3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-23 17:15:31 +00:00

Reorganizing code. Added script for generating VS project files

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2012-10-20 15:16:37 -07:00
parent 2c464d413d
commit 8a6997960a
68 changed files with 167 additions and 170 deletions

View file

@ -0,0 +1,44 @@
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
cmd_context_types.h
Abstract:
Author:
Leonardo (leonardo) 2011-04-22
Notes:
--*/
#include<iostream>
#include"cmd_context_types.h"
std::ostream & operator<<(std::ostream & out, cmd_arg_kind k) {
switch (k) {
case CPK_UINT: out << "unsigned int"; break;
case CPK_BOOL: out << "bool"; break;
case CPK_DOUBLE: out << "double"; break;
case CPK_NUMERAL: out << "rational"; break;
case CPK_DECIMAL: out << "rational"; break;
case CPK_STRING: out << "string"; break;
case CPK_OPTION_VALUE: out << "optional-value"; break;
case CPK_KEYWORD: out << "keyword"; break;
case CPK_SYMBOL: out << "symbol"; break;
case CPK_SYMBOL_LIST: out << "symbol-list"; break;
case CPK_SORT: out << "sort"; break;
case CPK_SORT_LIST: out << "sort-list"; break;
case CPK_EXPR: out << "expression"; break;
case CPK_EXPR_LIST: out << "expression-list"; break;
case CPK_FUNC_DECL: out << "declaration"; break;
case CPK_FUNC_DECL_LIST: out << "declaration-list"; break;
case CPK_SORTED_VAR: out << "sorted-variable"; break;
case CPK_SORTED_VAR_LIST: out << "sorted-variable-list"; break;
case CPK_SEXPR: out << "s-expression"; break;
default: out << "unknown"; break;
}
return out;
}

View file

@ -0,0 +1,119 @@
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
cmd_context_types.h
Abstract:
Author:
Leonardo (leonardo) 2011-04-22
Notes:
--*/
#ifndef _CMD_CONTEXT_TYPES_H_
#define _CMD_CONTEXT_TYPES_H_
#include"symbol.h"
#include"z3_exception.h"
#include<sstream>
class rational;
class expr;
class sort;
class func_decl;
class sexpr;
class cmd_context;
enum cmd_arg_kind {
CPK_UINT, CPK_BOOL, CPK_DOUBLE, CPK_NUMERAL,
CPK_DECIMAL, CPK_STRING, CPK_OPTION_VALUE,
CPK_KEYWORD,
CPK_SYMBOL, CPK_SYMBOL_LIST,
CPK_SORT, CPK_SORT_LIST,
CPK_EXPR, CPK_EXPR_LIST,
CPK_FUNC_DECL, CPK_FUNC_DECL_LIST,
CPK_SORTED_VAR, CPK_SORTED_VAR_LIST,
CPK_SEXPR,
CPK_INVALID
};
std::ostream & operator<<(std::ostream & out, cmd_arg_kind k);
typedef cmd_arg_kind param_kind;
class cmd_exception : public default_exception {
int m_line;
int m_pos;
std::string compose(char const* msg, symbol const& s) {
std::stringstream stm;
stm << msg << s;
return stm.str();
}
public:
cmd_exception(char const * msg):default_exception(msg), m_line(-1), m_pos(-1) {}
cmd_exception(std::string const & msg):default_exception(msg.c_str()), m_line(-1), m_pos(-1) {}
cmd_exception(std::string const & msg, int line, int pos):default_exception(msg.c_str()), m_line(line), m_pos(pos) {}
cmd_exception(char const * msg, symbol const & s):
default_exception(compose(msg,s).c_str()),m_line(-1),m_pos(-1) {}
cmd_exception(char const * msg, symbol const & s, int line, int pos):
default_exception(compose(msg,s).c_str()),m_line(line),m_pos(pos) {}
bool has_pos() const { return m_line >= 0; }
int line() const { SASSERT(has_pos()); return m_line; }
int pos() const { SASSERT(has_pos()); return m_pos; }
};
class stop_parser_exception {
};
typedef std::pair<symbol, sort*> sorted_var;
// A command may have a variable number of arguments.
#define VAR_ARITY UINT_MAX
/**
\brief Command abstract class.
Commands may have variable number of argumets.
*/
class cmd {
symbol m_name;
public:
cmd(char const * n):m_name(n) {}
virtual ~cmd() {}
virtual void reset(cmd_context & ctx) {}
virtual void finalize(cmd_context & ctx) {}
virtual symbol get_name() const { return m_name; }
virtual char const * get_usage() const { return 0; }
virtual char const * get_descr(cmd_context & ctx) const { return 0; }
virtual unsigned get_arity() const { return 0; }
// command invocation
virtual void prepare(cmd_context & ctx) {}
virtual cmd_arg_kind next_arg_kind(cmd_context & ctx) const { UNREACHABLE(); return CPK_UINT; }
virtual void set_next_arg(cmd_context & ctx, unsigned val) { UNREACHABLE(); }
virtual void set_next_arg(cmd_context & ctx, bool val) { UNREACHABLE(); }
virtual void set_next_arg(cmd_context & ctx, rational const & val) { UNREACHABLE(); }
virtual void set_next_arg(cmd_context & ctx, double val) { UNREACHABLE(); }
virtual void set_next_arg(cmd_context & ctx, char const * val) { UNREACHABLE(); }
virtual void set_next_arg(cmd_context & ctx, symbol const & s) { UNREACHABLE(); }
virtual void set_next_arg(cmd_context & ctx, unsigned num, symbol const * slist) { UNREACHABLE(); }
virtual void set_next_arg(cmd_context & ctx, sort * s) { UNREACHABLE(); }
virtual void set_next_arg(cmd_context & ctx, unsigned num, sort * const * slist) { UNREACHABLE(); }
virtual void set_next_arg(cmd_context & ctx, expr * t) { UNREACHABLE(); }
virtual void set_next_arg(cmd_context & ctx, unsigned num, expr * const * tlist) { UNREACHABLE(); }
virtual void set_next_arg(cmd_context & ctx, sorted_var const & sv) { UNREACHABLE(); }
virtual void set_next_arg(cmd_context & ctx, unsigned num, sorted_var const * svlist) { UNREACHABLE(); }
virtual void set_next_arg(cmd_context & ctx, func_decl * f) { UNREACHABLE(); }
virtual void set_next_arg(cmd_context & ctx, unsigned num, func_decl * const * flist) { UNREACHABLE(); }
virtual void set_next_arg(cmd_context & ctx, sexpr * n) { UNREACHABLE(); }
virtual void failure_cleanup(cmd_context & ctx) {}
virtual void execute(cmd_context & ctx) {}
};
#endif

87
src/util/cooperate.cpp Normal file
View file

@ -0,0 +1,87 @@
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
cooperate.cpp
Abstract:
Cooperation support
Author:
Leonardo (leonardo) 2011-05-17
Notes:
--*/
#include"z3_omp.h"
#include"cooperate.h"
#include"trace.h"
#include"debug.h"
struct cooperation_lock {
omp_nest_lock_t m_lock;
char const * m_task;
volatile int m_owner_thread;
cooperation_lock() {
omp_set_nested(1);
omp_init_nest_lock(&m_lock);
m_task = 0;
m_owner_thread = -1;
}
~cooperation_lock() {
omp_destroy_nest_lock(&m_lock);
}
};
cooperation_lock g_lock;
bool cooperation_ctx::g_cooperate = false;
void cooperation_ctx::checkpoint(char const * task) {
SASSERT(cooperation_ctx::enabled());
int tid = omp_get_thread_num();
if (g_lock.m_owner_thread == tid) {
g_lock.m_owner_thread = -1;
omp_unset_nest_lock(&(g_lock.m_lock));
}
// this critical section is used to force the owner thread to give a chance to
// another thread to get the lock
#pragma omp critical (z3_cooperate)
{
omp_set_nest_lock(&(g_lock.m_lock));
TRACE("cooperate_detail", tout << task << ", tid: " << tid << "\n";);
CTRACE("cooperate", g_lock.m_task != task, tout << "moving to task: " << task << "\n";);
g_lock.m_owner_thread = tid;
}
}
cooperation_section::cooperation_section() {
SASSERT(!cooperation_ctx::enabled());
SASSERT(!omp_in_parallel());
cooperation_ctx::g_cooperate = true;
}
cooperation_section::~cooperation_section() {
SASSERT(cooperation_ctx::enabled());
cooperation_ctx::g_cooperate = false;
}
init_task::init_task(char const * task) {
SASSERT(cooperation_ctx::enabled());
SASSERT(omp_in_parallel());
cooperation_ctx::checkpoint(task);
}
init_task::~init_task() {
int tid = omp_get_thread_num();
if (g_lock.m_owner_thread == tid) {
g_lock.m_owner_thread = -1;
omp_unset_nest_lock(&(g_lock.m_lock));
}
}

50
src/util/cooperate.h Normal file
View file

@ -0,0 +1,50 @@
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
cooperate.h
Abstract:
Cooperation support
Author:
Leonardo (leonardo) 2011-05-17
Notes:
--*/
#ifndef _COOPERATE_H_
#define _COOPERATE_H_
class cooperation_section;
class cooperation_ctx {
friend class cooperation_section;
static bool g_cooperate;
public:
static bool enabled() { return g_cooperate; }
static void checkpoint(char const * task);
};
inline void cooperate(char const * task) {
if (cooperation_ctx::enabled()) cooperation_ctx::checkpoint(task);
}
// must be declared before "#pragma parallel" to enable cooperation
class cooperation_section {
public:
cooperation_section();
~cooperation_section();
};
// must be first declaration inside "#pragma parallel for"
class init_task {
public:
init_task(char const * task);
~init_task();
};
#endif

37
src/util/error_codes.h Normal file
View file

@ -0,0 +1,37 @@
/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
error_codes.h
Abstract:
Error codes produced by Z3.
Author:
Leonardo de Moura (leonardo) 2007-09-04.
Revision History:
--*/
#ifndef _ERROR_CODES_H_
#define _ERROR_CODES_H_
#define ERR_OK 0
#define ERR_MEMOUT 101
#define ERR_TIMEOUT 102
#define ERR_PARSER 103
#define ERR_UNSOUNDNESS 104
#define ERR_INCOMPLETENESS 105
#define ERR_INI_FILE 106
#define ERR_NOT_IMPLEMENTED_YET 107
#define ERR_OPEN_FILE 108
#define ERR_CMD_LINE 109
#define ERR_INTERNAL_FATAL 110
#define ERR_TYPE_CHECK 111
#define ERR_UNKNOWN_RESULT 112
#endif /* _ERROR_CODES_H_ */

View file

@ -21,7 +21,6 @@ Revision History:
#include"mpq.h"
#include"hash.h"
#include"params.h"
typedef std::pair<mpq, mpq> mpq_inf;
@ -32,12 +31,12 @@ class mpq_inf_manager {
public:
typedef mpq_inf numeral;
mpq_inf_manager(mpq_manager<SYNCH> & _m, params_ref const & p = params_ref()):m(_m) {
updt_params(p);
mpq_inf_manager(mpq_manager<SYNCH> & _m, double inf = 0.0001):m(_m) {
set_inf(inf);
}
void updt_params(params_ref const & p) {
m_inf = p.get_double(":infinitesimal-as-double", 0.00001);
void set_inf(double inf) {
m_inf = inf;
}
enum inf_kind { NEG=-1, ZERO, POS };

716
src/util/params.cpp Normal file
View file

@ -0,0 +1,716 @@
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
params.cpp
Abstract:
Parameters
Author:
Leonardo (leonardo) 2011-05-09
Notes:
--*/
#include"params.h"
#include"rational.h"
#include"symbol.h"
#include"dictionary.h"
struct param_descrs::imp {
typedef std::pair<param_kind, char const *> info;
dictionary<info> m_info;
svector<symbol> m_names;
void insert(symbol const & name, param_kind k, char const * descr) {
SASSERT(!name.is_numerical());
info i;
if (m_info.find(name, i)) {
SASSERT(i.first == k);
return;
}
m_info.insert(name, info(k, descr));
m_names.push_back(name);
}
void erase(symbol const & name) {
m_info.erase(name);
}
param_kind get_kind(symbol const & name) const {
info i;
if (m_info.find(name, i))
return i.first;
return CPK_INVALID;
}
unsigned size() const {
return m_names.size();
}
symbol get_param_name(unsigned idx) const {
return m_names[idx];
}
struct lt {
bool operator()(symbol const & s1, symbol const & s2) const { return strcmp(s1.bare_str(), s2.bare_str()) < 0; }
};
void display(std::ostream & out, unsigned indent) const {
svector<symbol> names;
dictionary<info>::iterator it = m_info.begin();
dictionary<info>::iterator end = m_info.end();
for (; it != end; ++it) {
names.push_back(it->m_key);
}
std::sort(names.begin(), names.end(), lt());
svector<symbol>::iterator it2 = names.begin();
svector<symbol>::iterator end2 = names.end();
for (; it2 != end2; ++it2) {
for (unsigned i = 0; i < indent; i++) out << " ";
out << *it2;
info d;
d.second = 0;
m_info.find(*it2, d);
SASSERT(d.second);
out << " (" << d.first << ") " << d.second << "\n";
}
}
};
param_descrs::param_descrs() {
m_imp = alloc(imp);
}
param_descrs::~param_descrs() {
dealloc(m_imp);
}
void param_descrs::insert(symbol const & name, param_kind k, char const * descr) {
m_imp->insert(name, k, descr);
}
void param_descrs::insert(char const * name, param_kind k, char const * descr) {
insert(symbol(name), k, descr);
}
void param_descrs::erase(symbol const & name) {
m_imp->erase(name);
}
void param_descrs::erase(char const * name) {
erase(symbol(name));
}
param_kind param_descrs::get_kind(symbol const & name) const {
return m_imp->get_kind(name);
}
param_kind param_descrs::get_kind(char const * name) const {
return get_kind(symbol(name));
}
unsigned param_descrs::size() const {
return m_imp->size();
}
symbol param_descrs::get_param_name(unsigned i) const {
return m_imp->get_param_name(i);
}
void param_descrs::display(std::ostream & out, unsigned indent) const {
return m_imp->display(out, indent);
}
void insert_max_memory(param_descrs & r) {
r.insert(":max-memory", CPK_UINT, "(default: infty) maximum amount of memory in megabytes.");
}
void insert_max_steps(param_descrs & r) {
r.insert(":max-steps", CPK_UINT, "(default: infty) maximum number of steps.");
}
void insert_produce_models(param_descrs & r) {
r.insert(":produce-models", CPK_BOOL, "(default: false) model generation.");
}
void insert_produce_proofs(param_descrs & r) {
r.insert(":produce-proofs", CPK_BOOL, "(default: false) proof generation.");
}
void insert_timeout(param_descrs & r) {
r.insert(":timeout", CPK_UINT, "(default: infty) timeout in milliseconds.");
}
class params {
friend class params_ref;
struct value {
param_kind m_kind;
union {
bool m_bool_value;
unsigned m_uint_value;
double m_double_value;
char const * m_str_value;
char const * m_sym_value;
rational * m_rat_value;
};
};
typedef std::pair<symbol, value> entry;
svector<entry> m_entries;
unsigned m_ref_count;
void del_value(entry & e);
void del_values();
public:
params():m_ref_count(0) {}
~params() {
reset();
}
void inc_ref() { m_ref_count++; }
void dec_ref() { SASSERT(m_ref_count > 0); m_ref_count--; if (m_ref_count == 0) dealloc(this); }
bool empty() const { return m_entries.empty(); }
bool contains(symbol const & k) const;
bool contains(char const * k) const;
void reset();
void reset(symbol const & k);
void reset(char const * k);
void validate(param_descrs const & p) const {
svector<params::entry>::const_iterator it = m_entries.begin();
svector<params::entry>::const_iterator end = m_entries.end();
for (; it != end; ++it) {
param_kind expected = p.get_kind(it->first);
if (expected == CPK_INVALID)
throw default_exception("unknown parameter '%s'", it->first.str().c_str());
if (it->second.m_kind != expected)
throw default_exception("parameter kind mismatch '%s'", it->first.str().c_str());
}
}
// getters
bool get_bool(symbol const & k, bool _default) const;
bool get_bool(char const * k, bool _default) const;
unsigned get_uint(symbol const & k, unsigned _default) const;
unsigned get_uint(char const * k, unsigned _default) const;
double get_double(symbol const & k, double _default) const;
double get_double(char const * k, double _default) const;
char const * get_str(symbol const & k, char const * _default) const;
char const * get_str(char const * k, char const * _default) const;
rational get_rat(symbol const & k, rational const & _default) const;
rational get_rat(char const * k, rational const & _default) const;
symbol get_sym(symbol const & k, symbol const & _default) const;
symbol get_sym(char const * k, symbol const & _default) const;
// setters
void set_bool(symbol const & k, bool v);
void set_bool(char const * k, bool v);
void set_uint(symbol const & k, unsigned v);
void set_uint(char const * k, unsigned v);
void set_double(symbol const & k, double v);
void set_double(char const * k, double v);
void set_str(symbol const & k, char const * v);
void set_str(char const * k, char const * v);
void set_rat(symbol const & k, rational const & v);
void set_rat(char const * k, rational const & v);
void set_sym(symbol const & k, symbol const & v);
void set_sym(char const * k, symbol const & v);
void display(std::ostream & out) const {
out << "(params";
svector<params::entry>::const_iterator it = m_entries.begin();
svector<params::entry>::const_iterator end = m_entries.end();
for (; it != end; ++it) {
out << " " << it->first;
switch (it->second.m_kind) {
case CPK_BOOL:
out << " " << it->second.m_bool_value;
break;
case CPK_UINT:
out << " " <<it->second.m_uint_value;
break;
case CPK_DOUBLE:
out << " " << it->second.m_double_value;
break;
case CPK_NUMERAL:
out << " " << *(it->second.m_rat_value);
break;
case CPK_SYMBOL:
out << " " << symbol::mk_symbol_from_c_ptr(it->second.m_sym_value);
break;
case CPK_STRING:
out << " " << it->second.m_str_value;
break;
default:
UNREACHABLE();
break;
}
}
out << ")";
}
};
params_ref::~params_ref() {
if (m_params)
m_params->dec_ref();
}
params_ref::params_ref(params_ref const & p):
m_params(0) {
operator=(p);
}
void params_ref::display(std::ostream & out) const {
if (m_params)
m_params->display(out);
else
out << "(params)";
}
void params_ref::validate(param_descrs const & p) const {
if (m_params)
m_params->validate(p);
}
params_ref & params_ref::operator=(params_ref const & p) {
if (p.m_params)
p.m_params->inc_ref();
if (m_params)
m_params->dec_ref();
m_params = p.m_params;
return *this;
}
void params_ref::copy(params_ref const & src) {
if (m_params == 0)
operator=(src);
else {
init();
copy_core(src.m_params);
}
}
void params_ref::copy_core(params const * src) {
if (src == 0)
return;
svector<params::entry>::const_iterator it = src->m_entries.begin();
svector<params::entry>::const_iterator end = src->m_entries.end();
for (; it != end; ++it) {
switch (it->second.m_kind) {
case CPK_BOOL:
m_params->set_bool(it->first, it->second.m_bool_value);
break;
case CPK_UINT:
m_params->set_uint(it->first, it->second.m_uint_value);
break;
case CPK_DOUBLE:
m_params->set_double(it->first, it->second.m_double_value);
break;
case CPK_NUMERAL:
m_params->set_rat(it->first, *(it->second.m_rat_value));
break;
case CPK_SYMBOL:
m_params->set_sym(it->first, symbol::mk_symbol_from_c_ptr(it->second.m_sym_value));
break;
case CPK_STRING:
m_params->set_str(it->first, it->second.m_str_value);
break;
default:
UNREACHABLE();
break;
}
}
}
void params_ref::init() {
if (!m_params) {
m_params = alloc(params);
m_params->inc_ref();
}
else if (m_params->m_ref_count > 1) {
params * old = m_params;
m_params = alloc(params);
m_params->inc_ref();
copy_core(old);
old->dec_ref();
}
SASSERT(m_params->m_ref_count == 1);
}
bool params_ref::get_bool(symbol const & k, bool _default) const { return m_params ? m_params->get_bool(k, _default) : _default; }
bool params_ref::get_bool(char const * k, bool _default) const { return m_params ? m_params->get_bool(k, _default) : _default; }
unsigned params_ref::get_uint(symbol const & k, unsigned _default) const { return m_params ? m_params->get_uint(k, _default) : _default; }
unsigned params_ref::get_uint(char const * k, unsigned _default) const { return m_params ? m_params->get_uint(k, _default) : _default; }
double params_ref::get_double(symbol const & k, double _default) const { return m_params ? m_params->get_double(k, _default) : _default; }
double params_ref::get_double(char const * k, double _default) const { return m_params ? m_params->get_double(k, _default) : _default; }
char const * params_ref::get_str(symbol const & k, char const * _default) const { return m_params ? m_params->get_str(k, _default) : _default; }
char const * params_ref::get_str(char const * k, char const * _default) const { return m_params ? m_params->get_str(k, _default) : _default; }
rational params_ref::get_rat(symbol const & k, rational const & _default) const {
return m_params ? m_params->get_rat(k, _default) : _default;
}
rational params_ref::get_rat(char const * k, rational const & _default) const {
return m_params ? m_params->get_rat(k, _default) : _default;
}
symbol params_ref::get_sym(symbol const & k, symbol const & _default) const {
return m_params ? m_params->get_sym(k, _default) : _default;
}
symbol params_ref::get_sym(char const * k, symbol const & _default) const {
return m_params ? m_params->get_sym(k, _default) : _default;
}
bool params_ref::empty() const {
if (!m_params)
return true;
return m_params->empty();
}
bool params_ref::contains(symbol const & k) const {
if (!m_params)
return false;
return m_params->contains(k);
}
bool params_ref::contains(char const * k) const {
if (!m_params)
return false;
return m_params->contains(k);
}
void params_ref::reset() {
if (m_params)
m_params->reset();
}
void params_ref::reset(symbol const & k) {
if (m_params)
m_params->reset(k);
}
void params_ref::reset(char const * k) {
if (m_params)
m_params->reset(k);
}
void params_ref::set_bool(symbol const & k, bool v) {
init();
m_params->set_bool(k, v);
}
void params_ref::set_bool(char const * k, bool v) {
init();
m_params->set_bool(k, v);
}
void params_ref::set_uint(symbol const & k, unsigned v) {
init();
m_params->set_uint(k, v);
}
void params_ref::set_uint(char const * k, unsigned v) {
init();
m_params->set_uint(k, v);
}
void params_ref::set_double(symbol const & k, double v) {
init();
m_params->set_double(k, v);
}
void params_ref::set_double(char const * k, double v) {
init();
m_params->set_double(k, v);
}
void params_ref::set_str(symbol const & k, char const * v) {
init();
m_params->set_str(k, v);
}
void params_ref::set_str(char const * k, char const * v) {
init();
m_params->set_str(k, v);
}
void params_ref::set_rat(symbol const & k, rational const & v) {
init();
m_params->set_rat(k, v);
}
void params_ref::set_rat(char const * k, rational const & v) {
init();
m_params->set_rat(k, v);
}
void params_ref::set_sym(symbol const & k, symbol const & v) {
init();
m_params->set_sym(k, v);
}
void params_ref::set_sym(char const * k, symbol const & v) {
init();
m_params->set_sym(k, v);
}
void params::del_value(entry & e) {
switch (e.second.m_kind) {
case CPK_NUMERAL:
if (e.second.m_kind == CPK_NUMERAL)
dealloc(e.second.m_rat_value);
break;
default:
return;
}
}
#define TRAVERSE_ENTRIES(CODE) { \
svector<entry>::iterator it = m_entries.begin(); \
svector<entry>::iterator end = m_entries.end(); \
for (; it != end; ++it) { \
CODE \
} \
}
#define TRAVERSE_CONST_ENTRIES(CODE) { \
svector<entry>::const_iterator it = m_entries.begin(); \
svector<entry>::const_iterator end = m_entries.end(); \
for (; it != end; ++it) { \
CODE \
} \
}
void params::del_values() {
TRAVERSE_ENTRIES(del_value(*it););
}
#define CONTAINS(k) { \
if (empty()) \
return false; \
TRAVERSE_CONST_ENTRIES(if (it->first == k) return true;); \
return false; \
}
bool params::contains(symbol const & k) const {
CONTAINS(k);
}
bool params::contains(char const * k) const {
CONTAINS(k);
}
void params::reset() {
del_values();
m_entries.finalize();
SASSERT(empty());
}
#define RESET(k) { \
if (empty()) return; \
TRAVERSE_ENTRIES(if (it->first == k) { \
svector<entry>::iterator it2 = it; \
del_value(*it2); \
++it; \
for (; it != end; ++it, ++it2) { \
*it2 = *it; \
} \
m_entries.pop_back(); \
return; \
}); \
}
void params::reset(symbol const & k) {
RESET(k);
}
void params::reset(char const * k) {
RESET(k);
}
#define GET_VALUE(MATCH_CODE, KIND) { \
if (empty()) return _default; \
TRAVERSE_CONST_ENTRIES(if (it->first == k && it->second.m_kind == KIND) { \
MATCH_CODE \
}); \
return _default; \
}
#define GET_SIMPLE_VALUE(FIELD_NAME, KIND) GET_VALUE(return it->second.FIELD_NAME;, KIND)
bool params::get_bool(symbol const & k, bool _default) const {
GET_SIMPLE_VALUE(m_bool_value, CPK_BOOL);
}
bool params::get_bool(char const * k, bool _default) const {
GET_SIMPLE_VALUE(m_bool_value, CPK_BOOL);
}
unsigned params::get_uint(symbol const & k, unsigned _default) const {
GET_SIMPLE_VALUE(m_uint_value, CPK_UINT);
}
unsigned params::get_uint(char const * k, unsigned _default) const {
GET_SIMPLE_VALUE(m_uint_value, CPK_UINT);
}
double params::get_double(symbol const & k, double _default) const {
GET_SIMPLE_VALUE(m_double_value, CPK_DOUBLE);
}
double params::get_double(char const * k, double _default) const {
GET_SIMPLE_VALUE(m_double_value, CPK_DOUBLE);
}
char const * params::get_str(symbol const & k, char const * _default) const {
GET_SIMPLE_VALUE(m_str_value, CPK_STRING);
}
char const * params::get_str(char const * k, char const * _default) const {
GET_SIMPLE_VALUE(m_str_value, CPK_STRING);
}
rational params::get_rat(symbol const & k, rational const & _default) const {
if (empty()) return _default;
TRAVERSE_CONST_ENTRIES(if (it->first == k) {
if (it->second.m_kind == CPK_NUMERAL) {
return *(it->second.m_rat_value);
}
if (it->second.m_kind == CPK_UINT) {
return rational(static_cast<int>(it->second.m_uint_value));
}
});
return _default;
}
rational params::get_rat(char const * k, rational const & _default) const {
if (empty()) return _default;
TRAVERSE_CONST_ENTRIES(if (it->first == k) {
if (it->second.m_kind == CPK_NUMERAL) {
return *(it->second.m_rat_value);
}
if (it->second.m_kind == CPK_UINT) {
return rational(static_cast<int>(it->second.m_uint_value));
}
});
return _default;
}
symbol params::get_sym(symbol const & k, symbol const & _default) const {
GET_VALUE(return symbol::mk_symbol_from_c_ptr(it->second.m_sym_value);, CPK_SYMBOL);
}
symbol params::get_sym(char const * k, symbol const & _default) const {
GET_VALUE(return symbol::mk_symbol_from_c_ptr(it->second.m_sym_value);, CPK_SYMBOL);
}
#define SET_VALUE(MATCH_CODE, ADD_CODE) { \
TRAVERSE_ENTRIES(if (it->first == k) { \
MATCH_CODE \
return; \
}); \
ADD_CODE \
}
#define SET_SIMPLE_VALUE(FIELD_NAME, KIND) SET_VALUE({ \
del_value(*it); \
it->second.m_kind = KIND; \
it->second.FIELD_NAME = v; \
}, \
{ \
entry new_entry; \
new_entry.first = symbol(k); \
new_entry.second.m_kind = KIND; \
new_entry.second.FIELD_NAME = v; \
m_entries.push_back(new_entry); \
})
// setters
void params::set_bool(symbol const & k, bool v) {
SET_SIMPLE_VALUE(m_bool_value, CPK_BOOL);
}
void params::set_bool(char const * k, bool v) {
SET_SIMPLE_VALUE(m_bool_value, CPK_BOOL);
}
void params::set_uint(symbol const & k, unsigned v) {
SET_SIMPLE_VALUE(m_uint_value, CPK_UINT);
}
void params::set_uint(char const * k, unsigned v) {
SET_SIMPLE_VALUE(m_uint_value, CPK_UINT);
}
void params::set_double(symbol const & k, double v) {
SET_SIMPLE_VALUE(m_double_value, CPK_DOUBLE);
}
void params::set_double(char const * k, double v) {
SET_SIMPLE_VALUE(m_double_value, CPK_DOUBLE);
}
void params::set_str(symbol const & k, char const * v) {
SET_SIMPLE_VALUE(m_str_value, CPK_STRING);
}
void params::set_str(char const * k, char const * v) {
SET_SIMPLE_VALUE(m_str_value, CPK_STRING);
}
#define SET_RAT_VALUE() SET_VALUE({ \
if (it->second.m_kind != CPK_NUMERAL) { \
del_value(*it); \
it->second.m_kind = CPK_NUMERAL; \
it->second.m_rat_value = alloc(rational); \
} \
*(it->second.m_rat_value) = v; \
}, \
{ \
entry new_entry; \
new_entry.first = symbol(k); \
new_entry.second.m_kind = CPK_NUMERAL; \
new_entry.second.m_rat_value = alloc(rational); \
*(new_entry.second.m_rat_value) = v; \
m_entries.push_back(new_entry); \
})
void params::set_rat(symbol const & k, rational const & v) {
SET_RAT_VALUE();
}
void params::set_rat(char const * k, rational const & v) {
SET_RAT_VALUE();
}
#define SET_SYM_VALUE() SET_VALUE({ \
del_value(*it); \
it->second.m_kind = CPK_SYMBOL; \
it->second.m_sym_value = v.bare_str(); \
}, \
{ \
entry new_entry; \
new_entry.first = symbol(k); \
new_entry.second.m_kind = CPK_SYMBOL; \
new_entry.second.m_sym_value = v.bare_str(); \
m_entries.push_back(new_entry); \
})
void params::set_sym(symbol const & k, symbol const & v) {
SET_SYM_VALUE();
}
void params::set_sym(char const * k, symbol const & v) {
SET_SYM_VALUE();
}

112
src/util/params.h Normal file
View file

@ -0,0 +1,112 @@
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
params.h
Abstract:
Parameters.
Author:
Leonardo (leonardo) 2011-04-22
Notes:
--*/
#ifndef _PARAMS_H_
#define _PARAMS_H_
#include"cmd_context_types.h"
#include"vector.h"
typedef cmd_arg_kind param_kind;
class params;
class param_descrs;
class params_ref {
params * m_params;
void init();
void copy_core(params const * p);
public:
params_ref():m_params(0) {}
params_ref(params_ref const & p);
~params_ref();
params_ref & operator=(params_ref const & p);
// copy params from p
void copy(params_ref const & src);
void append(params_ref const & src) { copy(src); }
bool get_bool(symbol const & k, bool _default) const;
bool get_bool(char const * k, bool _default) const;
unsigned get_uint(symbol const & k, unsigned _default) const;
unsigned get_uint(char const * k, unsigned _default) const;
double get_double(symbol const & k, double _default) const;
double get_double(char const * k, double _default) const;
char const * get_str(symbol const & k, char const * _default) const;
char const * get_str(char const * k, char const * _default) const;
rational get_rat(symbol const & k, rational const & _default) const;
rational get_rat(char const * k, rational const & _default) const;
symbol get_sym(symbol const & k, symbol const & _default) const;
symbol get_sym(char const * k, symbol const & _default) const;
bool empty() const;
bool contains(symbol const & k) const;
bool contains(char const * k) const;
void reset();
void reset(symbol const & k);
void reset(char const * k);
void set_bool(symbol const & k, bool v);
void set_bool(char const * k, bool v);
void set_uint(symbol const & k, unsigned v);
void set_uint(char const * k, unsigned v);
void set_double(symbol const & k, double v);
void set_double(char const * k, double v);
void set_str(symbol const & k, char const * v);
void set_str(char const * k, char const * v);
void set_rat(symbol const & k, rational const & v);
void set_rat(char const * k, rational const & v);
void set_sym(symbol const & k, symbol const & v);
void set_sym(char const * k, symbol const & v);
void display(std::ostream & out) const;
void validate(param_descrs const & p) const;
};
inline std::ostream & operator<<(std::ostream & out, params_ref const & ref) {
ref.display(out);
return out;
}
class param_descrs {
struct imp;
imp * m_imp;
public:
param_descrs();
~param_descrs();
void insert(char const * name, param_kind k, char const * descr);
void insert(symbol const & name, param_kind k, char const * descr);
void erase(char const * name);
void erase(symbol const & name);
param_kind get_kind(char const * name) const;
param_kind get_kind(symbol const & name) const;
void display(std::ostream & out, unsigned indent = 0) const;
unsigned size() const;
symbol get_param_name(unsigned idx) const;
};
void insert_max_memory(param_descrs & r);
void insert_max_steps(param_descrs & r);
void insert_produce_models(param_descrs & r);
void insert_produce_proofs(param_descrs & r);
void insert_timeout(param_descrs & r);
#endif

871
src/util/skip_list_base.h Normal file
View file

@ -0,0 +1,871 @@
/*++
Copyright (c) 2006 Microsoft Corporation
Module Name:
skip_list_base.h
Abstract:
<abstract>
Author:
Leonardo de Moura (leonardo) 2010-10-01.
Revision History:
WARNING: IT IS NOT SAFE TO STORE KEYS, VALUES in the SKIP_LIST that need non-default constructors/destructors.
--*/
#ifndef _SKIP_LIST_BASE_H_
#define _SKIP_LIST_BASE_H_
#include<memory.h>
#include"util.h"
#include"memory_manager.h"
#include"small_object_allocator.h"
#include"trace.h"
#ifdef _MSC_VER
#pragma warning(disable : 4200)
#endif
/*
This file defines a base class for implementing skip-list like data-structures.
This base class is relies on a manager for providing some basic services.
The manager is a template parameter.
A Skip-list manager is responsible for:
- Providing primitives for allocating/deallocating memory
void * allocate(size_t size);
void deallocate(size_t size, void* p);
- Generating random skip-list levels efficiently
unsigned random_level(unsigned max_level);
- Call-backs that will be invoked when a reference for a "value" stored in the skip-list is incremented/decremented.
void inc_ref_eh(value const & v);
void dec_ref_eh(value const & h);
*/
/**
\brief Base class for generating random_levels.
*/
class random_level_manager {
#define SL_BITS_IN_RANDOM 16
unsigned m_random_data;
unsigned m_random_bits:16;
unsigned m_random_left:16;
unsigned random_value() {
return ((m_random_data = m_random_data * 214013L + 2531011L) >> 16) & 0xffff;
}
void init_random() {
m_random_data = 0;
m_random_bits = random_value();
m_random_left = SL_BITS_IN_RANDOM/2;
}
public:
random_level_manager() {
init_random();
}
unsigned random_level(unsigned max_level) {
unsigned level = 1;
unsigned b;
do {
b = m_random_bits&3;
if (!b)
level++;
m_random_bits >>= 2;
m_random_left--;
if (m_random_left == 0) {
m_random_bits = random_value();
m_random_left = SL_BITS_IN_RANDOM/2;
}
} while (!b);
return (level > max_level ? max_level : level);
}
};
/**
\brief Basic skip-list manager.
The class is parametrized by the Value type that is stored in the skip-list.
*/
template<typename Value>
class sl_manager_base : public random_level_manager {
typedef Value value;
small_object_allocator m_alloc;
public:
void * allocate(size_t size) {
return m_alloc.allocate(size);
}
void deallocate(size_t size, void* p) {
m_alloc.deallocate(size, p);
}
void inc_ref_eh(value const & v) {
/* do nothing */
}
void dec_ref_eh(value const & h) {
/* do nothing */
}
};
#define SL_SIZE_NUM_BITS 12
#define SL_CAPACITY_NUM_BITS SL_SIZE_NUM_BITS
#define SL_MAX_CAPACITY ((1 << SL_SIZE_NUM_BITS) - 1)
#define SL_LEVEL_NUM_BITS 8
#define SL_MAX_LEVEL ((1 << SL_LEVEL_NUM_BITS) - 1)
COMPILE_TIME_ASSERT(SL_SIZE_NUM_BITS == SL_CAPACITY_NUM_BITS);
COMPILE_TIME_ASSERT(SL_SIZE_NUM_BITS + SL_CAPACITY_NUM_BITS + SL_LEVEL_NUM_BITS == 32);
/**
\brief Base (template) class for implementing skip-list like data-structures where
entries are stored in buckets to improve cache behavior.
The Traits template parameter must provide:
- a definition for the class Traits::manager
- a definition for the class Traits::entry which provides:
- a definition for the types key and value
- the methods:
key const & begin_key() const
key const & end_key() const
value const & val() const
void set_begin_key(key const & k)
void set_end_key(key const & k)
void set_val(value const & v)
void display(ostream & out) const
- the maximal number of levels Traits::max_level
- the maximal capacity of each bucket Traits::max_capacity
- the initial capacity of the first bucket Traits::initial_capacity
- flag for reference counting support Traits::ref_count. If this flag is true
the methods inc_ref_eh and dec_ref_eh in the manager object will be invoked.
- the methods
bool lt(key const & k1, key const & k2)
bool eq(key const & k1, key const & k2)
bool val_eq(value const & v1, value const & v2)
key succ(key const & k)
key pred(key const & k)
*/
template<typename Traits>
class skip_list_base : protected Traits {
protected:
typedef typename Traits::entry entry;
public:
typedef typename Traits::manager manager;
typedef typename entry::key key;
typedef typename entry::value value;
struct bucket {
unsigned m_size:SL_SIZE_NUM_BITS; //!< number of entries stored in the bucket.
unsigned m_capacity:SL_CAPACITY_NUM_BITS; //!< capacity (number of entries) that can be stored in the bucket.
unsigned m_level:SL_LEVEL_NUM_BITS;
char m_extra[0];
static unsigned get_obj_size(unsigned num_lvls, unsigned capacity) {
return sizeof(bucket) + num_lvls*sizeof(bucket*) + capacity*sizeof(entry);
}
entry * get_entries() { return reinterpret_cast<entry*>(m_extra); }
entry const * get_entries() const { return reinterpret_cast<entry const *>(m_extra); }
bucket ** next_vect() { return reinterpret_cast<bucket**>(get_entries() + m_capacity); }
bucket * const * next_vect() const { return reinterpret_cast<bucket* const *>(get_entries() + m_capacity); }
bucket(unsigned lvl, unsigned capacity = Traits::max_capacity):
m_size(0),
m_capacity(capacity),
m_level(lvl) {
memset(next_vect(), 0, sizeof(bucket*)*lvl);
}
unsigned level() const { return m_level; }
unsigned size() const { return m_size; }
unsigned capacity() const { return m_capacity; }
bool empty() const { return size() == 0; }
void set_size(unsigned sz) { m_size = sz; }
void shrink(unsigned delta) { m_size -= delta; }
void expand(unsigned delta) { m_size += delta; }
entry & first_entry() { SASSERT(!empty()); return get_entries()[0]; }
entry & last_entry() { SASSERT(!empty()); return get_entries()[size() - 1]; }
entry const & first_entry() const { SASSERT(!empty()); return get_entries()[0]; }
entry const & last_entry() const { SASSERT(!empty()); return get_entries()[size() - 1]; }
entry const & get(unsigned idx) const { SASSERT(idx < size()); return get_entries()[idx]; }
entry & get(unsigned idx) { SASSERT(idx < size()); return get_entries()[idx]; }
void set(unsigned idx, entry const & e) { SASSERT(idx < capacity()); get_entries()[idx] = e; }
bucket * get_next(unsigned idx) const { return next_vect()[idx]; }
void set_next(unsigned idx, bucket * bt) { SASSERT(idx < level()); next_vect()[idx] = bt; }
};
// Only the header bucket has zero entries.
bucket * m_header;
bucket * first_bucket() const {
return m_header->get_next(0);
}
#ifdef Z3DEBUG
/**
\brief (debugging only) Return the predecessor bucket of the given bucket.
\pre bt != m_header, and bt is a bucket of the list.
*/
bucket * pred_bucket(bucket * bt) const {
SASSERT(bt != m_header);
bucket * curr = m_header;
while (curr->get_next(0) != bt) {
curr = curr->get_next(0);
SASSERT(curr != 0); // bt is not in the list
}
return curr;
}
#endif
bool lt(key const & k1, key const & k2) const { return Traits::lt(k1, k2); }
bool gt(key const & k1, key const & k2) const { return lt(k2, k1); }
bool geq(key const & k1, key const & k2) const { return !lt(k1, k2); }
bool leq(key const & k1, key const & k2) const { return !gt(k1, k2); }
/**
\brief Create a new bucket of the given level.
*/
static bucket * mk_bucket(manager & m, unsigned lvl, unsigned capacity = Traits::max_capacity) {
void * mem = m.allocate(bucket::get_obj_size(lvl, capacity));
return new (mem) bucket(lvl, capacity);
}
static bucket * mk_header(manager & m, unsigned lvl) {
return mk_bucket(m, lvl, 0);
}
static void inc_ref(manager & m, value const & v) {
if (Traits::ref_count)
m.inc_ref_eh(v);
}
static void dec_ref(manager & m, value const & v) {
if (Traits::ref_count)
m.dec_ref_eh(v);
}
/**
\brief Invoke dec_ref_eh for each value stored in the bucket.
*/
static void dec_ref(manager & m, bucket * bt) {
if (Traits::ref_count) {
unsigned sz = bt->size();
for (unsigned i = 0; i < sz; i++)
m.dec_ref_eh(bt->get(i).val());
}
}
/**
\brief Deallocate the given bucket.
\remark This method invokes dec_ref_eh for each value in the bucket.
*/
template<bool DecRef>
static void deallocate_bucket(manager & m, bucket * bt) {
if (DecRef)
dec_ref(m, bt);
unsigned sz = bucket::get_obj_size(bt->level(), bt->capacity());
bt->~bucket();
m.deallocate(sz, bt);
}
/**
\brief Deallocate all buckets in the skip list.
\remark This method invokes dec_ref_eh for each value in the list.
*/
template<bool DecRef>
void deallocate_list(manager & m) {
bucket * curr = m_header;
while (curr != 0) {
bucket * old = curr;
curr = curr->get_next(0);
deallocate_bucket<DecRef>(m, old);
}
}
#ifdef Z3DEBUG
/**
\brief Check the following property
for all i \in [0, b->level()) . pred_vect[i]->get_next(i) == b
*/
bool check_pred_vect(bucket * bt, bucket * pred_vect[]) {
if (bt == 0)
return true;
for (unsigned i = 0; i < bt->level(); i++) {
SASSERT(pred_vect[i]->get_next(i) == bt);
}
return true;
}
#endif
/**
\brief Delete the given buffer and update the forward/next pointer of the buckets in pred_vect.
\remark This method invokes dec_ref_eh for each value in the bucket.
*/
void del_bucket(manager & m, bucket * bt, bucket * pred_vect[]) {
SASSERT(check_pred_vect(bt, pred_vect));
for (unsigned i = 0; i < bt->level(); i++)
pred_vect[i]->set_next(i, bt->get_next(i));
deallocate_bucket<true>(m, bt);
}
/**
\brief Update the \c pred_vect vector from levels [0, bt->level()).
That is, bt will be now the "predecessor" for these levels.
*/
static void update_predecessor_vector(bucket * pred_vect [], bucket * bt) {
unsigned lvl = bt->level();
for (unsigned i = 0; i < lvl; i++) {
pred_vect[i] = bt;
}
}
/**
\brief Similar to the previous method, but the updated vector is stored in new_pred_vect.
*/
void update_predecessor_vector(bucket * pred_vect[], bucket * bt, bucket * new_pred_vect[]) {
unsigned bt_lvl = bt->level();
for (unsigned i = 0; i < bt_lvl; i++) {
new_pred_vect[i] = bt;
}
unsigned list_lvl = level();
for (unsigned i = bt_lvl; i < list_lvl; i++) {
new_pred_vect[i] = pred_vect[i];
}
}
/**
\brief Return the list level.
*/
unsigned level() const {
return m_header->level();
}
/**
\brief Expand/Increase the number of levels in the header.
*/
void expand_header(manager & m, unsigned new_lvl) {
SASSERT(new_lvl > level());
bucket * new_header = mk_header(m, new_lvl);
// copy forward pointers of the old header.
unsigned old_lvl = level();
for (unsigned i = 0; i < old_lvl; i++)
new_header->set_next(i, m_header->get_next(i));
// update header
deallocate_bucket<false>(m, m_header);
m_header = new_header;
}
/**
\brief Increase list level to lvl if lvl > level()
*/
void update_list_level(manager & m, unsigned lvl) {
if (lvl > level()) {
expand_header(m, lvl);
}
}
/**
\brief Increase list level (and store m_header in the new levels in pred_vect) if lvl > level().
*/
void update_list_level(manager & m, unsigned lvl, bucket * pred_vect[]) {
if (lvl > level()) {
bucket * old_header = m_header;
unsigned old_lvl = m_header->level();
expand_header(m, lvl);
for (unsigned i = 0; i < old_lvl; i++) {
if (pred_vect[i] == old_header)
pred_vect[i] = m_header;
}
for (unsigned i = old_lvl; i < lvl; i++) {
pred_vect[i] = m_header;
}
SASSERT(level() == lvl);
}
}
/**
\brief Add first entry to the list.
\remark This method will invoke inc_ref_eh for e.val()
*/
void insert_first_entry(manager & m, entry const & e) {
unsigned lvl = m.random_level(Traits::max_level);
bucket * new_bucket = mk_bucket(m, lvl, Traits::initial_capacity);
update_list_level(m, lvl);
for (unsigned i = 0; i < lvl; i++) {
m_header->set_next(i, new_bucket);
}
inc_ref(m, e.val());
new_bucket->set_size(1);
new_bucket->set(0, e);
}
/**
\brief Expand the capacity of the first-bucket in a skip-list with only one bucket.
This method assumes the capacity of the first-bucket < Traits::max_capacity
*/
void expand_first_bucket(manager & m) {
bucket * f = first_bucket();
SASSERT(f != 0);
SASSERT(f->get_next(0) == 0);
SASSERT(f->capacity() < Traits::max_capacity);
unsigned old_capacity = f->capacity();
SASSERT(old_capacity > 0);
unsigned new_capacity = old_capacity * 2;
if (new_capacity > Traits::max_capacity)
new_capacity = Traits::max_capacity;
unsigned lvl = f->level();
bucket * new_f = mk_bucket(m, lvl, new_capacity);
unsigned sz = f->size();
new_f->set_size(sz);
for (unsigned i = 0; i < sz; i++)
new_f->set(i, f->get(i));
for (unsigned i = 0; i < lvl; i++)
m_header->set_next(i, new_f);
deallocate_bucket<false>(m, f);
SASSERT(first_bucket() == new_f);
}
/**
\brief Create a new bucket and divide the elements in bt between bt and the new bucket.
*/
void splice(manager & m, bucket * bt, bucket * pred_vect[]) {
SASSERT(bt->capacity() == Traits::max_capacity);
unsigned bt_lvl = bt->level();
unsigned new_bucket_lvl = m.random_level(Traits::max_level);
bucket * new_bucket = mk_bucket(m, new_bucket_lvl);
update_list_level(m, new_bucket_lvl, pred_vect);
unsigned _lvl = std::min(bt_lvl, new_bucket_lvl);
for (unsigned i = 0; i < _lvl; i++) {
new_bucket->set_next(i, bt->get_next(i));
bt->set_next(i, new_bucket);
}
for (unsigned i = bt_lvl; i < new_bucket_lvl; i++) {
new_bucket->set_next(i, pred_vect[i]->get_next(i));
pred_vect[i]->set_next(i, new_bucket);
}
unsigned old_size = bt->size();
SASSERT(old_size >= 2);
unsigned mid = old_size/2;
new_bucket->set_size(old_size - mid);
unsigned i = mid;
unsigned j = 0;
for (; i < old_size; i++, j++) {
new_bucket->set(j, bt->get(i));
}
bt->set_size(mid);
SASSERT(!bt->empty());
SASSERT(!new_bucket->empty());
}
/**
\brief Open space at position idx. The number of entries in bt is increased by one.
\remark This method will *NOT* invoke inc_ref_eh
*/
void open_space(bucket * bt, unsigned idx) {
SASSERT(bt->size() < bt->capacity());
SASSERT(idx <= bt->size());
unsigned i = bt->size();
while (i > idx) {
bt->set(i, bt->get(i-1));
i--;
}
bt->expand(1);
}
/**
\brief Open two spaces at position idx. The number of entries in bt is increased by one.
\remark This method will *NOT* invoke inc_ref_eh
*/
void open_2spaces(bucket * bt, unsigned idx) {
SASSERT(bt->size() < bt->capacity() - 1);
SASSERT(idx <= bt->size());
unsigned i = bt->size() + 1;
unsigned end = idx + 1;
while (i > end) {
bt->set(i, bt->get(i-2));
i--;
}
bt->expand(2);
}
/**
\brief Delete entry at position idx.
\remark This method will invoke dec_ref_eh for the value stored in entry at position idx.
*/
void del_entry(manager & m, bucket * bt, unsigned idx) {
SASSERT(!bt->empty());
SASSERT(idx < bt->size());
dec_ref(m, bt->get(idx).val());
unsigned sz = bt->size();
for (unsigned i = idx; i < sz - 1; i++) {
bt->set(i, bt->get(i+1));
}
bt->shrink(1);
}
/**
\brief Create a copy of the skip list.
\remark This method will invoke inc_ref_eh for all values copied.
*/
void clone_core(manager & m, skip_list_base * new_list) const {
bucket * pred_vect[Traits::max_level];
unsigned lvl = level();
new_list->update_list_level(m, lvl);
bucket * new_header = new_list->m_header;
for (unsigned i = 0; i < lvl; i++)
pred_vect[i] = new_header;
bucket * curr = first_bucket();
while (curr != 0) {
unsigned curr_lvl = curr->level();
bucket * new_bucket = new_list->mk_bucket(m, curr_lvl, curr->capacity());
for (unsigned i = 0; i < curr_lvl; i++) {
pred_vect[i]->set_next(i, new_bucket);
pred_vect[i] = new_bucket;
}
unsigned curr_sz = curr->size();
for (unsigned i = 0; i < curr_sz; i++) {
entry const & curr_entry = curr->get(i);
inc_ref(m, curr_entry.val());
new_bucket->set(i, curr_entry);
}
new_bucket->set_size(curr_sz);
curr = curr->get_next(0);
}
}
public:
skip_list_base():
m_header(0) {
SASSERT(Traits::max_capacity >= 2);
SASSERT(Traits::initial_capacity >= 2);
SASSERT(Traits::initial_capacity <= Traits::max_capacity);
SASSERT(Traits::max_level >= 1);
SASSERT(Traits::max_capacity <= SL_MAX_CAPACITY);
SASSERT(Traits::max_level <= SL_MAX_LEVEL);
}
skip_list_base(manager & m):
m_header(0) {
SASSERT(Traits::max_capacity >= 2);
SASSERT(Traits::initial_capacity >= 2);
SASSERT(Traits::initial_capacity <= Traits::max_capacity);
SASSERT(Traits::max_level >= 1);
SASSERT(Traits::max_capacity <= SL_MAX_CAPACITY);
SASSERT(Traits::max_level <= SL_MAX_LEVEL);
init(m);
}
~skip_list_base() {
SASSERT(m_header == 0);
}
void deallocate(manager & m) {
deallocate_list<true>(m);
m_header = 0;
}
/**
\brief Deallocate the list but do not invoke dec_ref_eh.
*/
void deallocate_no_decref(manager & m) {
deallocate_list<false>(m);
m_header = 0;
}
/**
\brief Initialize a list that was created using the default constructor.
It can be used also to initialized a list deallocated using the method #deallocate.
*/
void init(manager & m) {
SASSERT(m_header == 0);
m_header = mk_header(m, 1);
}
/**
\brief Remove all elements from the skip-list.
*/
void reset(manager & m) {
deallocate_list<true>(m);
m_header = mk_header(m, 1);
}
/**
\brief Remove all elements from the skip-list without invoking dec_ref_eh.
*/
void reset_no_decref(manager & m) {
deallocate_list<false>(m);
m_header = mk_header(m, 1);
}
/**
\brief Return true if the list is empty.
*/
bool empty() const {
SASSERT(m_header != 0);
return first_bucket() == 0;
}
protected:
/**
\brief Return the position of the bucket in the skip list.
*/
unsigned get_bucket_idx(bucket const * bt) const {
bucket * curr = m_header;
unsigned pos = 0;
while (curr != 0) {
if (curr == bt)
return pos;
pos++;
curr = curr->get_next(0);
}
UNREACHABLE();
return pos;
}
/**
\brief Display the given entry.
*/
void display(std::ostream & out, entry const & e) const {
e.display(out);
}
/**
\brief Display a reference to the given bucket.
*/
void display_bucket_ref(std::ostream & out, bucket const * bt) const {
if (bt == 0)
out << "NIL";
else
out << "#" << get_bucket_idx(bt);
}
/**
\brief Display the predecessor vector.
*/
void display_predecessor_vector(std::ostream & out, bucket const * const pred_vect[]) const {
for (unsigned i = 0; i < level(); i++) {
out << i << ": ";
display_bucket_ref(out, pred_vect[i]);
if (pred_vect[i]) {
out << " -> ";
display_bucket_ref(out, pred_vect[i]->get_next(i));
}
out << "\n";
}
}
/**
\brief Display the successors of the given bucket.
*/
void display_successors(std::ostream & out, bucket const * bt) const {
out << "[";
for (unsigned i = 0; i < bt->level(); i++) {
if (i > 0) out << ", ";
display_bucket_ref(out, bt->get_next(i));
}
out << "]";
}
/**
\brief Display the given bucket.
*/
void display(std::ostream & out, bucket const * bt) const {
if (bt == 0) {
out << "NIL\n";
return;
}
out << "bucket ";
display_bucket_ref(out, bt);
out << ", capacity: " << bt->capacity() << "\n";
out << "successors: ";
display_successors(out, bt);
out << "\n";
out << "entries:\n";
for (unsigned i = 0; i < bt->size(); i++) {
display(out, bt->get(i));
out << "\n";
}
out << "----------\n";
}
public:
/**
\brief Dump the skip list for debugging purposes.
It assumes that key and value types implement operator <<.
*/
void display_physical(std::ostream & out) const {
out << "{\nskip-list level: " << m_header->level() << "\n";
bucket * curr = m_header;
while (curr != 0) {
display(out, curr);
curr = curr->get_next(0);
}
out << "}\n";
}
void display(std::ostream & out) const {
bucket * curr = m_header;
while (curr != 0) {
unsigned sz = curr->size();
for (unsigned i = 0; i < sz; i++) {
if (i > 0)
out << " ";
curr->get(i).display(out);
}
curr = curr->get_next(0);
}
}
protected:
/**
\brief Return true if bucket b2 can be reached from b1 following get_next(i) pointers
*/
bool is_reachable_at_i(bucket const * bt1, bucket const * bt2, unsigned i) const {
bucket * curr = bt1->get_next(i);
while (curr != 0) {
if (curr == bt2)
return true;
curr = curr->get_next(i);
}
return false;
}
protected:
static void display_size_info_core(std::ostream & out, unsigned cls_size) {
out << "sizeof root: " << cls_size << "\n";
out << "bucket max capacity: " << Traits::max_capacity << "\n";
out << "bucket max level: " << Traits::max_level << "\n";
out << "sizeof(bucket): " << sizeof(bucket) << " + " << sizeof(bucket*) << "*lvl + " << sizeof(entry) << "*capacity\n";
out << "sizeof(usual bucket): " << (sizeof(bucket) + sizeof(entry)*Traits::max_capacity) << " + " << sizeof(bucket*) << "*lvl\n";
out << "sizeof(max. bucket): " << (sizeof(bucket) + sizeof(entry)*Traits::max_capacity + sizeof(bucket*)*Traits::max_level) << "\n";
out << "sizeof(entry): " << sizeof(entry) << "\n";
out << "sizeof empty: " << cls_size + bucket::get_obj_size(1, 0) << "\n";;
out << "sizeof singleton: ["
<< (cls_size + bucket::get_obj_size(1, 0) + bucket::get_obj_size(1, Traits::initial_capacity)) << ", "
<< (cls_size +
bucket::get_obj_size(Traits::max_level, 0) +
bucket::get_obj_size(Traits::max_level, Traits::max_capacity)) << "]\n";
}
public:
/**
\brief Return true if skip-list has more than k buckets (not considering the header).
\remark This method is for debugging purposes.
*/
bool has_more_than_k_buckets(unsigned k) const {
bucket * curr = first_bucket();
while (curr != 0 && k > 0) {
curr = curr->get_next(0);
k--;
}
return curr != 0;
}
/**
\brief Return true if the skip-list has more than k entries.
*/
bool has_more_than_k_entries(unsigned k) const {
bucket * curr = first_bucket();
while (curr != 0 && k >= curr->size()) {
k -= curr->size();
curr = curr->get_next(0);
}
SASSERT(curr == 0 || curr->size() > k);
return curr != 0;
}
protected:
/**
\brief Return the amount of memory consumed by the list.
*/
unsigned memory_core(unsigned cls_size) const {
unsigned r = 0;
r += cls_size;
bucket * curr = m_header;
while (curr != 0) {
r += bucket::get_obj_size(curr->level(), curr->capacity());
curr = curr->get_next(0);
}
return r;
}
public:
/**
\brief Compress the buckets of the skip-list.
Make sure that all, but the last bucket, have at least \c load entries.
\remark If load > Traits::max_capacity, then it assumes load = Traits::max_capacity.
*/
void compress(manager & m, unsigned load = Traits::max_capacity/2) {
if (load > Traits::max_capacity)
load = Traits::max_capacity;
bucket * pred_vect[Traits::max_level];
update_predecessor_vector(pred_vect, m_header);
bucket * curr = first_bucket();
while (curr != 0) {
update_predecessor_vector(pred_vect, curr);
bucket * next = curr->get_next(0);
while (curr->size() < load && next != 0) {
// steal entries of the successor bucket.
unsigned deficit = load - curr->size();
unsigned next_size = next->size();
if (next_size <= deficit) {
for (unsigned i = 0, j = curr->size(); i < next_size; i++, j++) {
curr->set(j, next->get(i));
}
curr->expand(next_size);
bucket * new_next = next->get_next(0);
del_bucket(m, next, pred_vect);
next = new_next;
SASSERT(curr->size() <= load);
}
else {
for (unsigned i = 0, j = curr->size(); i < deficit; i++, j++) {
curr->set(j, next->get(i));
}
curr->expand(deficit);
for (unsigned i = deficit, j = 0; i < next_size; i++, j++) {
next->set(j, next->get(i));
}
next->set_size(next_size - deficit);
SASSERT(curr->size() == load);
}
}
curr = curr->get_next(0);
}
}
void swap(skip_list_base & other) {
bucket * tmp = m_header;
m_header = other.m_header;
other.m_header = tmp;
}
};
#endif

View file

@ -20,7 +20,7 @@ Notes:
#include"map.h"
#include"str_hashtable.h"
#include"buffer.h"
#include"ast_smt2_pp.h"
#include"smt2_util.h"
#include<iomanip>
void statistics::update(char const * key, unsigned inc) {

74
src/util/z3_exception.cpp Normal file
View file

@ -0,0 +1,74 @@
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
z3_exception.cpp
Abstract:
Generic Z3 exception
Author:
Leonardo (leonardo) 2012-04-12
Notes:
--*/
#include<sstream>
#include<stdarg.h>
#include<sstream>
#include"z3_exception.h"
#include"warning.h"
#include"error_codes.h"
#include"debug.h"
unsigned z3_exception::error_code() const {
return ERR_OK;
}
bool z3_exception::has_error_code() const {
return error_code() != ERR_OK;
}
z3_error::z3_error(unsigned error_code):m_error_code(error_code) {
SASSERT(error_code != 0);
}
char const * z3_error::msg() const {
switch (m_error_code) {
case ERR_MEMOUT: return "out of memory";
case ERR_TIMEOUT: return "timeout";
case ERR_PARSER: return "parser error";
case ERR_UNSOUNDNESS: return "unsoundess";
case ERR_INCOMPLETENESS: return "incompleteness";
case ERR_INI_FILE: return "invalid INI file";
case ERR_NOT_IMPLEMENTED_YET: return "not implemented yet";
case ERR_OPEN_FILE: return "open file";
case ERR_CMD_LINE: return "invalid command line";
case ERR_INTERNAL_FATAL: return "internal error";
case ERR_TYPE_CHECK: return "type error";
default: return "unknown error";
}
}
unsigned z3_error::error_code() const {
return m_error_code;
}
default_exception::default_exception(char const* msg, ...) {
std::stringstream out;
va_list args;
va_start(args, msg);
format2ostream(out, msg, args);
va_end(args);
m_msg = out.str();
}
default_exception::default_exception(std::string const & msg): m_msg(msg) {
}
char const * default_exception::msg() const {
return m_msg.c_str();
}

49
src/util/z3_exception.h Normal file
View file

@ -0,0 +1,49 @@
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
z3_exception.h
Abstract:
Generic Z3 exception
Author:
Leonardo (leonardo) 2011-04-28
Notes:
--*/
#ifndef _Z3_EXCEPTION_H_
#define _Z3_EXCEPTION_H_
#include<string>
class z3_exception {
public:
virtual ~z3_exception() {}
virtual char const * msg() const = 0;
virtual unsigned error_code() const;
bool has_error_code() const;
};
class z3_error : public z3_exception {
unsigned m_error_code;
public:
z3_error(unsigned error_code);
virtual char const * msg() const;
virtual unsigned error_code() const;
};
class default_exception : public z3_exception {
std::string m_msg;
public:
default_exception(std::string const& msg);
default_exception(char const* msg, ...);
virtual ~default_exception() {}
virtual char const * msg() const;
};
#endif

38
src/util/z3_omp.h Normal file
View file

@ -0,0 +1,38 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
z3_omp.h
Abstract:
Wrapper for OMP functions and data-structures
Author:
Leonardo (leonardo) 2012-01-05
Notes:
--*/
#ifndef _Z3_OMP_H
#define _Z3_OMP_H
#ifndef _NO_OMP_
#include"omp.h"
#else
#define omp_in_parallel() false
#define omp_set_num_threads(SZ) ((void)0)
#define omp_get_thread_num() 0
#define omp_get_num_procs() 1
#define omp_set_nested(V) ((void)0)
#define omp_init_nest_lock(L) ((void) 0)
#define omp_destroy_nest_lock(L) ((void) 0)
#define omp_set_nest_lock(L) ((void) 0)
#define omp_unset_nest_lock(L) ((void) 0)
struct omp_nest_lock_t {
};
#endif
#endif