3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-28 03:15:50 +00:00

reverting signed mon_eq, try to rely on canonization state during add/pop

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2020-03-19 17:14:59 -07:00 committed by Lev Nachmanson
parent 6877840342
commit 8a665e25ed
12 changed files with 110 additions and 91 deletions

View file

@ -68,8 +68,8 @@ void order::order_lemma_on_monic(const monic& m) {
void order::order_lemma_on_binomial(const monic& ac) {
TRACE("nla_solver", tout << pp_mon_with_vars(c(), ac););
SASSERT(!check_monic(ac) && ac.size() == 2);
const rational mult_val = val(ac.vars()[0]) * val(ac.vars()[1]);
const rational acv = val(ac);
const rational mult_val = mul_val(ac);
const rational acv = var_val(ac);
bool gt = acv > mult_val;
bool k = false;
do {
@ -138,11 +138,11 @@ void order::order_lemma_on_binomial_ac_bd(const monic& ac, bool k, const monic&
tout << "ac = " << pp_mon(_(), ac) << "a = " << pp_var(_(), a) << "c = " << pp_var(_(), c) << "\nbd = " << pp_mon(_(), bd) << "b = " << pp_fac(_(), b) << "d = " << pp_var(_(), d) << "\n";
);
SASSERT(_().m_evars.find(c).var() == d);
rational acv = val(ac);
rational acv = var_val(ac);
rational av = val(a);
rational c_sign = rrat_sign(val(c));
rational d_sign = rrat_sign(val(d));
rational bdv = val(bd);
rational bdv = var_val(bd);
rational bv = val(b);
// Notice that ac/|c| = a*c_sign , and bd/|d| = b*d_sign
auto av_c_s = av*c_sign; auto bv_d_s = bv*d_sign;
@ -171,16 +171,9 @@ void order::generate_mon_ol(const monic& ac,
const rational& d_sign,
lpvar d,
llc ab_cmp) {
SASSERT(
(ab_cmp == llc::LT || ab_cmp == llc::GT) &&
(
(ab_cmp != llc::LT ||
(val(ac) >= val(bd) && val(a)*c_sign < val(b)*d_sign))
||
(ab_cmp != llc::GT ||
(val(ac) <= val(bd) && val(a)*c_sign > val(b)*d_sign))
)
);
SASSERT(ab_cmp == llc::LT || ab_cmp == llc::GT);
SASSERT(ab_cmp != llc::LT || (var_val(ac) >= var_val(bd) && val(a)*c_sign < val(b)*d_sign));
SASSERT(ab_cmp != llc::GT || (var_val(ac) <= var_val(bd) && val(a)*c_sign > val(b)*d_sign));
add_empty_lemma();
mk_ineq(c_sign, c, llc::LE);
@ -224,10 +217,10 @@ void order::order_lemma_on_factorization(const monic& m, const factorization& ab
sign ^= _().canonize_sign(f);
const rational rsign = sign_to_rat(sign);
const rational fv = val(var(ab[0])) * val(var(ab[1]));
const rational mv = rsign * val(m);
const rational mv = rsign * var_val(m);
TRACE("nla_solver",
tout << "ab.size()=" << ab.size() << "\n";
tout << "we should have sign*val(m):" << mv << "=(" << rsign << ")*(" << val(m) <<") to be equal to " << " val(var(ab[0]))*val(var(ab[1])):" << fv << "\n";);
tout << "we should have sign*var_val(m):" << mv << "=(" << rsign << ")*(" << var_val(m) <<") to be equal to " << " val(var(ab[0]))*val(var(ab[1])):" << fv << "\n";);
if (mv == fv)
return;
bool gt = mv > fv;
@ -263,7 +256,7 @@ bool order::order_lemma_on_ac_explore(const monic& rm, const factorization& ac,
}
// |c_sign| = 1, and c*c_sign > 0
// ac > bc => ac/|c| > bc/|c| => a*c_sign > b*c_sign
// ac > bc && ac/|c| > bc/|c| => a*c_sign > b*c_sign
void order::generate_ol(const monic& ac,
const factor& a,
int c_sign,
@ -271,11 +264,22 @@ void order::generate_ol(const monic& ac,
const monic& bc,
const factor& b,
llc ab_cmp) {
add_empty_lemma();
rational rc_sign = rational(c_sign);
mk_ineq(rc_sign * sign_to_rat(canonize_sign(c)), var(c), llc::LE);
rational sign_a = rc_sign * sign_to_rat(canonize_sign(a));
rational sign_b = rc_sign * sign_to_rat(canonize_sign(b));
rational sign_c = rc_sign * sign_to_rat(canonize_sign(c));
add_empty_lemma();
#if 0
IF_VERBOSE(0, verbose_stream() << var_val(ac) << "(" << mul_val(ac) << "): " << ac
<< " " << ab_cmp << " " << var_val(bc) << "(" << mul_val(bc) << "): " << bc << "\n"
<< " a " << sign_a << "*v" << var(a) << " " << val(a) << "\n"
<< " b " << sign_b << "*v" << var(b) << " " << val(b) << "\n"
<< " c " << sign_c << "*v" << var(c) << " " << val(c) << "\n");
#endif
mk_ineq(sign_c, var(c), llc::LE);
mk_ineq(canonize_sign(ac), var(ac), !canonize_sign(bc), var(bc), ab_cmp);
mk_ineq(sign_to_rat(canonize_sign(a))*rc_sign, var(a), - sign_to_rat(canonize_sign(b))*rc_sign, var(b), negate(ab_cmp));
mk_ineq(sign_a, var(a), - sign_b, var(b), negate(ab_cmp));
explain(ac);
explain(a);
explain(bc);
@ -294,8 +298,8 @@ bool order::order_lemma_on_ac_and_bc_and_factors(const monic& ac,
SASSERT(c_sign != 0);
auto av_c_s = val(a)*rational(c_sign);
auto bv_c_s = val(b)*rational(c_sign);
auto acv = val(ac);
auto bcv = val(bc);
auto acv = var_val(ac);
auto bcv = var_val(bc);
TRACE("nla_solver", _().trace_print_ol(ac, a, c, bc, b, tout););
// Suppose ac >= bc, then ac/|c| >= bc/|c|.
// Notice that ac/|c| = a*c_sign , and bc/|c| = b*c_sign, which are correspondingly av_c_s and bv_c_s
@ -314,7 +318,7 @@ bool order::order_lemma_on_ac_and_bc_and_factors(const monic& ac,
a < 0 & b >= value(b) => sign*ab <= value(b)*a if value(a) < 0
*/
void order::order_lemma_on_ab_gt(const monic& m, const rational& sign, lpvar a, lpvar b) {
SASSERT(sign * val(m) > val(a) * val(b));
SASSERT(sign * var_val(m) > val(a) * val(b));
add_empty_lemma();
if (val(a).is_pos()) {
TRACE("nla_solver", tout << "a is pos\n";);
@ -344,7 +348,7 @@ void order::order_lemma_on_ab_gt(const monic& m, const rational& sign, lpvar a,
void order::order_lemma_on_ab_lt(const monic& m, const rational& sign, lpvar a, lpvar b) {
TRACE("nla_solver", tout << "sign = " << sign << ", m = "; c().print_monic(m, tout) << ", a = "; c().print_var(a, tout) <<
", b = "; c().print_var(b, tout) << "\n";);
SASSERT(sign * val(m) < val(a) * val(b));
SASSERT(sign * var_val(m) < val(a) * val(b));
add_empty_lemma();
if (val(a).is_pos()) {
//negate a > 0