3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-28 11:25:51 +00:00

fix a bug in Horner heuristic

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2020-04-23 15:58:53 -07:00
parent 8f297666fe
commit 8921ed56b5
16 changed files with 42 additions and 58 deletions

View file

@ -91,7 +91,7 @@ void basics::basic_sign_lemma_model_based_one_mon(const monic& m, int product_si
TRACE("nla_solver_bl", tout << "zero product sign: " << pp_mon(_(), m)<< "\n"; );
generate_zero_lemmas(m);
} else {
add_empty_lemma();
add_lemma();
for(lpvar j: m.vars()) {
negate_strict_sign(j);
}
@ -158,7 +158,7 @@ bool basics::basic_sign_lemma(bool derived) {
// the value of the i-th monic has to be equal to the value of the k-th monic modulo sign
// but it is not the case in the model
void basics::generate_sign_lemma(const monic& m, const monic& n, const rational& sign) {
add_empty_lemma();
add_lemma();
TRACE("nla_solver",
tout << "m = " << pp_mon_with_vars(_(), m);
tout << "n = " << pp_mon_with_vars(_(), n);
@ -186,7 +186,7 @@ lpvar basics::find_best_zero(const monic& m, unsigned_vector & fixed_zeros) cons
return zero_j;
}
void basics::add_trival_zero_lemma(lpvar zero_j, const monic& m) {
add_empty_lemma();
add_lemma();
c().mk_ineq(zero_j, llc::NE);
c().mk_ineq(m.var(), llc::EQ);
TRACE("nla_solver", c().print_lemma(tout););
@ -194,7 +194,7 @@ void basics::add_trival_zero_lemma(lpvar zero_j, const monic& m) {
void basics::generate_strict_case_zero_lemma(const monic& m, unsigned zero_j, int sign_of_zj) {
TRACE("nla_solver_bl", tout << "sign_of_zj = " << sign_of_zj << "\n";);
// we know all the signs
add_empty_lemma();
add_lemma();
c().mk_ineq(zero_j, (sign_of_zj == 1? llc::GT : llc::LT));
for (unsigned j : m.vars()){
if (j != zero_j) {
@ -205,7 +205,7 @@ void basics::generate_strict_case_zero_lemma(const monic& m, unsigned zero_j, in
TRACE("nla_solver", c().print_lemma(tout););
}
void basics::add_fixed_zero_lemma(const monic& m, lpvar j) {
add_empty_lemma();
add_lemma();
c().explain_fixed_var(j);
c().mk_ineq(m.var(), llc::EQ);
TRACE("nla_solver", c().print_lemma(tout););
@ -234,7 +234,7 @@ bool basics::basic_lemma_for_mon_zero(const monic& rm, const factorization& f) {
return true;
#if 0
TRACE("nla_solver", c().trace_print_monic_and_factorization(rm, f, tout););
add_empty_lemma();
add_lemma();
c().explain_fixed_var(var(rm));
std::unordered_set<lpvar> processed;
for (auto j : f) {
@ -315,7 +315,7 @@ bool basics::basic_lemma_for_mon_non_zero_derived(const monic& rm, const factori
if (zero_j == -1) {
return false;
}
add_empty_lemma();
add_lemma();
c().explain_fixed_var(zero_j);
c().explain_var_separated_from_zero(var(rm));
explain(rm);
@ -364,7 +364,7 @@ bool basics::basic_lemma_for_mon_neutral_monic_to_factor_derived(const monic& rm
return false;
}
add_empty_lemma();
add_lemma();
// mon_var = 0
if (mon_var_is_sep_from_zero)
c().explain_var_separated_from_zero(mon_var);
@ -426,7 +426,7 @@ bool basics::proportion_lemma_derived(const monic& rm, const factorization& fact
}
// if there are no zero factors then |m| >= |m[factor_index]|
void basics::generate_pl_on_mon(const monic& m, unsigned factor_index) {
add_empty_lemma();
add_lemma();
unsigned mon_var = m.var();
rational mv = val(mon_var);
rational sm = rational(nla::rat_sign(mv));
@ -457,7 +457,7 @@ void basics::generate_pl(const monic& m, const factorization& fc, int factor_ind
generate_pl_on_mon(m, factor_index);
return;
}
add_empty_lemma();
add_lemma();
int fi = 0;
rational mv = var_val(m);
rational sm = rational(nla::rat_sign(mv));
@ -506,7 +506,7 @@ bool basics::factorization_has_real(const factorization& f) const {
void basics::basic_lemma_for_mon_zero_model_based(const monic& rm, const factorization& f) {
TRACE("nla_solver", c().trace_print_monic_and_factorization(rm, f, tout););
SASSERT(var_val(rm).is_zero()&& ! c().rm_check(rm));
add_empty_lemma();
add_lemma();
if (!is_separated_from_zero(f)) {
c().mk_ineq(var(rm), llc::NE);
for (auto j : f) {
@ -577,7 +577,7 @@ bool basics::basic_lemma_for_mon_neutral_monic_to_factor_model_based_fm(const mo
return false;
}
add_empty_lemma();
add_lemma();
// mon_var = 0
c().mk_ineq(mon_var, llc::EQ);
@ -625,7 +625,7 @@ bool basics::basic_lemma_for_mon_neutral_from_factors_to_monic_model_based_fm(co
}
}
add_empty_lemma();
add_lemma();
for (auto j : m.vars()){
if (not_one == j) continue;
c().mk_ineq(j, llc::NE, val(j));
@ -678,7 +678,7 @@ bool basics::basic_lemma_for_mon_neutral_monic_to_factor_model_based(const monic
return false;
}
add_empty_lemma();
add_lemma();
// mon_var = 0
c().mk_ineq(mon_var, llc::EQ);
@ -753,7 +753,7 @@ bool basics::basic_lemma_for_mon_neutral_from_factors_to_monic_model_based(const
TRACE("nla_solver_bl", tout << "not_one = " << not_one << "\n";);
add_empty_lemma();
add_lemma();
for (auto j : f){
lpvar var_j = var(j);
@ -788,7 +788,7 @@ void basics::basic_lemma_for_mon_non_zero_model_based_mf(const factorization& f)
}
if (zero_j == -1) { return; }
add_empty_lemma();
add_lemma();
c().mk_ineq(zero_j, llc::NE);
c().mk_ineq(f.mon().var(), llc::EQ);
TRACE("nla_solver", c().print_lemma(tout););