3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-23 09:05:31 +00:00

improvements to arithmetic preprocessing simplificaiton and axiom generation for #1683

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2018-06-19 07:04:39 -07:00
parent 86c39c971d
commit 8a29c2803c
4 changed files with 131 additions and 63 deletions

View file

@ -800,52 +800,105 @@ br_status arith_rewriter::mk_idiv_core(expr * arg1, expr * arg2, expr_ref & resu
result = m_util.mk_numeral(div(v1, v2), is_int);
return BR_DONE;
}
expr_ref quot(m());
if (divides(arg1, arg2, quot)) {
result = m_util.mk_mul(quot, m_util.mk_idiv(arg1, arg1));
return BR_REWRITE2;
if (m_util.is_numeral(arg2, v2, is_int) && v2.is_one()) {
result = arg1;
return BR_DONE;
}
if (m_util.is_numeral(arg2, v2, is_int) && v2.is_zero()) {
return BR_FAILED;
}
if (arg1 == arg2) {
expr_ref zero(m_util.mk_int(0), m());
result = m().mk_ite(m().mk_eq(arg1, zero), m_util.mk_idiv(zero, zero), m_util.mk_int(1));
return BR_REWRITE3;
}
if (divides(arg1, arg2, result)) {
return BR_REWRITE_FULL;
}
return BR_FAILED;
}
bool arith_rewriter::divides(expr* d, expr* n, expr_ref& quot) {
if (d == n) {
quot = m_util.mk_numeral(rational(1), m_util.is_int(d));
//
// implement div ab ac = floor( ab / ac) = floor (b / c) = div b c
//
bool arith_rewriter::divides(expr* num, expr* den, expr_ref& result) {
expr_fast_mark1 mark;
rational num_r(1), den_r(1);
expr* num_e = nullptr, *den_e = nullptr;
ptr_buffer<expr> args1, args2;
flat_mul(num, args1);
flat_mul(den, args2);
for (expr * arg : args1) {
mark.mark(arg);
if (m_util.is_numeral(arg, num_r)) num_e = arg;
}
for (expr* arg : args2) {
if (mark.is_marked(arg)) {
result = remove_divisor(arg, num, den);
return true;
}
if (m_util.is_numeral(arg, den_r)) den_e = arg;
}
rational g = gcd(num_r, den_r);
if (!g.is_one()) {
SASSERT(g.is_pos());
// replace num_e, den_e by their gcd reduction.
for (unsigned i = 0; i < args1.size(); ++i) {
if (args1[i] == num_e) {
args1[i] = m_util.mk_numeral(num_r / g, true);
break;
}
}
for (unsigned i = 0; i < args2.size(); ++i) {
if (args2[i] == den_e) {
args2[i] = m_util.mk_numeral(den_r / g, true);
break;
}
}
num = m_util.mk_mul(args1.size(), args1.c_ptr());
den = m_util.mk_mul(args2.size(), args2.c_ptr());
result = m_util.mk_idiv(num, den);
return true;
}
if (m_util.is_mul(n)) {
expr_ref_vector muls(m());
muls.push_back(n);
expr* n1, *n2;
rational r1, r2;
for (unsigned i = 0; i < muls.size(); ++i) {
if (m_util.is_mul(muls[i].get(), n1, n2)) {
muls[i] = n1;
muls.push_back(n2);
--i;
}
}
if (m_util.is_numeral(d, r1) && !r1.is_zero()) {
for (unsigned i = 0; i < muls.size(); ++i) {
if (m_util.is_numeral(muls[i].get(), r2) && (r2 / r1).is_int()) {
muls[i] = m_util.mk_numeral(r2 / r1, m_util.is_int(d));
quot = m_util.mk_mul(muls.size(), muls.c_ptr());
return true;
}
}
}
else {
for (unsigned i = 0; i < muls.size(); ++i) {
if (d == muls[i].get()) {
muls[i] = muls.back();
muls.pop_back();
quot = m_util.mk_mul(muls.size(), muls.c_ptr());
return true;
}
}
return false;
}
expr_ref arith_rewriter::remove_divisor(expr* arg, expr* num, expr* den) {
ptr_buffer<expr> args1, args2;
flat_mul(num, args1);
flat_mul(den, args2);
remove_divisor(arg, args1);
remove_divisor(arg, args2);
expr_ref zero(m_util.mk_int(0), m());
num = args1.empty() ? m_util.mk_int(1) : m_util.mk_mul(args1.size(), args1.c_ptr());
den = args2.empty() ? m_util.mk_int(1) : m_util.mk_mul(args2.size(), args2.c_ptr());
return expr_ref(m().mk_ite(m().mk_eq(zero, arg), m_util.mk_idiv(zero, zero), m_util.mk_idiv(num, den)), m());
}
void arith_rewriter::flat_mul(expr* e, ptr_buffer<expr>& args) {
args.push_back(e);
for (unsigned i = 0; i < args.size(); ++i) {
e = args[i];
if (m_util.is_mul(e)) {
args.append(to_app(e)->get_num_args(), to_app(e)->get_args());
args[i] = args.back();
args.shrink(args.size()-1);
--i;
}
}
}
void arith_rewriter::remove_divisor(expr* d, ptr_buffer<expr>& args) {
for (unsigned i = 0; i < args.size(); ++i) {
if (args[i] == d) {
args[i] = args.back();
args.shrink(args.size()-1);
return;
}
}
return false;
UNREACHABLE();
}
br_status arith_rewriter::mk_mod_core(expr * arg1, expr * arg2, expr_ref & result) {

View file

@ -95,7 +95,10 @@ class arith_rewriter : public poly_rewriter<arith_rewriter_core> {
expr_ref neg_monomial(expr * e) const;
expr * mk_sin_value(rational const & k);
app * mk_sqrt(rational const & k);
bool divides(expr* d, expr* n, expr_ref& quot);
bool divides(expr* d, expr* n, expr_ref& result);
expr_ref remove_divisor(expr* arg, expr* num, expr* den);
void flat_mul(expr* e, ptr_buffer<expr>& args);
void remove_divisor(expr* d, ptr_buffer<expr>& args);
public:
arith_rewriter(ast_manager & m, params_ref const & p = params_ref()):