
tmp_assign(constraint_ref const& c, sat::literal lit): tmp_assign(c.get(), lit) {}
void revert() {
if (m_should_unassign) {
m_constraint->unassign();

View file

@ -41,6 +41,30 @@ namespace polysat {
for (auto* c : confl.clauses())
m_conflict.push_back(c);
// Collect unit constraints
//
// TODO: the distinction between units and unit clauses is a bit awkward; maybe it should be removed.
// We could then also remove the hybrid container 'constraints_and_clauses' by a clause_ref_vector
SASSERT(m_conflict_units.empty());
for (constraint* c : m_conflict.units())
// if (c->is_eq())
m_conflict_units.push_back(c);
for (auto clause : m_conflict.clauses()) {
if (clause->size() == 1) {
sat::literal lit = (*clause)[0];
constraint* c = m_solver.m_constraints.lookup(lit.var());
LOG("unit clause: " << show_deref(c));
// Morally, a derived unit clause is always asserted at the base level.
// (Even if we don't want to keep this one around. But maybe we should? Do we want to reconstruct proofs?)
c->set_unit_clause(clause);
c->assign(!lit.sign());
// this clause is really a unit.
// if (c->is_eq()) {
m_conflict_units.push_back(c);
// }
}
}
// TODO: we should share work done for examining constraints between different resolution methods
clause_ref lemma;
if (!lemma) lemma = by_polynomial_superposition();
@ -57,9 +81,9 @@ namespace polysat {
}
// All constraints in the lemma must be false in the conflict state
for (auto lit : lemma->literals()) {
if (m_solver.m_bvars.value(lit.var()) == l_false)
if (m_solver.m_bvars.value(lit) == l_false)
continue;
SASSERT(m_solver.m_bvars.value(lit.var()) != l_true);
SASSERT(m_solver.m_bvars.value(lit) != l_true);
constraint* c = m_solver.m_constraints.lookup(lit.var());
SASSERT(c);
tmp_assign _t(c, lit);
@ -90,6 +114,8 @@ namespace polysat {
*/
clause_ref conflict_explainer::by_polynomial_superposition() {
LOG_H3("units-size: " << m_conflict.units().size() << " conflict-clauses " << m_conflict.clauses().size());
#if 0
constraint* c1 = nullptr, *c2 = nullptr;
if (m_conflict.units().size() == 2 && m_conflict.clauses().size() == 0) {
@ -99,23 +125,26 @@ namespace polysat {
else {
// other combinations?
#if 0
#if 1
// A clause can also be a unit.
// Even if a clause is not a unit, we could still resolve a propagation
// into some literal in the current conflict clause.
// Selecting resolvents should not be specific to superposition.
//
for (auto clause : m_conflict.clauses()) {
LOG("clause " << *clause << " size " << clause->size());
if (clause->size() == 1) {
sat::literal lit = (*clause)[0];
if (lit.sign())
continue;
// if (lit.sign())
// continue;
constraint* c = m_solver.m_constraints.lookup(lit.var());
c->assign(true);
// Morally, a derived unit clause is always asserted at the base level.
// (Even if we don't want to keep this one around. But maybe we should? Do we want to reconstruct proofs?)
c->set_unit_clause(clause);
c->assign(!lit.sign());
// this clause is really a unit.
LOG("unit clause: " << *c);
if (c->is_eq() && c->is_positive()) {
if (c->is_eq()) { // && c->is_positive()) {
c1 = c;
break;
}
@ -134,6 +163,8 @@ namespace polysat {
}
if (!c1 || !c2 || c1 == c2)
return nullptr;
LOG("c1: " << show_deref(c1));
LOG("c2: " << show_deref(c2));
if (c1->is_eq() && c2->is_eq() && c1->is_positive() && c2->is_positive()) {
pdd a = c1->to_eq().p();
pdd b = c2->to_eq().p();
@ -147,6 +178,72 @@ namespace polysat {
clause.push_new_constraint(m_solver.m_constraints.eq(lvl, r));
return clause.build();
}
if (c1->is_eq() && c2->is_eq() && c1->is_negative() && c2->is_positive()) {
pdd a = c1->to_eq().p();
pdd b = c2->to_eq().p();
pdd r = a;
// TODO: only holds if the factor for 'a' is non-zero
if (!a.resolve(m_var, b, r))
return nullptr;
unsigned const lvl = std::max(c1->level(), c2->level());
clause_builder clause(m_solver);
clause.push_literal(~c1->blit());
clause.push_literal(~c2->blit());
clause.push_new_constraint(~m_solver.m_constraints.eq(lvl, r));
SASSERT(false); // TODO "breakpoint" for debugging
return clause.build();
}
#else
for (constraint* c1 : m_conflict_units) {
if (!c1->is_eq())
continue;
for (constraint* c2 : m_conflict_units) { // TODO: can start iteration at index(c1)+1
if (c1 == c2)
continue;
if (!c2->is_eq())
continue;
if (c1->is_negative() && c2->is_negative())
continue;
LOG("c1: " << show_deref(c1));
LOG("c2: " << show_deref(c2));
if (c1->is_positive() && c2->is_negative()) {
std::swap(c1, c2);
}
pdd a = c1->to_eq().p();
pdd b = c2->to_eq().p();
pdd r = a;
unsigned const lvl = std::max(c1->level(), c2->level());
if (c1->is_positive() && c2->is_positive()) {
if (!a.resolve(m_var, b, r) && !b.resolve(m_var, a, r))
continue;
clause_builder clause(m_solver);
clause.push_literal(~c1->blit());
clause.push_literal(~c2->blit());
clause.push_new_constraint(m_solver.m_constraints.eq(lvl, r));
auto cl = clause.build();
LOG("r: " << show_deref(cl->new_constraints()[0]));
LOG("result: " << show_deref(cl));
// SASSERT(false); // NOTE: this is a simple "breakpoint" for debugging
return cl;
}
if (c1->is_negative() && c2->is_positive()) {
// TODO: only holds if the factor for 'a' is non-zero
if (!a.resolve(m_var, b, r))
continue;
clause_builder clause(m_solver);
clause.push_literal(~c1->blit());
clause.push_literal(~c2->blit());
clause.push_new_constraint(~m_solver.m_constraints.eq(lvl, r));
auto cl = clause.build();
LOG("r: " << show_deref(cl->new_constraints()[0]));
LOG("result: " << show_deref(cl));
// SASSERT(false); // NOTE: this is a simple "breakpoint" for debugging
return cl;
}
}
}
#endif
return nullptr;
}

View file

@ -24,6 +24,7 @@ namespace polysat {
class conflict_explainer {
solver& m_solver;
constraints_and_clauses m_conflict;
ptr_vector<constraint> m_conflict_units;
pvar m_var = null_var;
ptr_vector<constraint> m_cjust_v;

View file

@ -25,9 +25,7 @@ Other:
#if POLYSAT_LOGGING_ENABLED
static LogLevel
get_max_log_level(std::string const& fn, std::string const& pretty_fn)
{
static LogLevel get_max_log_level(std::string const& fn, std::string const& pretty_fn) {
(void)fn;
(void)pretty_fn;
@ -46,16 +44,12 @@ get_max_log_level(std::string const& fn, std::string const& pretty_fn)
}
/// Filter log messages
bool
polysat_should_log(LogLevel msg_level, std::string fn, std::string pretty_fn)
{
bool polysat_should_log(LogLevel msg_level, std::string fn, std::string pretty_fn) {
LogLevel max_log_level = get_max_log_level(fn, pretty_fn);
return msg_level <= max_log_level;
}
static char const*
level_color(LogLevel msg_level)
{
static char const* level_color(LogLevel msg_level) {
switch (msg_level) {
case LogLevel::Heading1:
return ""; // red
@ -70,9 +64,7 @@ level_color(LogLevel msg_level)
int polysat_log_indent_level = 0;
std::pair<std::ostream&, bool>
polysat_log(LogLevel msg_level, std::string fn, std::string /* pretty_fn */)
{
std::pair<std::ostream&, bool> polysat_log(LogLevel msg_level, std::string fn, std::string /* pretty_fn */) {
std::ostream& os = std::cerr;
size_t width = 20;
@ -87,25 +79,23 @@ polysat_log(LogLevel msg_level, std::string fn, std::string /* pretty_fn */)
dwMode |= ENABLE_VIRTUAL_TERMINAL_PROCESSING;
ok = ok && SetConsoleMode(hOut, dwMode);
#else
int const fd = _fileno(stderr);
int const fd = fileno(stderr);
if (color && !isatty(fd)) { color = nullptr; }
#endif
if (color) { os << color; }
if (color)
os << color;
os << "[" << fn << "] " << std::string(padding, ' ');
os << std::string(polysat_log_indent_level, ' ');
return {os, (bool)color};
}
polysat_log_indent::polysat_log_indent(int amount)
: m_amount{amount}
{
polysat_log_indent::polysat_log_indent(int amount): m_amount{amount} {
polysat_log_indent_level += m_amount;
}
polysat_log_indent::~polysat_log_indent()
{
polysat_log_indent::~polysat_log_indent() {
polysat_log_indent_level -= m_amount;
}

View file

@ -522,6 +522,7 @@ namespace polysat {
LOG("Lemma: " << show_deref(lemma));
clause_ref new_lemma = resolve(v);
LOG("New Lemma: " << show_deref(new_lemma));
// SASSERT(new_lemma); // TODO: only for debugging, to have a breakpoint on resolution failure
if (!new_lemma) {
backtrack(i, lemma);
return;
@ -672,7 +673,7 @@ namespace polysat {
}
}
while (i-- > 0);
add_lemma_clause(lemma); // TODO: handle units correctly
add_lemma(lemma); // TODO: this lemma is stored but otherwise "lost" because it will not be activated / not added to any watch data structures
report_unsat();
}
@ -692,44 +693,27 @@ namespace polysat {
m_dm.linearize(conflict_dep, deps);
}
/**
* The polynomial p encodes an equality that the decision was infeasible.
* The effect of this function is that the assignment to v is undone and replaced
* by a new decision or unit propagation or conflict.
* We add 'p == 0' as a lemma. The lemma depends on the dependencies used
* to derive p, and the level of the lemma is the maximal level of the dependencies.
*/
void solver::learn_lemma(pvar v, clause_ref lemma) {
if (!lemma)
return;
LOG("Learning: " << show_deref(lemma));
SASSERT(lemma->size() > 0);
SASSERT(m_conflict_level <= m_justification[v].level());
if (lemma->size() == 1) {
constraint_ref c;
if (lemma->new_constraints().size() > 0) {
SASSERT_EQ(lemma->new_constraints().size(), 1);
c = lemma->new_constraints()[0];
}
else {
c = m_constraints.lookup(lemma->literals()[0].var());
}
SASSERT_EQ(lemma->literals()[0].var(), c->bvar());
SASSERT(c);
add_lemma_unit(c);
push_cjust(v, c.get());
activate_constraint_base(c.get(), !lemma->literals()[0].sign());
clause* cl = lemma.get();
add_lemma(std::move(lemma));
if (cl->size() == 1) {
sat::literal lit = cl->literals()[0];
constraint* c = m_constraints.lookup(lit.var());
c->set_unit_clause(cl);
push_cjust(v, c);
activate_constraint_base(c, !lit.sign());
}
else {
sat::literal lit = decide_bool(*cl);
SASSERT(lit != sat::null_literal);
constraint* c = m_constraints.lookup(lit.var());
push_cjust(v, c);
}
else
learn_lemma_clause(v, std::move(lemma));
}
void solver::learn_lemma_clause(pvar v, clause_ref lemma) {
SASSERT(lemma);
sat::literal lit = decide_bool(*lemma);
SASSERT(lit != sat::null_literal);
constraint* c = m_constraints.lookup(lit.var());
push_cjust(v, c);
add_lemma_clause(std::move(lemma));
}
// Guess a literal from the given clause; returns the guessed constraint
@ -750,7 +734,6 @@ namespace polysat {
return !c->is_currently_false(*this);
};
// constraint *choice = nullptr;
sat::literal choice = sat::null_literal;
unsigned num_choices = 0; // TODO: should probably cache this?
@ -789,12 +772,7 @@ namespace polysat {
rational val = m_value[v];
LOG_H3("Reverting decision: pvar " << v << " := " << val);
SASSERT(m_justification[v].is_decision());
constraints just(m_cjust[v]);
backjump(m_justification[v].level()-1);
// Since decision "v -> val" caused a conflict, we may keep all
// viability restrictions on v and additionally exclude val.
// TODO: viability restrictions on 'v' must have happened before decision on 'v'. Do we really need to save/restore m_viable here?
SASSERT(m_cjust[v] == just); // check this with assertion
m_viable.add_non_viable(v, val);
@ -815,7 +793,8 @@ namespace polysat {
// and then may lead to an assertion failure through this call to narrow.
// TODO: what to do with "unassigned" constraints at this point? (we probably should have resolved those away, even in the 'backtrack' case.)
// NOTE: they are constraints from clauses that were added to cjust… how to deal with that? should we add the whole clause to cjust?
if (!c->is_undef()) // TODO: this check to be removed once this is fixed properly.
SASSERT(!c->is_undef());
// if (!c->is_undef()) // TODO: this check to be removed once this is fixed properly.
c->narrow(*this);
if (is_conflict()) {
LOG_H1("Conflict during revert_decision/narrow!");
@ -902,7 +881,7 @@ namespace polysat {
m_conflict.reset();
clause* reason_cl = reason.get();
add_lemma_clause(std::move(reason));
add_lemma(std::move(reason));
propagate_bool(~lit, reason_cl);
if (is_conflict()) {
LOG_H1("Conflict during revert_bool_decision/propagate_bool!");
@ -924,7 +903,7 @@ namespace polysat {
if (reason->literals().size() == 1) {
SASSERT(reason->literals()[0] == lit);
constraint* c = m_constraints.lookup(lit.var());
m_redundant.push_back(c);
// m_redundant.push_back(c);
activate_constraint_base(c, !lit.sign());
}
else
@ -949,6 +928,7 @@ namespace polysat {
/// Used for external unit constraints and unit consequences.
void solver::activate_constraint_base(constraint* c, bool is_true) {
SASSERT(c);
LOG("\n" << *this);
// c must be in m_original or m_redundant so it can be deactivated properly when popping the base level
SASSERT_EQ(std::count(m_original.begin(), m_original.end(), c) + std::count(m_redundant.begin(), m_redundant.end(), c), 1);
sat::literal lit(c->bvar(), !is_true);
@ -1016,30 +996,22 @@ namespace polysat {
}
// Add lemma to storage but do not activate it
void solver::add_lemma_unit(constraint_ref lemma) {
void solver::add_lemma(clause_ref lemma) {
if (!lemma)
return;
LOG("Lemma: " << show_deref(lemma));
constraint* c = m_constraints.store(std::move(lemma));
insert_constraint(m_redundant, c);
// TODO: create unit clause
}
// Add lemma to storage but do not activate it
void solver::add_lemma_clause(clause_ref lemma) {
if (!lemma)
return;
// TODO: check for unit clauses!
LOG("Lemma: " << show_deref(lemma));
if (lemma->size() < 2) {
LOG_H1("TODO: this should be treated as unit constraint and asserted at the base level!");
}
// SASSERT(lemma->size() > 1);
SASSERT(lemma->size() > 0);
clause* cl = m_constraints.store(std::move(lemma));
m_redundant_clauses.push_back(cl);
if (cl->size() == 1) {
constraint* c = m_constraints.lookup(cl->literals()[0].var());
insert_constraint(m_redundant, c);
}
}
void solver::insert_constraint(ptr_vector<constraint>& cs, constraint* c) {
SASSERT(c);
LOG_V("INSERTING: " << *c);
cs.push_back(c);
for (unsigned i = cs.size() - 1; i-- > 0; ) {
auto* c1 = cs[i + 1];
@ -1082,17 +1054,17 @@ namespace polysat {
return m_base_levels.empty() ? 0 : m_base_levels.back();
}
bool solver::active_at_base_level(sat::bool_var bvar) const {
// NOTE: this active_at_base_level is actually not what we want!!!
// first of all, it might not really be a base level: could be a non-base level between previous base levels.
// in that case, how do we determine the right dependencies???
// secondly, we are interested in "unit clauses", not as much whether we assigned something on the base level...
// TODO: however, propagating stuff at the base level... need to be careful with dependencies there... might need to turn all base-level propagations into unit clauses...
VERIFY(false);
// bool res = m_bvars.is_assigned(bvar) && m_bvars.level(bvar) <= base_level();
// SASSERT_EQ(res, !!m_constraints.lookup(bvar)->unit_clause());
// return res;
}
// bool solver::active_at_base_level(sat::bool_var bvar) const {
// // NOTE: this active_at_base_level is actually not what we want!!!
// // first of all, it might not really be a base level: could be a non-base level between previous base levels.
// // in that case, how do we determine the right dependencies???
// // secondly, we are interested in "unit clauses", not as much whether we assigned something on the base level...
// // TODO: however, propagating stuff at the base level... need to be careful with dependencies there... might need to turn all base-level propagations into unit clauses...
// VERIFY(false);
// // bool res = m_bvars.is_assigned(bvar) && m_bvars.level(bvar) <= base_level();
// // SASSERT_EQ(res, !!m_constraints.lookup(bvar)->unit_clause());
// // return res;
// }
bool solver::try_eval(pdd const& p, rational& out_value) const {
pdd r = p.subst_val(assignment());

View file

@ -126,7 +126,8 @@ namespace polysat {
void push_cjust(pvar v, constraint* c) {
if (m_cjust[v].contains(c)) // TODO: better check (flag on constraint?)
return;
LOG_V("cjust[v" << v << "] += " << *c);
LOG_V("cjust[v" << v << "] += " << show_deref(c));
SASSERT(c);
m_cjust[v].push_back(c);
m_trail.push_back(trail_instr_t::just_i);
m_cjust_trail.push_back(v);
@ -206,9 +207,6 @@ namespace polysat {
bool is_conflict() const { return !m_conflict.empty(); }
bool at_base_level() const;
unsigned base_level() const;
bool active_at_base_level(sat::bool_var bvar) const;
bool active_at_base_level(sat::literal lit) const { return active_at_base_level(lit.var()); }
bool active_at_base_level(constraint& c) const { return active_at_base_level(c.bvar()); }
void resolve_conflict();
void backtrack(unsigned i, clause_ref lemma);
@ -216,10 +214,8 @@ namespace polysat {
void revert_decision(pvar v, clause_ref reason);
void revert_bool_decision(sat::literal lit, clause_ref reason);
void learn_lemma(pvar v, clause_ref lemma);
void learn_lemma_clause(pvar v, clause_ref lemma);
void backjump(unsigned new_level);
void add_lemma_unit(constraint_ref lemma);
void add_lemma_clause(clause_ref lemma);
void add_lemma(clause_ref lemma);
constraint_literal mk_eq(pdd const& p);
constraint_literal mk_diseq(pdd const& p);

View file

@ -265,11 +265,8 @@ namespace polysat {
if (is_viable(v, x))
xs.push_back(x);
LOG("Viable for pvar " << v << ": " << xs);
LOG("Viable for v" << v << ": " << xs);
}
else {
LOG("Viable for pvar " << v << ": <range too big>");
}
}
#endif

View file

@ -43,6 +43,7 @@ namespace polysat {
public:
scoped_solver(std::string name): solver(lim), m_name(name) {
std::cout << "\n\n\n" << std::string(78, '#') << "\n";
std::cout << "\nSTART: " << m_name << "\n";
}
@ -355,7 +356,7 @@ namespace polysat {
* We do overflow checks by doubling the base bitwidth here.
*/
static void test_monot(unsigned base_bw = 5) {
scoped_solver s(__func__);
scoped_solver s(std::string{__func__} + "(" + std::to_string(base_bw) + ")");
auto max_int_const = rational::power_of_two(base_bw) - 1;
@ -589,7 +590,7 @@ namespace polysat {
* y*z >= 2^32
*/
static void test_monot_bounds(unsigned base_bw = 32) {
scoped_solver s(__func__);
scoped_solver s(std::string{__func__} + "(" + std::to_string(base_bw) + ")");
unsigned bw = 2 * base_bw;
auto y = s.var(s.add_var(bw));
auto z = s.var(s.add_var(bw));
@ -709,6 +710,41 @@ namespace polysat {
}
/**
* x*x <= z
* (x+1)*(x+1) <= z
* y == x+1
* ¬(y*y <= z)
*
* The original version had signed comparisons but that doesn't matter for the UNSAT result.
* UNSAT can be seen easily by substituting the equality.
*/
static void test_subst(unsigned bw = 32) {
scoped_solver s(__func__);
auto x = s.var(s.add_var(bw));
auto y = s.var(s.add_var(bw));
auto z = s.var(s.add_var(bw));
s.add_ule(x * x, z); // optional
s.add_ule((x + 1) * (x + 1), z);
s.add_eq(x + 1 - y);
s.add_ult(z, y*y);
s.check();
s.expect_unsat();
}
static void test_subst_signed(unsigned bw = 32) {
scoped_solver s(__func__);
auto x = s.var(s.add_var(bw));
auto y = s.var(s.add_var(bw));
auto z = s.var(s.add_var(bw));
s.add_sle(x * x, z); // optional
s.add_sle((x + 1) * (x + 1), z);
s.add_eq(x + 1 - y);
s.add_slt(z, y*y);
s.check();
s.expect_unsat();
}
// Goal: we probably mix up polysat variables and PDD variables at several points; try to uncover such cases
// NOTE: actually, add_var seems to keep them in sync, so this is not an issue at the moment (but we should still test it later)
@ -833,8 +869,9 @@ namespace polysat {
void tst_polysat() {
polysat::test_subst();
// polysat::test_monot_bounds(8);
polysat::test_monot_bounds_simple(8);
// polysat::test_monot_bounds_simple(8);
return;
polysat::test_add_conflicts();