mirror of
https://github.com/Z3Prover/z3
synced 2025-04-10 19:27:06 +00:00
add general purpose emptiness/non-emptiness check
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
33cdc06eb4
commit
88e36c6bf3
|
@ -38,6 +38,8 @@ inline expr_ref expr_abstract(expr_ref_vector const& bound, expr* n) { return ex
|
|||
inline expr_ref expr_abstract(app_ref_vector const& bound, expr* n) { return expr_abstract(bound.m(), 0, bound.size(), (expr*const*)bound.c_ptr(), n); }
|
||||
expr_ref mk_forall(ast_manager& m, unsigned num_bound, app* const* bound, expr* n);
|
||||
expr_ref mk_exists(ast_manager& m, unsigned num_bound, app* const* bound, expr* n);
|
||||
inline expr_ref mk_forall(ast_manager& m, app* b, expr* n) { return mk_forall(m, 1, &b, n); }
|
||||
inline expr_ref mk_forall(ast_manager& m, expr* b, expr* n) { return mk_forall(m, to_app(b), n); }
|
||||
|
||||
#endif
|
||||
|
||||
|
|
|
@ -28,6 +28,7 @@ Notes:
|
|||
#include "ast/well_sorted.h"
|
||||
#include "ast/rewriter/var_subst.h"
|
||||
#include "ast/rewriter/bool_rewriter.h"
|
||||
#include "ast/rewriter/expr_safe_replace.h"
|
||||
#include "ast/rewriter/seq_rewriter_params.hpp"
|
||||
#include "math/automata/automaton.h"
|
||||
#include "math/automata/symbolic_automata_def.h"
|
||||
|
@ -2672,6 +2673,138 @@ br_status seq_rewriter::mk_re_opt(expr* a, expr_ref& result) {
|
|||
return BR_REWRITE1;
|
||||
}
|
||||
|
||||
void seq_rewriter::intersect(unsigned lo, unsigned hi, svector<std::pair<unsigned, unsigned>>& ranges) {
|
||||
unsigned j = 0;
|
||||
for (unsigned i = 0; i < ranges.size(); ++i) {
|
||||
unsigned lo1 = ranges[i].first;
|
||||
unsigned hi1 = ranges[i].second;
|
||||
if (hi < lo1)
|
||||
break;
|
||||
if (hi1 >= lo)
|
||||
ranges[j++] = std::make_pair(std::max(lo1, lo), std::min(hi1, hi));
|
||||
}
|
||||
ranges.shrink(j);
|
||||
}
|
||||
|
||||
/**
|
||||
* Simplify cond using special case rewriting for character equations
|
||||
* When elem is uninterpreted compute the simplification of Exists elem . cond
|
||||
* if it is possible to solve for elem.
|
||||
*/
|
||||
void seq_rewriter::elim_condition(expr* elem, expr_ref& cond) {
|
||||
expr_ref_vector conds(m());
|
||||
flatten_and(cond, conds);
|
||||
expr* lhs = nullptr, *rhs = nullptr, *e1 = nullptr;
|
||||
if (u().is_char(elem)) {
|
||||
unsigned ch = 0;
|
||||
svector<std::pair<unsigned, unsigned>> ranges, ranges1;
|
||||
ranges.push_back(std::make_pair(0, zstring::max_char()));
|
||||
auto exclude_char = [&](unsigned ch) {
|
||||
if (ch == 0) {
|
||||
intersect(1, zstring::max_char(), ranges);
|
||||
}
|
||||
else if (ch == zstring::max_char()) {
|
||||
intersect(0, ch-1, ranges);
|
||||
}
|
||||
else {
|
||||
ranges1.reset();
|
||||
ranges1.append(ranges);
|
||||
intersect(0, ch-1, ranges);
|
||||
intersect(ch + 1, zstring::max_char(), ranges1);
|
||||
ranges.append(ranges1);
|
||||
}
|
||||
};
|
||||
bool all_ranges = true;
|
||||
for (expr* e : conds) {
|
||||
if (m().is_eq(e, lhs, rhs) && elem == lhs && u().is_const_char(rhs, ch)) {
|
||||
intersect(ch, ch, ranges);
|
||||
}
|
||||
else if (m().is_eq(e, lhs, rhs) && elem == rhs && u().is_const_char(lhs, ch)) {
|
||||
intersect(ch, ch, ranges);
|
||||
}
|
||||
else if (u().is_char_le(e, lhs, rhs) && elem == lhs && u().is_const_char(rhs, ch)) {
|
||||
intersect(0, ch, ranges);
|
||||
}
|
||||
else if (u().is_char_le(e, lhs, rhs) && elem == rhs && u().is_const_char(lhs, ch)) {
|
||||
intersect(ch, zstring::max_char(), ranges);
|
||||
}
|
||||
else if (m().is_not(e, e1) && m().is_eq(e1, lhs, rhs) && elem == lhs && u().is_const_char(rhs, ch)) {
|
||||
exclude_char(ch);
|
||||
}
|
||||
else if (m().is_not(e, e1) && m().is_eq(e1, lhs, rhs) && elem == rhs && u().is_const_char(lhs, ch)) {
|
||||
exclude_char(ch);
|
||||
}
|
||||
else if (m().is_not(e, e1) && u().is_char_le(e1, lhs, rhs) && elem == lhs && u().is_const_char(rhs, ch)) {
|
||||
// not (e <= ch)
|
||||
if (ch == zstring::max_char())
|
||||
ranges.reset();
|
||||
else
|
||||
intersect(ch+1, zstring::max_char(), ranges);
|
||||
}
|
||||
else if (m().is_not(e, e1) && u().is_char_le(e1, lhs, rhs) && elem == rhs && u().is_const_char(lhs, ch)) {
|
||||
// not (ch <= e)
|
||||
if (ch == 0)
|
||||
ranges.reset();
|
||||
else
|
||||
intersect(0, ch-1, ranges);
|
||||
}
|
||||
// TBD: case for negation of range (not (and (<= lo e) (<= e hi)))
|
||||
else {
|
||||
all_ranges = false;
|
||||
break;
|
||||
}
|
||||
if (ranges.empty())
|
||||
break;
|
||||
}
|
||||
if (all_ranges) {
|
||||
if (ranges.empty()) {
|
||||
cond = m().mk_false();
|
||||
return;
|
||||
}
|
||||
if (is_uninterp_const(elem)) {
|
||||
cond = m().mk_true();
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
expr* solution = nullptr;
|
||||
for (expr* e : conds) {
|
||||
if (!m().is_eq(e, lhs, rhs))
|
||||
continue;
|
||||
if (rhs == elem)
|
||||
std::swap(lhs, rhs);
|
||||
if (lhs != elem)
|
||||
continue;
|
||||
solution = rhs;
|
||||
break;
|
||||
}
|
||||
if (solution) {
|
||||
expr_safe_replace rep(m());
|
||||
rep.insert(elem, solution);
|
||||
rep(cond);
|
||||
if (!is_uninterp_const(elem)) {
|
||||
cond = m().mk_and(m().mk_eq(elem, solution), cond);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void seq_rewriter::get_cofactors(expr* r, expr_ref_vector& conds, expr_ref_pair_vector& result) {
|
||||
expr_ref cond(m()), th(m()), el(m());
|
||||
if (has_cofactor(r, cond, th, el)) {
|
||||
conds.push_back(cond);
|
||||
get_cofactors(th, conds, result);
|
||||
conds.pop_back();
|
||||
conds.push_back(mk_not(m(), cond));
|
||||
get_cofactors(el, conds, result);
|
||||
conds.pop_back();
|
||||
}
|
||||
else {
|
||||
cond = mk_and(conds);
|
||||
result.push_back(cond, r);
|
||||
}
|
||||
}
|
||||
|
||||
bool seq_rewriter::has_cofactor(expr* r, expr_ref& cond, expr_ref& th, expr_ref& el) {
|
||||
if (m().is_ite(r)) {
|
||||
cond = to_app(r)->get_arg(0);
|
||||
|
@ -2749,8 +2882,8 @@ bool seq_rewriter::has_cofactor(expr* r, expr_ref& cond, expr_ref& th, expr_ref&
|
|||
}
|
||||
if (args_th.size() == a->get_num_args()) {
|
||||
if (has_cof) {
|
||||
th = m().mk_app(a->get_decl(), args_th);
|
||||
el = m().mk_app(a->get_decl(), args_el);
|
||||
th = mk_app(a->get_decl(), args_th);
|
||||
el = mk_app(a->get_decl(), args_el);
|
||||
trail.push_back(th);
|
||||
trail.push_back(el);
|
||||
cache_th.insert(a, th);
|
||||
|
|
|
@ -214,6 +214,9 @@ class seq_rewriter {
|
|||
class seq_util::str& str() { return u().str; }
|
||||
class seq_util::str const& str() const { return u().str; }
|
||||
|
||||
void get_cofactors(expr* r, expr_ref_vector& conds, expr_ref_pair_vector& result);
|
||||
void intersect(unsigned lo, unsigned hi, svector<std::pair<unsigned, unsigned>>& ranges);
|
||||
|
||||
public:
|
||||
seq_rewriter(ast_manager & m, params_ref const & p = params_ref()):
|
||||
m_util(m), m_autil(m), m_re2aut(m), m_es(m), m_lhs(m), m_rhs(m), m_coalesce_chars(true) {
|
||||
|
@ -235,6 +238,15 @@ public:
|
|||
br_status mk_eq_core(expr * lhs, expr * rhs, expr_ref & result);
|
||||
br_status mk_bool_app(func_decl* f, unsigned n, expr* const* args, expr_ref& result);
|
||||
|
||||
expr_ref mk_app(func_decl* f, expr_ref_vector const& args) { return mk_app(f, args.size(), args.c_ptr()); }
|
||||
expr_ref mk_app(func_decl* f, unsigned n, expr* const* args) {
|
||||
expr_ref result(m());
|
||||
if (f->get_family_id() != u().get_family_id() ||
|
||||
BR_FAILED == mk_app_core(f, n, args, result))
|
||||
result = m().mk_app(f, n, args);
|
||||
return result;
|
||||
}
|
||||
|
||||
bool reduce_eq(expr* l, expr* r, expr_ref_pair_vector& new_eqs, bool& change);
|
||||
|
||||
bool reduce_eq(expr_ref_vector& ls, expr_ref_vector& rs, expr_ref_pair_vector& new_eqs, bool& change);
|
||||
|
@ -249,6 +261,15 @@ public:
|
|||
|
||||
bool has_cofactor(expr* r, expr_ref& cond, expr_ref& th, expr_ref& el);
|
||||
|
||||
void get_cofactors(expr* r, expr_ref_pair_vector& result) {
|
||||
expr_ref_vector conds(m());
|
||||
get_cofactors(r, conds, result);
|
||||
}
|
||||
|
||||
// heuristic elimination of element from condition that comes form a derivative.
|
||||
// special case optimization for conjunctions of equalities, disequalities and ranges.
|
||||
void elim_condition(expr* elem, expr_ref& cond);
|
||||
|
||||
};
|
||||
|
||||
#endif
|
||||
|
|
|
@ -17,6 +17,7 @@ Author:
|
|||
|
||||
#include "smt/seq_regex.h"
|
||||
#include "smt/theory_seq.h"
|
||||
#include "ast/expr_abstract.h"
|
||||
|
||||
namespace smt {
|
||||
|
||||
|
@ -267,10 +268,20 @@ namespace smt {
|
|||
}
|
||||
|
||||
void seq_regex::propagate_eq(expr* r1, expr* r2) {
|
||||
// the dual version of unroll_non_empty, but
|
||||
// skolem functions have to be eliminated or turned into
|
||||
// universal quantifiers.
|
||||
throw default_exception("emptiness checking for regex is TBD");
|
||||
expr_ref r(m);
|
||||
if (re().is_empty(r1))
|
||||
std::swap(r1, r2);
|
||||
if (re().is_empty(r2))
|
||||
r = r1;
|
||||
else
|
||||
r = re().mk_union(re().mk_diff(r1, r2), re().mk_diff(r2, r1));
|
||||
rewrite(r);
|
||||
sort* seq_sort = nullptr;
|
||||
VERIFY(u().is_re(r, seq_sort));
|
||||
expr_ref emp(re().mk_empty(seq_sort), m);
|
||||
literal lit = ~th.mk_eq(r, emp, false);
|
||||
expr_ref is_non_empty = sk().mk_is_non_empty(r, emp);
|
||||
th.add_axiom(~lit, th.mk_literal(is_non_empty));
|
||||
}
|
||||
|
||||
void seq_regex::propagate_ne(expr* r1, expr* r2) {
|
||||
|
@ -284,74 +295,112 @@ namespace smt {
|
|||
rewrite(r);
|
||||
sort* seq_sort = nullptr;
|
||||
VERIFY(u().is_re(r, seq_sort));
|
||||
literal lit = ~th.mk_eq(r, re().mk_empty(seq_sort), false);
|
||||
expr_mark seen;
|
||||
expr_ref non_empty = unroll_non_empty(r, seen, 0);
|
||||
if (non_empty) {
|
||||
rewrite(non_empty);
|
||||
th.add_axiom(~lit, th.mk_literal(non_empty));
|
||||
}
|
||||
else {
|
||||
// generally introduce predicate (re.nonempty r seen)
|
||||
// with inference rules based on unroll_non_empty
|
||||
throw default_exception("unrolling large regexes is TBD");
|
||||
expr_ref emp(re().mk_empty(seq_sort), m);
|
||||
literal lit = ~th.mk_eq(r, emp, false);
|
||||
expr_ref is_empty = sk().mk_is_empty(r, emp);
|
||||
th.add_axiom(~lit, th.mk_literal(is_empty));
|
||||
}
|
||||
|
||||
bool seq_regex::is_member(expr* r, expr* u) {
|
||||
expr* u2 = nullptr;
|
||||
while (re().is_union(u, u, u2)) {
|
||||
if (r == u2)
|
||||
return true;
|
||||
}
|
||||
return r == u;
|
||||
}
|
||||
|
||||
/**
|
||||
nonempty(R union Q, Seen) = R != {} or Q != {}
|
||||
nonempty(R[if(p,R1,R2)], Seen) = if(p, nonempty(R[R1], Seen), nonempty(R[R2], Seen)) (co-factor)
|
||||
nonempty(R, Seen) = nullable(R) or (R not in Seen and nonempty(D(first(R),R), Seen u { R })) (derivative)
|
||||
|
||||
TBD: eliminate variables from p when possible to perform quantifier elimination.
|
||||
|
||||
p := first(R) == 'a'
|
||||
then replace first(R) by 'a' in R[R1]
|
||||
TBD:
|
||||
empty(R, Seen) = R = {} if R does not contain a subterm in Seen and Seen is non-empty
|
||||
* is_non_empty(r, u) => nullable or not c_i or is_non_empty(r_i, u union r)
|
||||
*
|
||||
* for each (c_i, r_i) in cofactors
|
||||
*
|
||||
* is_non_empty(r_i, u union r) := false if r_i in u
|
||||
*
|
||||
*/
|
||||
void seq_regex::propagate_is_non_empty(literal lit) {
|
||||
expr* e = ctx.bool_var2expr(lit.var()), *r, *u;
|
||||
VERIFY(sk().is_is_non_empty(e, r, u));
|
||||
expr_ref is_nullable = seq_rw().is_nullable(r);
|
||||
rewrite(is_nullable);
|
||||
if (m.is_true(is_nullable))
|
||||
return;
|
||||
literal null_lit = th.mk_literal(is_nullable);
|
||||
expr_ref hd = mk_first(r);
|
||||
expr_ref d = seq_rw().derivative(hd, r);
|
||||
if (!d)
|
||||
throw default_exception("derivative was not defined");
|
||||
literal_vector lits;
|
||||
expr_ref_pair_vector cofactors(m);
|
||||
seq_rw().get_cofactors(d, cofactors);
|
||||
for (auto const& p : cofactors) {
|
||||
expr_ref cond(p.first, m);
|
||||
seq_rw().elim_condition(hd, cond);
|
||||
rewrite(cond);
|
||||
if (m.is_false(cond))
|
||||
continue;
|
||||
lits.reset();
|
||||
lits.push_back(~lit);
|
||||
if (!m.is_true(cond))
|
||||
lits.push_back(~th.mk_literal(cond));
|
||||
if (false_literal != null_lit)
|
||||
lits.push_back(null_lit);
|
||||
if (!is_member(p.second, u))
|
||||
lits.push_back(th.mk_literal(sk().mk_is_non_empty(p.second, re().mk_union(u, r))));
|
||||
th.add_axiom(lits);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
first : RegEx -> Char is a skolem function
|
||||
*/
|
||||
/*
|
||||
is_empty(r, u) => ~is_nullable(r)
|
||||
is_empty(r, u) => (forall x . ~cond(x)) or is_empty(r1, u union r) for (cond, r) in min-terms(D(x,r))
|
||||
|
||||
is_empty(r, u) is true if r is a member of u
|
||||
*/
|
||||
void seq_regex::propagate_is_empty(literal lit) {
|
||||
expr* e = ctx.bool_var2expr(lit.var()), *r, *u;
|
||||
VERIFY(sk().is_is_empty(e, r, u));
|
||||
expr_ref is_nullable = seq_rw().is_nullable(r);
|
||||
rewrite(is_nullable);
|
||||
if (m.is_true(is_nullable)) {
|
||||
th.add_axiom(~lit);
|
||||
return;
|
||||
}
|
||||
th.add_axiom(~lit, ~th.mk_literal(is_nullable));
|
||||
expr_ref hd = mk_first(r);
|
||||
expr_ref d = seq_rw().derivative(hd, r);
|
||||
if (!d)
|
||||
throw default_exception("derivative was not defined");
|
||||
literal_vector lits;
|
||||
expr_ref_pair_vector cofactors(m);
|
||||
seq_rw().get_cofactors(d, cofactors);
|
||||
|
||||
// is_empty(r, u) => forall hd . cond => is_empty(r1, u union r)
|
||||
|
||||
for (auto const& p : cofactors) {
|
||||
if (is_member(p.second, u))
|
||||
continue;
|
||||
expr_ref cond(p.first, m);
|
||||
seq_rw().elim_condition(hd, cond);
|
||||
rewrite(cond);
|
||||
if (m.is_false(cond))
|
||||
continue;
|
||||
lits.reset();
|
||||
lits.push_back(~lit);
|
||||
expr_ref is_empty1 = sk().mk_is_non_empty(p.second, re().mk_union(u, r));
|
||||
if (!m.is_true(cond)) {
|
||||
lits.push_back(th.mk_literal(mk_forall(m, hd, m.mk_not(cond))));
|
||||
}
|
||||
lits.push_back(th.mk_literal(is_empty1));
|
||||
th.add_axiom(lits);
|
||||
}
|
||||
}
|
||||
|
||||
expr_ref seq_regex::mk_first(expr* r) {
|
||||
sort* elem_sort = nullptr, *seq_sort = nullptr;
|
||||
VERIFY(u().is_re(r, seq_sort));
|
||||
VERIFY(u().is_seq(seq_sort, elem_sort));
|
||||
return expr_ref(m.mk_fresh_const("re.first", elem_sort), m);
|
||||
// return sk().mk("re.first", r, elem_sort);
|
||||
// - for this to be effective, requires internalizer to skip skolem function internalization,
|
||||
// because of the regex argument r and we don't handle extensionality of regex well.
|
||||
// It is probably a good idea to skip internalization of all skolem expressions,
|
||||
// but requires some changes to theory_seq.
|
||||
// - it is more useful to eliminate quantifiers in he common case, so never have to
|
||||
// work with fresh expressions in the fist hand. This is possible for characters and
|
||||
// ranges (just equalities and inequalities with constant bounds).
|
||||
}
|
||||
|
||||
expr_ref seq_regex::unroll_non_empty(expr* r, expr_mark& seen, unsigned depth) {
|
||||
if (seen.is_marked(r))
|
||||
return expr_ref(m.mk_false(), m);
|
||||
if (depth > 300)
|
||||
return expr_ref(m);
|
||||
expr_ref result(m), cond(m), th(m), el(m);
|
||||
// TBD: try also rewriting
|
||||
if (seq_rw().has_cofactor(r, cond, th, el)) {
|
||||
th = unroll_non_empty(th, seen, depth + 1);
|
||||
el = unroll_non_empty(el, seen, depth + 1);
|
||||
if (th && el)
|
||||
result = m.mk_ite(cond, th, el);
|
||||
return result;
|
||||
}
|
||||
expr_ref hd = mk_first(r);
|
||||
result = seq_rw().derivative(hd, r);
|
||||
if (result) {
|
||||
// TBD fast check if r is a subterm of result, if not, then
|
||||
// loop instead of recurse
|
||||
seen.mark(r, true);
|
||||
result = unroll_non_empty(result, seen, depth + 1);
|
||||
seen.mark(r, false);
|
||||
}
|
||||
return result;
|
||||
}
|
||||
}
|
||||
|
|
|
@ -65,6 +65,8 @@ namespace smt {
|
|||
|
||||
bool unfold_cofactors(expr_ref& r, literal_vector& conds);
|
||||
|
||||
bool is_member(expr* r, expr* u);
|
||||
|
||||
public:
|
||||
|
||||
seq_regex(theory_seq& th);
|
||||
|
@ -84,6 +86,10 @@ namespace smt {
|
|||
void propagate_eq(expr* r1, expr* r2);
|
||||
|
||||
void propagate_ne(expr* r1, expr* r2);
|
||||
|
||||
void propagate_is_non_empty(literal lit);
|
||||
|
||||
void propagate_is_empty(literal lit);
|
||||
|
||||
};
|
||||
|
||||
|
|
|
@ -37,6 +37,8 @@ seq_skolem::seq_skolem(ast_manager& m, th_rewriter& rw):
|
|||
m_seq_align = "seq.align";
|
||||
m_max_unfolding = "seq.max_unfolding";
|
||||
m_length_limit = "seq.length_limit";
|
||||
m_is_empty = "re.is_empty";
|
||||
m_is_non_empty = "re.is_non_empty";
|
||||
}
|
||||
|
||||
expr_ref seq_skolem::mk(symbol const& s, expr* e1, expr* e2, expr* e3, expr* e4, sort* range) {
|
||||
|
|
|
@ -36,6 +36,7 @@ namespace smt {
|
|||
symbol m_indexof_left, m_indexof_right; // inverse of indexof: (indexof_left s t) + s + (indexof_right s t) = t, for s in t.
|
||||
symbol m_aut_step; // regex unfolding state
|
||||
symbol m_accept; // regex
|
||||
symbol m_is_empty, m_is_non_empty; // regex emptiness check
|
||||
symbol m_pre, m_post; // inverse of at: (pre s i) + (at s i) + (post s i) = s if 0 <= i < (len s)
|
||||
symbol m_eq; // equality atom
|
||||
symbol m_seq_align;
|
||||
|
@ -60,6 +61,9 @@ namespace smt {
|
|||
expr_ref mk_align(expr* e1, expr* e2, expr* e3, expr* e4) { return mk(m_seq_align, e1, e2, e3, e4); }
|
||||
expr_ref mk_accept(expr_ref_vector const& args) { return expr_ref(seq.mk_skolem(m_accept, args.size(), args.c_ptr(), m.mk_bool_sort()), m); }
|
||||
expr_ref mk_accept(expr* s, expr* i, expr* r) { return mk(m_accept, s, i, r, nullptr, m.mk_bool_sort()); }
|
||||
expr_ref mk_is_non_empty(expr* r, expr* u) { return mk(m_is_non_empty, r, u, m.mk_bool_sort()); }
|
||||
expr_ref mk_is_empty(expr* r, expr* u) { return mk(m_is_empty, r, u, m.mk_bool_sort()); }
|
||||
|
||||
expr_ref mk_indexof_left(expr* t, expr* s, expr* offset = nullptr) { return mk(m_indexof_left, t, s, offset); }
|
||||
expr_ref mk_indexof_right(expr* t, expr* s, expr* offset = nullptr) { return mk(m_indexof_right, t, s, offset); }
|
||||
expr_ref mk_last_indexof_left(expr* t, expr* s, expr* offset = nullptr) { return mk("seq.last_indexof_left", t, s, offset); }
|
||||
|
@ -82,6 +86,7 @@ namespace smt {
|
|||
expr_ref mk_right(expr* x, expr* y, expr* z = nullptr) { return mk("seq.right", x, y, z); }
|
||||
expr_ref mk_max_unfolding_depth(unsigned d);
|
||||
expr_ref mk_length_limit(expr* e, unsigned d);
|
||||
|
||||
|
||||
bool is_skolem(symbol const& s, expr* e) const;
|
||||
bool is_skolem(expr* e) const { return seq.is_skolem(e); }
|
||||
|
@ -117,7 +122,14 @@ namespace smt {
|
|||
bool is_max_unfolding(expr* e) const { return is_skolem(m_max_unfolding, e); }
|
||||
bool is_length_limit(expr* e) const { return is_skolem(m_length_limit, e); }
|
||||
bool is_length_limit(expr* p, unsigned& lim, expr*& s) const;
|
||||
|
||||
bool is_is_empty(expr* e) const { return is_skolem(m_is_empty, e); }
|
||||
bool is_is_non_empty(expr* e) const { return is_skolem(m_is_non_empty, e); }
|
||||
bool is_is_empty(expr* e, expr*& r, expr*& u) const {
|
||||
return is_skolem(m_is_empty, e) && (r = to_app(e)->get_arg(0), u = to_app(e)->get_arg(1), true);
|
||||
}
|
||||
bool is_is_non_empty(expr* e, expr*& r, expr*& u) const {
|
||||
return is_skolem(m_is_non_empty, e) && (r = to_app(e)->get_arg(0), u = to_app(e)->get_arg(1), true);
|
||||
}
|
||||
|
||||
void decompose(expr* e, expr_ref& head, expr_ref& tail);
|
||||
|
||||
|
|
|
@ -1536,7 +1536,7 @@ bool theory_seq::internalize_term(app* term) {
|
|||
}
|
||||
|
||||
if (ctx.get_fparams().m_seq_use_derivatives &&
|
||||
(m_util.str.is_in_re(term) || m_sk.is_accept(term))) {
|
||||
(m_util.str.is_in_re(term) || m_sk.is_skolem(term))) {
|
||||
bool_var bv = ctx.mk_bool_var(term);
|
||||
ctx.set_var_theory(bv, get_id());
|
||||
ctx.mark_as_relevant(bv);
|
||||
|
@ -3069,6 +3069,14 @@ void theory_seq::assign_eh(bool_var v, bool is_true) {
|
|||
}
|
||||
}
|
||||
}
|
||||
else if (m_sk.is_is_empty(e)) {
|
||||
if (is_true)
|
||||
m_regex.propagate_is_empty(lit);
|
||||
}
|
||||
else if (m_sk.is_is_non_empty(e)) {
|
||||
if (is_true)
|
||||
m_regex.propagate_is_non_empty(lit);
|
||||
}
|
||||
else if (m_sk.is_step(e)) {
|
||||
if (is_true) {
|
||||
propagate_step(lit, e);
|
||||
|
|
Loading…
Reference in a new issue