3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-23 17:15:31 +00:00

rm lp_dual_simplex

This commit is contained in:
Lev Nachmanson 2023-03-03 15:41:30 -08:00
parent d2e8297d41
commit 8989e10e71
4 changed files with 0 additions and 494 deletions

View file

@ -1,24 +0,0 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
<name>
Abstract:
<abstract>
Author:
Lev Nachmanson (levnach)
Revision History:
--*/
#include "math/lp/lp_dual_simplex_def.h"
template lp::mpq lp::lp_dual_simplex<lp::mpq, lp::mpq>::get_current_cost() const;
template void lp::lp_dual_simplex<lp::mpq, lp::mpq>::find_maximal_solution();
template double lp::lp_dual_simplex<double, double>::get_current_cost() const;
template void lp::lp_dual_simplex<double, double>::find_maximal_solution();

View file

@ -1,93 +0,0 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
<name>
Abstract:
<abstract>
Author:
Lev Nachmanson (levnach)
Revision History:
--*/
#pragma once
#include "util/vector.h"
#include "math/lp/lp_utils.h"
#include "math/lp/lp_solver.h"
#include "math/lp/lp_dual_core_solver.h"
namespace lp {
template <typename T, typename X>
class lp_dual_simplex: public lp_solver<T, X> {
lp_dual_core_solver<T, X> * m_core_solver;
vector<T> m_b_copy;
vector<T> m_lower_bounds; // We don't have a convention here that all low bounds are zeros. At least it does not hold for the first stage solver
vector<column_type> m_column_types_of_core_solver;
vector<column_type> m_column_types_of_logicals;
vector<bool> m_can_enter_basis;
public:
~lp_dual_simplex() override {
delete m_core_solver;
}
lp_dual_simplex() : m_core_solver(nullptr) {}
void decide_on_status_after_stage1();
void fix_logical_for_stage2(unsigned j);
void fix_structural_for_stage2(unsigned j);
void unmark_boxed_and_fixed_columns_and_fix_structural_costs();
void restore_right_sides();
void solve_for_stage2();
void fill_x_with_zeros();
void stage1();
void stage2();
void fill_first_stage_solver_fields();
column_type get_column_type(unsigned j);
void fill_costs_bounds_types_and_can_enter_basis_for_the_first_stage_solver_structural_column(unsigned j);
void fill_costs_bounds_types_and_can_enter_basis_for_the_first_stage_solver_logical_column(unsigned j);
void fill_costs_and_bounds_and_column_types_for_the_first_stage_solver();
void set_type_for_logical(unsigned j, column_type col_type) {
this->m_column_types_of_logicals[j - this->number_of_core_structurals()] = col_type;
}
void fill_first_stage_solver_fields_for_row_slack_and_artificial(unsigned row,
unsigned & slack_var,
unsigned & artificial);
void augment_matrix_A_and_fill_x_and_allocate_some_fields();
void copy_m_b_aside_and_set_it_to_zeros();
void find_maximal_solution() override;
T get_column_value(unsigned column) const override {
return this->get_column_value_with_core_solver(column, m_core_solver);
}
T get_current_cost() const override;
};
}

View file

@ -1,376 +0,0 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
<name>
Abstract:
<abstract>
Author:
Lev Nachmanson (levnach)
Revision History:
--*/
#pragma once
#include "math/lp/lp_dual_simplex.h"
namespace lp{
template <typename T, typename X> void lp_dual_simplex<T, X>::decide_on_status_after_stage1() {
switch (m_core_solver->get_status()) {
case lp_status::OPTIMAL:
if (this->m_settings.abs_val_is_smaller_than_artificial_tolerance(m_core_solver->get_cost())) {
this->m_status = lp_status::FEASIBLE;
} else {
this->m_status = lp_status::UNBOUNDED;
}
break;
case lp_status::DUAL_UNBOUNDED:
lp_unreachable();
case lp_status::TIME_EXHAUSTED:
this->m_status = lp_status::TIME_EXHAUSTED;
break;
case lp_status::FLOATING_POINT_ERROR:
this->m_status = lp_status::FLOATING_POINT_ERROR;
break;
default:
lp_unreachable();
}
}
template <typename T, typename X> void lp_dual_simplex<T, X>::fix_logical_for_stage2(unsigned j) {
lp_assert(j >= this->number_of_core_structurals());
switch (m_column_types_of_logicals[j - this->number_of_core_structurals()]) {
case column_type::lower_bound:
m_lower_bounds[j] = numeric_traits<T>::zero();
m_column_types_of_core_solver[j] = column_type::lower_bound;
m_can_enter_basis[j] = true;
break;
case column_type::fixed:
this->m_upper_bounds[j] = m_lower_bounds[j] = numeric_traits<T>::zero();
m_column_types_of_core_solver[j] = column_type::fixed;
m_can_enter_basis[j] = false;
break;
default:
lp_unreachable();
}
}
template <typename T, typename X> void lp_dual_simplex<T, X>::fix_structural_for_stage2(unsigned j) {
column_info<T> * ci = this->m_map_from_var_index_to_column_info[this->m_core_solver_columns_to_external_columns[j]];
switch (ci->get_column_type()) {
case column_type::lower_bound:
m_lower_bounds[j] = numeric_traits<T>::zero();
m_column_types_of_core_solver[j] = column_type::lower_bound;
m_can_enter_basis[j] = true;
break;
case column_type::fixed:
case column_type::upper_bound:
lp_unreachable();
case column_type::boxed:
this->m_upper_bounds[j] = ci->get_adjusted_upper_bound() / this->m_column_scale[j];
m_lower_bounds[j] = numeric_traits<T>::zero();
m_column_types_of_core_solver[j] = column_type::boxed;
m_can_enter_basis[j] = true;
break;
case column_type::free_column:
m_can_enter_basis[j] = true;
m_column_types_of_core_solver[j] = column_type::free_column;
break;
default:
lp_unreachable();
}
// T cost_was = this->m_costs[j];
this->set_scaled_cost(j);
}
template <typename T, typename X> void lp_dual_simplex<T, X>::unmark_boxed_and_fixed_columns_and_fix_structural_costs() {
unsigned j = this->m_A->column_count();
while (j-- > this->number_of_core_structurals()) {
fix_logical_for_stage2(j);
}
j = this->number_of_core_structurals();
while (j--) {
fix_structural_for_stage2(j);
}
}
template <typename T, typename X> void lp_dual_simplex<T, X>::restore_right_sides() {
unsigned i = this->m_A->row_count();
while (i--) {
this->m_b[i] = m_b_copy[i];
}
}
template <typename T, typename X> void lp_dual_simplex<T, X>::solve_for_stage2() {
m_core_solver->restore_non_basis();
m_core_solver->solve_yB(m_core_solver->m_y);
m_core_solver->fill_reduced_costs_from_m_y_by_rows();
m_core_solver->start_with_initial_basis_and_make_it_dual_feasible();
m_core_solver->set_status(lp_status::FEASIBLE);
m_core_solver->solve();
switch (m_core_solver->get_status()) {
case lp_status::OPTIMAL:
this->m_status = lp_status::OPTIMAL;
break;
case lp_status::DUAL_UNBOUNDED:
this->m_status = lp_status::INFEASIBLE;
break;
case lp_status::TIME_EXHAUSTED:
this->m_status = lp_status::TIME_EXHAUSTED;
break;
case lp_status::FLOATING_POINT_ERROR:
this->m_status = lp_status::FLOATING_POINT_ERROR;
break;
default:
lp_unreachable();
}
this->m_second_stage_iterations = m_core_solver->total_iterations();
this->m_total_iterations = (this->m_first_stage_iterations + this->m_second_stage_iterations);
}
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_x_with_zeros() {
unsigned j = this->m_A->column_count();
while (j--) {
this->m_x[j] = numeric_traits<T>::zero();
}
}
template <typename T, typename X> void lp_dual_simplex<T, X>::stage1() {
lp_assert(m_core_solver == nullptr);
this->m_x.resize(this->m_A->column_count(), numeric_traits<T>::zero());
if (this->m_settings.get_message_ostream() != nullptr)
this->print_statistics_on_A(*this->m_settings.get_message_ostream());
m_core_solver = new lp_dual_core_solver<T, X>(
*this->m_A,
m_can_enter_basis,
this->m_b, // the right side vector
this->m_x,
this->m_basis,
this->m_nbasis,
this->m_heading,
this->m_costs,
this->m_column_types_of_core_solver,
this->m_lower_bounds,
this->m_upper_bounds,
this->m_settings,
*this);
m_core_solver->fill_reduced_costs_from_m_y_by_rows();
m_core_solver->start_with_initial_basis_and_make_it_dual_feasible();
if (this->m_settings.abs_val_is_smaller_than_artificial_tolerance(m_core_solver->get_cost())) {
// skipping stage 1
m_core_solver->set_status(lp_status::OPTIMAL);
m_core_solver->set_total_iterations(0);
} else {
m_core_solver->solve();
}
decide_on_status_after_stage1();
this->m_first_stage_iterations = m_core_solver->total_iterations();
}
template <typename T, typename X> void lp_dual_simplex<T, X>::stage2() {
unmark_boxed_and_fixed_columns_and_fix_structural_costs();
restore_right_sides();
solve_for_stage2();
}
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_first_stage_solver_fields() {
unsigned slack_var = this->number_of_core_structurals();
unsigned artificial = this->number_of_core_structurals() + this->m_slacks;
for (unsigned row = 0; row < this->row_count(); row++) {
fill_first_stage_solver_fields_for_row_slack_and_artificial(row, slack_var, artificial);
}
fill_costs_and_bounds_and_column_types_for_the_first_stage_solver();
}
template <typename T, typename X> column_type lp_dual_simplex<T, X>::get_column_type(unsigned j) {
lp_assert(j < this->m_A->column_count());
if (j >= this->number_of_core_structurals()) {
return m_column_types_of_logicals[j - this->number_of_core_structurals()];
}
return this->m_map_from_var_index_to_column_info[this->m_core_solver_columns_to_external_columns[j]]->get_column_type();
}
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_costs_bounds_types_and_can_enter_basis_for_the_first_stage_solver_structural_column(unsigned j) {
// see 4.7 in the dissertation of Achim Koberstein
lp_assert(this->m_core_solver_columns_to_external_columns.find(j) !=
this->m_core_solver_columns_to_external_columns.end());
T free_bound = T(1e4); // see 4.8
unsigned jj = this->m_core_solver_columns_to_external_columns[j];
lp_assert(this->m_map_from_var_index_to_column_info.find(jj) != this->m_map_from_var_index_to_column_info.end());
column_info<T> * ci = this->m_map_from_var_index_to_column_info[jj];
switch (ci->get_column_type()) {
case column_type::upper_bound: {
std::stringstream s;
s << "unexpected bound type " << j << " "
<< column_type_to_string(get_column_type(j));
throw_exception(s.str());
break;
}
case column_type::lower_bound: {
m_can_enter_basis[j] = true;
this->set_scaled_cost(j);
this->m_lower_bounds[j] = numeric_traits<T>::zero();
this->m_upper_bounds[j] = numeric_traits<T>::one();
break;
}
case column_type::free_column: {
m_can_enter_basis[j] = true;
this->set_scaled_cost(j);
this->m_upper_bounds[j] = free_bound;
this->m_lower_bounds[j] = -free_bound;
break;
}
case column_type::boxed:
m_can_enter_basis[j] = false;
this->m_costs[j] = numeric_traits<T>::zero();
this->m_upper_bounds[j] = this->m_lower_bounds[j] = numeric_traits<T>::zero(); // is it needed?
break;
default:
lp_unreachable();
}
m_column_types_of_core_solver[j] = column_type::boxed;
}
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_costs_bounds_types_and_can_enter_basis_for_the_first_stage_solver_logical_column(unsigned j) {
this->m_costs[j] = 0;
lp_assert(get_column_type(j) != column_type::upper_bound);
if ((m_can_enter_basis[j] = (get_column_type(j) == column_type::lower_bound))) {
m_column_types_of_core_solver[j] = column_type::boxed;
this->m_lower_bounds[j] = numeric_traits<T>::zero();
this->m_upper_bounds[j] = numeric_traits<T>::one();
} else {
m_column_types_of_core_solver[j] = column_type::fixed;
this->m_lower_bounds[j] = numeric_traits<T>::zero();
this->m_upper_bounds[j] = numeric_traits<T>::zero();
}
}
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_costs_and_bounds_and_column_types_for_the_first_stage_solver() {
unsigned j = this->m_A->column_count();
while (j-- > this->number_of_core_structurals()) { // go over logicals here
fill_costs_bounds_types_and_can_enter_basis_for_the_first_stage_solver_logical_column(j);
}
j = this->number_of_core_structurals();
while (j--) {
fill_costs_bounds_types_and_can_enter_basis_for_the_first_stage_solver_structural_column(j);
}
}
template <typename T, typename X> void lp_dual_simplex<T, X>::fill_first_stage_solver_fields_for_row_slack_and_artificial(unsigned row,
unsigned & slack_var,
unsigned & artificial) {
lp_assert(row < this->row_count());
auto & constraint = this->m_constraints[this->m_core_solver_rows_to_external_rows[row]];
// we need to bring the program to the form Ax = b
T rs = this->m_b[row];
switch (constraint.m_relation) {
case Equal: // no slack variable here
set_type_for_logical(artificial, column_type::fixed);
this->m_basis[row] = artificial;
this->m_costs[artificial] = numeric_traits<T>::zero();
(*this->m_A)(row, artificial) = numeric_traits<T>::one();
artificial++;
break;
case Greater_or_equal:
set_type_for_logical(slack_var, column_type::lower_bound);
(*this->m_A)(row, slack_var) = - numeric_traits<T>::one();
if (rs > 0) {
// adding one artificial
set_type_for_logical(artificial, column_type::fixed);
(*this->m_A)(row, artificial) = numeric_traits<T>::one();
this->m_basis[row] = artificial;
this->m_costs[artificial] = numeric_traits<T>::zero();
artificial++;
} else {
// we can put a slack_var into the basis, and avoid adding an artificial variable
this->m_basis[row] = slack_var;
this->m_costs[slack_var] = numeric_traits<T>::zero();
}
slack_var++;
break;
case Less_or_equal:
// introduce a non-negative slack variable
set_type_for_logical(slack_var, column_type::lower_bound);
(*this->m_A)(row, slack_var) = numeric_traits<T>::one();
if (rs < 0) {
// adding one artificial
set_type_for_logical(artificial, column_type::fixed);
(*this->m_A)(row, artificial) = - numeric_traits<T>::one();
this->m_basis[row] = artificial;
this->m_costs[artificial] = numeric_traits<T>::zero();
artificial++;
} else {
// we can put slack_var into the basis, and avoid adding an artificial variable
this->m_basis[row] = slack_var;
this->m_costs[slack_var] = numeric_traits<T>::zero();
}
slack_var++;
break;
}
}
template <typename T, typename X> void lp_dual_simplex<T, X>::augment_matrix_A_and_fill_x_and_allocate_some_fields() {
this->count_slacks_and_artificials();
this->m_A->add_columns_at_the_end(this->m_slacks + this->m_artificials);
unsigned n = this->m_A->column_count();
this->m_column_types_of_core_solver.resize(n);
m_column_types_of_logicals.resize(this->m_slacks + this->m_artificials);
this->m_costs.resize(n);
this->m_upper_bounds.resize(n);
this->m_lower_bounds.resize(n);
m_can_enter_basis.resize(n);
this->m_basis.resize(this->m_A->row_count());
}
template <typename T, typename X> void lp_dual_simplex<T, X>::copy_m_b_aside_and_set_it_to_zeros() {
for (unsigned i = 0; i < this->m_b.size(); i++) {
m_b_copy.push_back(this->m_b[i]);
this->m_b[i] = numeric_traits<T>::zero(); // preparing for the first stage
}
}
template <typename T, typename X> void lp_dual_simplex<T, X>::find_maximal_solution(){
if (this->problem_is_empty()) {
this->m_status = lp_status::EMPTY;
return;
}
this->flip_costs(); // do it for now, todo ( remove the flipping)
this->cleanup();
if (this->m_status == lp_status::INFEASIBLE) {
return;
}
this->fill_matrix_A_and_init_right_side();
this->fill_m_b();
this->scale();
augment_matrix_A_and_fill_x_and_allocate_some_fields();
fill_first_stage_solver_fields();
copy_m_b_aside_and_set_it_to_zeros();
stage1();
if (this->m_status == lp_status::FEASIBLE) {
stage2();
}
}
template <typename T, typename X> T lp_dual_simplex<T, X>::get_current_cost() const {
T ret = numeric_traits<T>::zero();
for (auto it : this->m_map_from_var_index_to_column_info) {
ret += this->get_column_cost_value(it.first, it.second);
}
return -ret; // we flip costs for now
}
}