3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-07 18:05:21 +00:00

merge with unstable

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2014-03-20 14:09:18 -07:00
commit 88df909a6c
32 changed files with 578 additions and 1947 deletions

View file

@ -640,7 +640,7 @@ def is_CXX_gpp():
def is_clang_in_gpp_form(cc):
version_string = subprocess.check_output([cc, '--version'])
return version_string.find('clang') != -1
return str(version_string).find('clang') != -1
def is_CXX_clangpp():
if is_compiler(CXX, 'g++'):
@ -1198,9 +1198,9 @@ class JavaDLLComponent(Component):
deps += '%s ' % os.path.join(self.to_src_dir, 'enumerations', jfile)
out.write(deps)
out.write('\n')
if IS_WINDOWS:
JAVAC = '"%s"' % JAVAC
JAR = '"%s"' % JAR
#if IS_WINDOWS:
JAVAC = '"%s"' % JAVAC
JAR = '"%s"' % JAR
t = ('\t%s %s.java -d %s\n' % (JAVAC, os.path.join(self.to_src_dir, 'enumerations', '*'), os.path.join('api', 'java', 'classes')))
out.write(t)
t = ('\t%s -cp %s %s.java -d %s\n' % (JAVAC,
@ -1437,7 +1437,7 @@ def mk_config():
'SO_EXT=.dll\n'
'SLINK=cl\n'
'SLINK_OUT_FLAG=/Fe\n'
'OS_DEFINES=/D _WINDOWS\n')
'OS_DEFINES=/D _WINDOWS\n')
extra_opt = ''
if GIT_HASH:
extra_opt = '%s /D Z3GITHASH=%s' % (extra_opt, GIT_HASH)
@ -1485,7 +1485,7 @@ def mk_config():
print('Java Compiler: %s' % JAVAC)
else:
global CXX, CC, GMP, FOCI2, CPPFLAGS, CXXFLAGS, LDFLAGS, EXAMP_DEBUG_FLAG
OS_DEFINES = ""
OS_DEFINES = ""
ARITH = "internal"
check_ar()
CXX = find_cxx_compiler()
@ -1508,7 +1508,7 @@ def mk_config():
SLIBEXTRAFLAGS = '%s %s' % (SLIBEXTRAFLAGS,FOCI2LIB)
CPPFLAGS = '%s -D_FOCI2' % CPPFLAGS
else:
print "FAILED\n"
print("FAILED\n")
FOCI2 = False
if GIT_HASH:
CPPFLAGS = '%s -DZ3GITHASH=%s' % (CPPFLAGS, GIT_HASH)
@ -1536,21 +1536,21 @@ def mk_config():
SLIBFLAGS = '-dynamiclib'
elif sysname == 'Linux':
CXXFLAGS = '%s -fno-strict-aliasing -D_LINUX_' % CXXFLAGS
OS_DEFINES = '-D_LINUX'
OS_DEFINES = '-D_LINUX'
SO_EXT = '.so'
LDFLAGS = '%s -lrt' % LDFLAGS
SLIBFLAGS = '-shared'
SLIBEXTRAFLAGS = '%s -lrt' % SLIBEXTRAFLAGS
elif sysname == 'FreeBSD':
CXXFLAGS = '%s -fno-strict-aliasing -D_FREEBSD_' % CXXFLAGS
OS_DEFINES = '-D_FREEBSD_'
OS_DEFINES = '-D_FREEBSD_'
SO_EXT = '.so'
LDFLAGS = '%s -lrt' % LDFLAGS
SLIBFLAGS = '-shared'
SLIBEXTRAFLAGS = '%s -lrt' % SLIBEXTRAFLAGS
elif sysname[:6] == 'CYGWIN':
CXXFLAGS = '%s -D_CYGWIN -fno-strict-aliasing' % CXXFLAGS
OS_DEFINES = '-D_CYGWIN'
OS_DEFINES = '-D_CYGWIN'
SO_EXT = '.dll'
SLIBFLAGS = '-shared'
else:
@ -1586,7 +1586,7 @@ def mk_config():
config.write('SLINK_FLAGS=%s\n' % SLIBFLAGS)
config.write('SLINK_EXTRA_FLAGS=%s\n' % SLIBEXTRAFLAGS)
config.write('SLINK_OUT_FLAG=-o \n')
config.write('OS_DEFINES=%s\n' % OS_DEFINES)
config.write('OS_DEFINES=%s\n' % OS_DEFINES)
if is_verbose():
print('Host platform: %s' % sysname)
print('C++ Compiler: %s' % CXX)

View file

@ -523,7 +523,7 @@ def mk_java():
java_native.write(' public static class LongPtr { public long value; }\n')
java_native.write(' public static class StringPtr { public String value; }\n')
java_native.write(' public static native void setInternalErrorHandler(long ctx);\n\n')
if IS_WINDOWS:
if IS_WINDOWS or os.uname()[0]=="CYGWIN":
java_native.write(' static { System.loadLibrary("%s"); }\n' % get_component('java').dll_name)
else:
java_native.write(' static { System.loadLibrary("%s"); }\n' % get_component('java').dll_name[3:]) # We need 3: to extract the prexi 'lib' form the dll_name
@ -588,6 +588,9 @@ def mk_java():
java_wrapper = open(java_wrapperf, 'w')
pkg_str = get_component('java').package_name.replace('.', '_')
java_wrapper.write('// Automatically generated file\n')
java_wrapper.write('#ifdef _CYGWIN\n')
java_wrapper.write('typedef long long __int64;\n')
java_wrapper.write('#endif\n')
java_wrapper.write('#include<jni.h>\n')
java_wrapper.write('#include<stdlib.h>\n')
java_wrapper.write('#include"z3.h"\n')

View file

@ -586,7 +586,7 @@ class FuncDeclRef(AstRef):
return Z3_func_decl_to_ast(self.ctx_ref(), self.ast)
def as_func_decl(self):
return self.ast
return self.ast
def name(self):
"""Return the name of the function declaration `self`.

View file

@ -478,6 +478,25 @@ class smt2_printer {
ast_manager & m() const { return m_manager; }
ast_manager & fm() const { return format_ns::fm(m()); }
std::string ensure_quote(symbol const& s) {
std::string str;
if (is_smt2_quoted_symbol(s))
str = mk_smt2_quoted_symbol(s);
else
str = s.str();
return str;
}
symbol ensure_quote_sym(symbol const& s) {
if (is_smt2_quoted_symbol(s)) {
std::string str;
str = mk_smt2_quoted_symbol(s);
return symbol(str.c_str());
}
else
return s;
}
void pp_var(var * v) {
format * f;
if (v->get_idx() < m_var_names.size()) {
@ -507,11 +526,7 @@ class smt2_printer {
}
format * pp_simple_attribute(char const * attr, symbol const & s) {
std::string str;
if (is_smt2_quoted_symbol(s))
str = mk_smt2_quoted_symbol(s);
else
str = s.str();
std::string str = ensure_quote(s);
return mk_compose(m(), mk_string(m(), attr), mk_string(m(), str.c_str()));
}
@ -779,7 +794,7 @@ class smt2_printer {
void register_var_names(quantifier * q) {
unsigned num_decls = q->get_num_decls();
for (unsigned i = 0; i < num_decls; i++) {
symbol name = q->get_decl_name(i);
symbol name = ensure_quote_sym(q->get_decl_name(i));
if (name.is_numerical()) {
unsigned idx = 1;
name = next_name("x", idx);
@ -1003,6 +1018,7 @@ public:
unsigned idx = 1;
for (unsigned i = 0; i < num; i++) {
symbol name = next_name(var_prefix, idx);
name = ensure_quote_sym(name);
var_names.push_back(name);
m_var_names_set.insert(name);
m_var_names.push_back(name);

View file

@ -753,12 +753,7 @@ br_status arith_rewriter::mk_rem_core(expr * arg1, expr * arg2, expr_ref & resul
}
else if (m_util.is_numeral(arg2, v2, is_int) && is_int && !v2.is_zero()) {
if (is_add(arg1) || is_mul(arg1)) {
ptr_buffer<expr> new_args;
unsigned num_args = to_app(arg1)->get_num_args();
for (unsigned i = 0; i < num_args; i++)
new_args.push_back(m_util.mk_rem(to_app(arg1)->get_arg(i), arg2));
result = m().mk_app(to_app(arg1)->get_decl(), new_args.size(), new_args.c_ptr());
return BR_REWRITE2;
return BR_FAILED;
}
else {
if (v2.is_neg()) {

View file

@ -310,6 +310,8 @@ struct check_logic::imp {
return false;
non_numeral = arg;
}
if (non_numeral == 0)
return true;
if (is_diff_var(non_numeral))
return true;
if (!m_a_util.is_add(non_numeral) && !m_a_util.is_sub(non_numeral))

View file

@ -515,6 +515,25 @@ bool pdatatype_decl::has_missing_refs(symbol & missing) const {
return false;
}
bool pdatatype_decl::has_duplicate_accessors(symbol & duplicated) const {
hashtable<symbol, symbol_hash_proc, symbol_eq_proc> names;
ptr_vector<pconstructor_decl>::const_iterator it = m_constructors.begin();
ptr_vector<pconstructor_decl>::const_iterator end = m_constructors.end();
for (; it != end; ++it) {
ptr_vector<paccessor_decl> const& acc = (*it)->m_accessors;
for (unsigned i = 0; i < acc.size(); ++i) {
symbol const& name = acc[i]->get_name();
if (names.contains(name)) {
duplicated = name;
return true;
}
names.insert(name);
}
}
return false;
}
bool pdatatype_decl::fix_missing_refs(dictionary<int> const & symbol2idx, symbol & missing) {
ptr_vector<pconstructor_decl>::iterator it = m_constructors.begin();
ptr_vector<pconstructor_decl>::iterator end = m_constructors.end();

View file

@ -169,6 +169,7 @@ public:
class paccessor_decl : public pdecl {
friend class pdecl_manager;
friend class pconstructor_decl;
friend class pdatatype_decl;
symbol m_name;
ptype m_type;
paccessor_decl(unsigned id, unsigned num_params, pdecl_manager & m, symbol const & n, ptype const & r);
@ -222,6 +223,7 @@ public:
sort * instantiate(pdecl_manager & m, unsigned n, sort * const * s);
virtual void display(std::ostream & out) const;
bool has_missing_refs(symbol & missing) const;
bool has_duplicate_accessors(symbol & repeated) const;
};
/**

28
src/duality/duality.h Normal file → Executable file
View file

@ -25,7 +25,7 @@ Revision History:
#include <map>
// make hash_map and hash_set available
#ifndef WIN32
#ifndef _WINDOWS
using namespace stl_ext;
#endif
@ -782,7 +782,7 @@ protected:
};
#ifdef WIN32
#ifdef _WINDOWS
__declspec(dllexport)
#endif
void FromClauses(const std::vector<Term> &clauses);
@ -1184,7 +1184,13 @@ namespace Duality {
hash_map<Edge *, Edge *> EdgeCloneMap;
std::vector<expr> alit_stack;
std::vector<unsigned> alit_stack_sizes;
hash_map<Edge *, uptr<LogicSolver> > edge_solvers;
// to let us use one solver per edge
struct edge_solver {
hash_map<ast,expr> AssumptionLits;
uptr<solver> slvr;
};
hash_map<Edge *, edge_solver > edge_solvers;
#ifdef LIMIT_STACK_WEIGHT
struct weight_counter {
@ -1236,19 +1242,23 @@ namespace Duality {
void GetTermTreeAssertionLiteralsRec(TermTree *assumptions);
LogicSolver *SolverForEdge(Edge *edge, bool models);
edge_solver &SolverForEdge(Edge *edge, bool models, bool axioms);
public:
struct scoped_solver_for_edge {
LogicSolver *orig_ls;
solver *orig_slvr;
RPFP_caching *rpfp;
scoped_solver_for_edge(RPFP_caching *_rpfp, Edge *edge, bool models = false){
edge_solver *es;
scoped_solver_for_edge(RPFP_caching *_rpfp, Edge *edge, bool models = false, bool axioms = false){
rpfp = _rpfp;
orig_ls = rpfp->ls;
rpfp->ls = rpfp->SolverForEdge(edge,models);
orig_slvr = rpfp->ls->slvr;
es = &(rpfp->SolverForEdge(edge,models,axioms));
rpfp->ls->slvr = es->slvr.get();
rpfp->AssumptionLits.swap(es->AssumptionLits);
}
~scoped_solver_for_edge(){
rpfp->ls = orig_ls;
rpfp->ls->slvr = orig_slvr;
rpfp->AssumptionLits.swap(es->AssumptionLits);
}
};

53
src/duality/duality_rpfp.cpp Normal file → Executable file
View file

@ -2711,10 +2711,12 @@ namespace Duality {
const std::vector<expr> &theory = ls->get_axioms();
for(unsigned i = 0; i < theory.size(); i++)
s.add(theory[i]);
if(s.check(lits.size(),&lits[0]) != unsat)
throw "should be unsat";
for(int k = 0; k < 100; k++) // keep trying, maybe MBQI will do something!
if(s.check(lits.size(),&lits[0]) == unsat)
goto is_unsat;
throw "should be unsat";
}
is_unsat:
for(unsigned i = 0; i < conjuncts.size(); ){
std::swap(conjuncts[i],conjuncts.back());
std::swap(lits[i],lits.back());
@ -2747,8 +2749,20 @@ namespace Duality {
// verify
check_result res = CheckCore(lits,full_core);
if(res != unsat)
if(res != unsat){
// add the axioms in the off chance they are useful
const std::vector<expr> &theory = ls->get_axioms();
for(unsigned i = 0; i < theory.size(); i++)
GetAssumptionLits(theory[i],assumps);
lits = assumps;
std::copy(core.begin(),core.end(),std::inserter(lits,lits.end()));
for(int k = 0; k < 100; k++) // keep trying, maybe MBQI will do something!
if((res = CheckCore(lits,full_core)) == unsat)
goto is_unsat;
throw "should be unsat";
}
is_unsat:
FilterCore(core,full_core);
std::vector<expr> dummy;
@ -2889,13 +2903,20 @@ namespace Duality {
timer_stop("Generalize");
}
RPFP::LogicSolver *RPFP_caching::SolverForEdge(Edge *edge, bool models){
uptr<LogicSolver> &p = edge_solvers[edge];
RPFP_caching::edge_solver &RPFP_caching::SolverForEdge(Edge *edge, bool models, bool axioms){
edge_solver &es = edge_solvers[edge];
uptr<solver> &p = es.slvr;
if(!p.get()){
scoped_no_proof no_proofs_please(ctx.m()); // no proofs
p.set(new iZ3LogicSolver(ctx,models)); // no models
p.set(new solver(ctx,true,models)); // no models
if(axioms){
RPFP::LogicSolver *ls = edge->owner->ls;
const std::vector<expr> &axs = ls->get_axioms();
for(unsigned i = 0; i < axs.size(); i++)
p.get()->add(axs[i]);
}
}
return p.get();
return es;
}
@ -3362,6 +3383,8 @@ namespace Duality {
}
}
bool some_labels = false;
// create the edges
for(unsigned i = 0; i < clauses.size(); i++){
@ -3397,17 +3420,23 @@ namespace Duality {
Term labeled = body;
std::vector<label_struct > lbls; // TODO: throw this away for now
body = RemoveLabels(body,lbls);
if(!eq(labeled,body))
some_labels = true; // remember if there are labels, as we then can't do qe_lite
// body = IneqToEq(body); // UFO converts x=y to (x<=y & x >= y). Undo this.
body = body.simplify();
#ifdef USE_QE_LITE
std::set<int> idxs;
for(unsigned j = 0; j < Indparams.size(); j++)
if(Indparams[j].is_var())
idxs.insert(Indparams[j].get_index_value());
body = body.qe_lite(idxs,false);
if(!some_labels){ // can't do qe_lite if we have to reconstruct labels
for(unsigned j = 0; j < Indparams.size(); j++)
if(Indparams[j].is_var())
idxs.insert(Indparams[j].get_index_value());
body = body.qe_lite(idxs,false);
}
hash_map<int,hash_map<ast,Term> > sb_memo;
body = SubstBoundRec(sb_memo,substs[i],0,body);
if(some_labels)
labeled = SubstBoundRec(sb_memo,substs[i],0,labeled);
for(unsigned j = 0; j < Indparams.size(); j++)
Indparams[j] = SubstBoundRec(sb_memo, substs[i], 0, Indparams[j]);
#endif

29
src/duality/duality_solver.cpp Normal file → Executable file
View file

@ -51,12 +51,17 @@ Revision History:
// #define TOP_DOWN
// #define EFFORT_BOUNDED_STRAT
#define SKIP_UNDERAPPROX_NODES
#define USE_RPFP_CLONE
// #define KEEP_EXPANSIONS
// #define USE_CACHING_RPFP
// #define PROPAGATE_BEFORE_CHECK
#define USE_RPFP_CLONE
#define USE_NEW_GEN_CANDS
//#define NO_PROPAGATE
//#define NO_GENERALIZE
//#define NO_DECISIONS
namespace Duality {
// TODO: must be a better place for this...
@ -129,13 +134,11 @@ namespace Duality {
{
scoped_no_proof no_proofs_please(ctx.m());
#ifdef USE_RPFP_CLONE
clone_ls = new RPFP::iZ3LogicSolver(ctx, false); // no models needed for this one
clone_rpfp = new RPFP_caching(clone_ls);
clone_rpfp = new RPFP_caching(rpfp->ls);
clone_rpfp->Clone(rpfp);
#endif
#ifdef USE_NEW_GEN_CANDS
gen_cands_ls = new RPFP::iZ3LogicSolver(ctx);
gen_cands_rpfp = new RPFP_caching(gen_cands_ls);
gen_cands_rpfp = new RPFP_caching(rpfp->ls);
gen_cands_rpfp->Clone(rpfp);
#endif
}
@ -144,20 +147,16 @@ namespace Duality {
~Duality(){
#ifdef USE_RPFP_CLONE
delete clone_rpfp;
delete clone_ls;
#endif
#ifdef USE_NEW_GEN_CANDS
delete gen_cands_rpfp;
delete gen_cands_ls;
#endif
}
#ifdef USE_RPFP_CLONE
RPFP::LogicSolver *clone_ls;
RPFP_caching *clone_rpfp;
#endif
#ifdef USE_NEW_GEN_CANDS
RPFP::LogicSolver *gen_cands_ls;
RPFP_caching *gen_cands_rpfp;
#endif
@ -1255,7 +1254,7 @@ namespace Duality {
slvr.pop(1);
delete checker;
#else
RPFP_caching::scoped_solver_for_edge(gen_cands_rpfp,edge,true /* models */);
RPFP_caching::scoped_solver_for_edge ssfe(gen_cands_rpfp,edge,true /* models */, true /*axioms*/);
gen_cands_rpfp->Push();
Node *root = CheckerForEdgeClone(edge,gen_cands_rpfp);
if(gen_cands_rpfp->Check(root) != unsat){
@ -1940,11 +1939,15 @@ namespace Duality {
for(unsigned i = 0; i < expansions.size(); i++){
Node *node = expansions[i];
tree->SolveSingleNode(top,node);
#ifdef NO_GENERALIZE
node->Annotation.Formula = tree->RemoveRedundancy(node->Annotation.Formula).simplify();
#else
if(expansions.size() == 1 && NodeTooComplicated(node))
SimplifyNode(node);
else
node->Annotation.Formula = tree->RemoveRedundancy(node->Annotation.Formula).simplify();
Generalize(node);
#endif
if(RecordUpdate(node))
update_count++;
else
@ -1984,7 +1987,9 @@ namespace Duality {
if(stack.size() == 1)break;
if(prev_level_used){
Node *node = stack.back().expansions[0];
#ifndef NO_PROPAGATE
if(!Propagate(node)) break;
#endif
if(!RecordUpdate(node)) break; // shouldn't happen!
RemoveUpdateNodesAtCurrentLevel(); // this level is about to be deleted -- remove its children from update list
propagated = true;
@ -2006,11 +2011,13 @@ namespace Duality {
}
else {
was_sat = true;
tree->Push();
tree->Push();
std::vector<Node *> &expansions = stack.back().expansions;
#ifndef NO_DECISIONS
for(unsigned i = 0; i < expansions.size(); i++){
tree->FixCurrentState(expansions[i]->Outgoing);
}
#endif
#if 0
if(tree->slvr().check() == unsat)
throw "help!";

0
src/duality/duality_wrapper.cpp Normal file → Executable file
View file

View file

@ -1402,7 +1402,7 @@ namespace hash_space {
}
// to make Duality::ast hashable in windows
#ifdef WIN32
#ifdef _WINDOWS
template <> inline
size_t stdext::hash_value<Duality::ast >(const Duality::ast& s)
{
@ -1446,7 +1446,7 @@ namespace hash_space {
}
// to make Duality::func_decl hashable in windows
#ifdef WIN32
#ifdef _WINDOWS
template <> inline
size_t stdext::hash_value<Duality::func_decl >(const Duality::func_decl& s)
{

View file

@ -42,7 +42,7 @@ Revision History:
#include <ext/hash_map>
#include <ext/hash_set>
#else
#ifdef WIN32
#ifdef _WINDOWS
#define stl_ext stdext
#define hash_space std
#include <hash_map>
@ -61,7 +61,7 @@ Revision History:
// stupid STL doesn't include hash function for class string
#ifndef WIN32
#ifndef _WINDOWS
namespace stl_ext {
template <>
@ -86,7 +86,7 @@ namespace hash_space {
};
}
#ifdef WIN32
#ifdef _WINDOWS
template <> inline
size_t stdext::hash_value<std::pair<int,int> >(const std::pair<int,int>& p)
{ // hash _Keyval to size_t value one-to-one
@ -112,7 +112,7 @@ size_t stdext::hash_value<std::pair<T *, T *> >(const std::pair<T *, T *>& p)
}
#endif
#ifdef WIN32
#ifdef _WINDOWS
namespace std {
template <>
@ -139,7 +139,7 @@ namespace std {
#endif
#ifndef WIN32
#ifndef _WINDOWS
#if 0
namespace stl_ext {
@ -155,7 +155,7 @@ namespace stl_ext {
#endif
#ifdef WIN32
#ifdef _WINDOWS

23
src/interp/iz3mgr.cpp Normal file → Executable file
View file

@ -249,6 +249,9 @@ iz3mgr::ast iz3mgr::clone(const ast &t, const std::vector<ast> &_args){
void iz3mgr::show(ast t){
if(t.null()){
std::cout << "(null)" << std::endl;
}
params_ref p;
p.set_bool("flat_assoc",false);
std::cout << mk_pp(t.raw(), m(), p) << std::endl;
@ -693,10 +696,13 @@ void iz3mgr::linear_comb(ast &P, const ast &c, const ast &Q, bool round_off){
throw "not an inequality";
}
}
Qrhs = make(Times,c,Qrhs);
bool pstrict = op(P) == Lt, strict = pstrict || qstrict;
if(pstrict && qstrict && round_off)
bool pstrict = op(P) == Lt;
if(qstrict && round_off && (pstrict || !(c == make_int(rational(1))))){
Qrhs = make(Sub,Qrhs,make_int(rational(1)));
qstrict = false;
}
Qrhs = make(Times,c,Qrhs);
bool strict = pstrict || qstrict;
if(strict)
P = make(Lt,arg(P,0),make(Plus,arg(P,1),Qrhs));
else
@ -881,3 +887,14 @@ iz3mgr::ast iz3mgr::apply_quant(opr quantifier, ast var, ast e){
std::vector<ast> bvs; bvs.push_back(var);
return make_quant(quantifier,bvs,e);
}
#if 0
void iz3mgr::get_bound_substitutes(stl_ext::hash_map<ast,bool> &memo, const ast &e, const ast &var, std::vector<ast> &substs){
std::pair<ast,bool> foo(e,false);
std::pair<hash_map<ast,bool>::iterator,bool> bar = memo.insert(foo);
if(bar.second){
if(op(e) ==
}
}
#endif

2
src/interp/iz3mgr.h Normal file → Executable file
View file

@ -127,7 +127,7 @@ namespace hash_space {
}
// to make ast_r hashable in windows
#ifdef WIN32
#ifdef _WINDOWS
template <> inline
size_t stdext::hash_value<ast_r >(const ast_r& s)
{

255
src/interp/iz3proof_itp.cpp Normal file → Executable file
View file

@ -579,18 +579,36 @@ class iz3proof_itp_impl : public iz3proof_itp {
return is_ineq(ineq);
}
ast destruct_cond_ineq(const ast &ineq, ast &Aproves, ast &Bproves){
ast res = ineq;
opr o = op(res);
if(o == And){
Aproves = my_and(Aproves,arg(res,0));
res = arg(res,1);
o = op(res);
}
if(o == Implies){
Bproves = my_and(Bproves,arg(res,0));
res = arg(res,1);
}
return res;
}
ast simplify_sum(std::vector<ast> &args){
ast Aproves = mk_true(), Bproves = mk_true();
ast ineq = args[0];
ast ineq = destruct_cond_ineq(args[0],Aproves,Bproves);
if(!is_normal_ineq(ineq)) throw cannot_simplify();
sum_cond_ineq(ineq,args[1],args[2],Aproves,Bproves);
return my_and(Aproves,my_implies(Bproves,ineq));
}
ast simplify_rotate_sum(const ast &pl, const ast &pf){
ast cond = mk_true();
ast Aproves = mk_true(), Bproves = mk_true();
ast ineq = make(Leq,make_int("0"),make_int("0"));
return rotate_sum_rec(pl,pf,cond,ineq);
ineq = rotate_sum_rec(pl,pf,Aproves,Bproves,ineq);
if(is_true(Aproves) && is_true(Bproves))
return ineq;
return my_and(Aproves,my_implies(Bproves,ineq));
}
bool is_rewrite_chain(const ast &chain){
@ -623,7 +641,11 @@ class iz3proof_itp_impl : public iz3proof_itp {
void sum_cond_ineq(ast &ineq, const ast &coeff2, const ast &ineq2, ast &Aproves, ast &Bproves){
opr o = op(ineq2);
if(o == Implies){
if(o == And){
sum_cond_ineq(ineq,coeff2,arg(ineq2,1),Aproves,Bproves);
Aproves = my_and(Aproves,arg(ineq2,0));
}
else if(o == Implies){
sum_cond_ineq(ineq,coeff2,arg(ineq2,1),Aproves,Bproves);
Bproves = my_and(Bproves,arg(ineq2,0));
}
@ -683,23 +705,20 @@ class iz3proof_itp_impl : public iz3proof_itp {
return make(op(ineq),mk_idiv(arg(ineq,0),divisor),mk_idiv(arg(ineq,1),divisor));
}
ast rotate_sum_rec(const ast &pl, const ast &pf, ast &Bproves, ast &ineq){
if(pf == pl)
return my_implies(Bproves,simplify_ineq(ineq));
ast rotate_sum_rec(const ast &pl, const ast &pf, ast &Aproves, ast &Bproves, ast &ineq){
if(pf == pl){
if(sym(ineq) == normal)
return ineq;
return simplify_ineq(ineq);
}
if(op(pf) == Uninterpreted && sym(pf) == sum){
if(arg(pf,2) == pl){
ast Aproves = mk_true();
sum_cond_ineq(ineq,make_int("1"),arg(pf,0),Aproves,Bproves);
if(!is_true(Aproves))
throw "help!";
ineq = idiv_ineq(ineq,arg(pf,1));
return my_implies(Bproves,ineq);
return ineq;
}
ast Aproves = mk_true();
sum_cond_ineq(ineq,arg(pf,1),arg(pf,2),Aproves,Bproves);
if(!is_true(Aproves))
throw "help!";
return rotate_sum_rec(pl,arg(pf,0),Bproves,ineq);
return rotate_sum_rec(pl,arg(pf,0),Aproves,Bproves,ineq);
}
throw cannot_simplify();
}
@ -749,6 +768,28 @@ class iz3proof_itp_impl : public iz3proof_itp {
return res;
}
ast unmixed_eq2ineq(const ast &lhs, const ast &rhs, opr comp_op, const ast &equa, ast &cond){
ast ineqs= chain_ineqs(comp_op,LitA,equa,lhs,rhs); // chain must be from lhs to rhs
cond = my_and(cond,chain_conditions(LitA,equa));
ast Bconds = z3_simplify(chain_conditions(LitB,equa));
if(is_true(Bconds) && op(ineqs) != And)
return my_implies(cond,ineqs);
if(op(ineqs) != And)
return my_and(Bconds,my_implies(cond,ineqs));
throw "help!";
}
ast add_mixed_eq2ineq(const ast &lhs, const ast &rhs, const ast &equa, const ast &itp){
if(is_true(equa))
return itp;
std::vector<ast> args(3);
args[0] = itp;
args[1] = make_int("1");
ast ineq = make(Leq,make_int(rational(0)),make_int(rational(0)));
args[2] = make_normal(ineq,cons_normal(fix_normal(lhs,rhs,equa),mk_true()));
return simplify_sum(args);
}
ast simplify_rotate_eq2leq(const ast &pl, const ast &neg_equality, const ast &pf){
if(pl == arg(pf,1)){
ast cond = mk_true();
@ -756,20 +797,21 @@ class iz3proof_itp_impl : public iz3proof_itp {
if(is_equivrel_chain(equa)){
ast lhs,rhs; eq_from_ineq(arg(neg_equality,0),lhs,rhs); // get inequality we need to prove
LitType lhst = get_term_type(lhs), rhst = get_term_type(rhs);
if(lhst != LitMixed && rhst != LitMixed){
ast ineqs= chain_ineqs(op(arg(neg_equality,0)),LitA,equa,lhs,rhs); // chain must be from lhs to rhs
cond = my_and(cond,chain_conditions(LitA,equa));
ast Bconds = z3_simplify(chain_conditions(LitB,equa));
if(is_true(Bconds) && op(ineqs) != And)
return my_implies(cond,ineqs);
}
if(lhst != LitMixed && rhst != LitMixed)
return unmixed_eq2ineq(lhs, rhs, op(arg(neg_equality,0)), equa, cond);
else {
ast itp = make(Leq,make_int(rational(0)),make_int(rational(0)));
return make_normal(itp,cons_normal(fix_normal(lhs,rhs,equa),mk_true()));
ast left, left_term, middle, right_term, right;
left = get_left_movers(equa,lhs,middle,left_term);
middle = get_right_movers(middle,rhs,right,right_term);
ast itp = unmixed_eq2ineq(left_term, right_term, op(arg(neg_equality,0)), middle, cond);
// itp = my_implies(cond,itp);
itp = add_mixed_eq2ineq(lhs, left_term, left, itp);
itp = add_mixed_eq2ineq(right_term, rhs, right, itp);
return itp;
}
}
}
throw cannot_simplify();
throw "help!";
}
void reverse_modpon(std::vector<ast> &args){
@ -836,6 +878,8 @@ class iz3proof_itp_impl : public iz3proof_itp {
ast equa = sep_cond(args[0],cond);
if(is_equivrel_chain(equa))
return my_implies(cond,reverse_chain(equa));
if(is_negation_chain(equa))
return commute_negation_chain(equa);
throw cannot_simplify();
}
@ -909,7 +953,9 @@ class iz3proof_itp_impl : public iz3proof_itp {
get_subterm_normals(ineq1,ineq2,tail,nc,top_pos,memo, Aproves, Bproves);
ast itp;
if(is_rewrite_side(LitA,head)){
itp = ineq1;
itp = make(Leq,make_int("0"),make_int("0"));
linear_comb(itp,make_int("1"),ineq1); // make sure it is normal form
//itp = ineq1;
ast mc = z3_simplify(chain_side_proves(LitB,pref));
Bproves = my_and(Bproves,mc);
}
@ -951,7 +997,7 @@ class iz3proof_itp_impl : public iz3proof_itp {
ast simplify_modpon(const std::vector<ast> &args){
ast Aproves = mk_true(), Bproves = mk_true();
ast chain = simplify_modpon_fwd(args,Bproves);
ast Q2 = sep_cond(args[2],Bproves);
ast Q2 = destruct_cond_ineq(args[2],Aproves,Bproves);
ast interp;
if(is_normal_ineq(Q2)){ // inequalities are special
ast nQ2 = rewrite_chain_to_normal_ineq(chain,Aproves,Bproves);
@ -1450,6 +1496,50 @@ class iz3proof_itp_impl : public iz3proof_itp {
return is_negation_chain(rest);
}
ast commute_negation_chain(const ast &chain){
if(is_true(chain))
return chain;
ast last = chain_last(chain);
ast rest = chain_rest(chain);
if(is_true(rest)){
ast old = rewrite_rhs(last);
if(!(op(old) == Not))
throw "bad negative equality chain";
ast equ = arg(old,0);
if(!is_equivrel(equ))
throw "bad negative equality chain";
last = rewrite_update_rhs(last,top_pos,make(Not,make(op(equ),arg(equ,1),arg(equ,0))),make(True));
return chain_cons(rest,last);
}
ast pos = rewrite_pos(last);
if(pos == top_pos)
throw "bad negative equality chain";
int idx = pos_arg(pos);
if(idx != 0)
throw "bad negative equality chain";
pos = arg(pos,1);
if(pos == top_pos){
ast lhs = rewrite_lhs(last);
ast rhs = rewrite_rhs(last);
if(op(lhs) != Equal || op(rhs) != Equal)
throw "bad negative equality chain";
last = make_rewrite(rewrite_side(last),rewrite_pos(last),rewrite_cond(last),
make(Iff,make(Equal,arg(lhs,1),arg(lhs,0)),make(Equal,arg(rhs,1),arg(rhs,0))));
}
else {
idx = pos_arg(pos);
if(idx == 0)
idx = 1;
else if(idx == 1)
idx = 0;
else
throw "bad negative equality chain";
pos = pos_add(0,pos_add(idx,arg(pos,1)));
last = make_rewrite(rewrite_side(last),pos,rewrite_cond(last),rewrite_equ(last));
}
return chain_cons(commute_negation_chain(rest),last);
}
// split a rewrite chain into head and tail at last top-level rewrite
ast get_head_chain(const ast &chain, ast &tail, bool is_not = true){
ast last = chain_last(chain);
@ -1466,6 +1556,47 @@ class iz3proof_itp_impl : public iz3proof_itp {
return head;
}
// split a rewrite chain into head and tail at last non-mixed term
ast get_right_movers(const ast &chain, const ast &rhs, ast &tail, ast &mid){
if(is_true(chain) || get_term_type(rhs) != LitMixed){
mid = rhs;
tail = mk_true();
return chain;
}
ast last = chain_last(chain);
ast rest = chain_rest(chain);
ast mm = subst_in_pos(rhs,rewrite_pos(last),rewrite_lhs(last));
ast res = get_right_movers(rest,mm,tail,mid);
tail = chain_cons(tail,last);
return res;
}
// split a rewrite chain into head and tail at first non-mixed term
ast get_left_movers(const ast &chain, const ast &lhs, ast &tail, ast &mid){
if(is_true(chain)){
mid = lhs;
if(get_term_type(lhs) != LitMixed){
tail = mk_true();
return chain;
}
return ast();
}
ast last = chain_last(chain);
ast rest = chain_rest(chain);
ast res = get_left_movers(rest,lhs,tail,mid);
if(res.null()){
mid = subst_in_pos(mid,rewrite_pos(last),rewrite_rhs(last));
if(get_term_type(mid) != LitMixed){
tail = mk_true();
return chain;
}
return ast();
}
tail = chain_cons(tail,last);
return res;
}
struct cannot_split {};
/** Split a chain of rewrites two chains, operating on positions 0 and 1.
@ -1668,11 +1799,13 @@ class iz3proof_itp_impl : public iz3proof_itp {
}
ast fix_normal(const ast &lhs, const ast &rhs, const ast &proof){
LitType lhst = get_term_type(lhs);
LitType rhst = get_term_type(rhs);
if(rhst != LitMixed || ast_id(lhs) < ast_id(rhs))
if(lhst == LitMixed && (rhst != LitMixed || ast_id(lhs) < ast_id(rhs)))
return make_normal_step(lhs,rhs,proof);
else
if(rhst == LitMixed && (lhst != LitMixed || ast_id(rhs) < ast_id(lhs)))
return make_normal_step(rhs,lhs,reverse_chain(proof));
throw "help!";
}
ast chain_side_proves(LitType side, const ast &chain){
@ -1692,8 +1825,10 @@ class iz3proof_itp_impl : public iz3proof_itp {
ast lhs2 = normal_lhs(f2);
int id1 = ast_id(lhs1);
int id2 = ast_id(lhs2);
if(id1 < id2) return cons_normal(f1,merge_normal_chains_rec(normal_rest(chain1),chain2,trans,Aproves,Bproves));
if(id2 < id1) return cons_normal(f2,merge_normal_chains_rec(chain1,normal_rest(chain2),trans,Aproves,Bproves));
if(id1 < id2)
return cons_normal(f1,merge_normal_chains_rec(normal_rest(chain1),chain2,trans,Aproves,Bproves));
if(id2 < id1)
return cons_normal(f2,merge_normal_chains_rec(chain1,normal_rest(chain2),trans,Aproves,Bproves));
ast rhs1 = normal_rhs(f1);
ast rhs2 = normal_rhs(f2);
LitType t1 = get_term_type(rhs1);
@ -1719,9 +1854,13 @@ class iz3proof_itp_impl : public iz3proof_itp {
Aproves = my_and(Aproves,mcB);
ast rep = apply_rewrite_chain(rhs1,Aproof);
new_proof = concat_rewrite_chain(pf1,Aproof);
new_normal = make_normal_step(rhs1,rep,new_proof);
new_normal = make_normal_step(lhs1,rep,new_proof);
ast A_normal = make_normal_step(rhs1,rep,Aproof);
ast res = cons_normal(new_normal,merge_normal_chains_rec(normal_rest(chain1),normal_rest(chain2),trans,Aproves,Bproves));
res = merge_normal_chains_rec(res,cons_normal(A_normal,make(True)),trans,Aproves,Bproves);
return res;
}
else if(t1 == LitA && t2 == LitB)
else if(t1 == LitB && t2 == LitA)
return merge_normal_chains_rec(chain2,chain1,trans,Aproves,Bproves);
else if(t1 == LitA) {
ast new_proof = concat_rewrite_chain(reverse_chain(pf1),pf2);
@ -1743,17 +1882,20 @@ class iz3proof_itp_impl : public iz3proof_itp {
return chain;
ast f = normal_first(chain);
ast r = normal_rest(chain);
r = trans_normal_chain(r,trans);
ast rhs = normal_rhs(f);
hash_map<ast,ast>::iterator it = trans.find(rhs);
ast new_normal;
if(it != trans.end()){
if(it != trans.end() && get_term_type(normal_lhs(f)) == LitMixed){
const ast &f2 = it->second;
ast pf = concat_rewrite_chain(normal_proof(f),normal_proof(f2));
new_normal = make_normal_step(normal_lhs(f),normal_rhs(f2),pf);
}
else
new_normal = f;
return cons_normal(new_normal,trans_normal_chain(r,trans));
if(get_term_type(normal_lhs(f)) == LitMixed)
trans[normal_lhs(f)] = new_normal;
return cons_normal(new_normal,r);
}
ast merge_normal_chains(const ast &chain1, const ast &chain2, ast &Aproves, ast &Bproves){
@ -2011,8 +2153,14 @@ class iz3proof_itp_impl : public iz3proof_itp {
/** Make a Reflexivity node. This rule produces |- x = x */
virtual node make_reflexivity(ast con){
throw proof_error();
}
if(get_term_type(con) == LitA)
return mk_false();
if(get_term_type(con) == LitB)
return mk_true();
ast itp = make(And,make(contra,no_proof,mk_false()),
make(contra,mk_true(),mk_not(con)));
return itp;
}
/** Make a Symmetry node. This takes a derivation of |- x = y and
produces | y = x. Ditto for ~(x=y) */
@ -2247,10 +2395,19 @@ class iz3proof_itp_impl : public iz3proof_itp {
throw proof_error();
}
}
Qrhs = make(Times,c,Qrhs);
#if 0
bool pstrict = op(P) == Lt, strict = pstrict || qstrict;
if(pstrict && qstrict && round_off)
Qrhs = make(Sub,Qrhs,make_int(rational(1)));
#else
bool pstrict = op(P) == Lt;
if(qstrict && round_off && (pstrict || !(c == make_int(rational(1))))){
Qrhs = make(Sub,Qrhs,make_int(rational(1)));
qstrict = false;
}
Qrhs = make(Times,c,Qrhs);
bool strict = pstrict || qstrict;
#endif
if(strict)
P = make(Lt,arg(P,0),make(Plus,arg(P,1),Qrhs));
else
@ -2269,8 +2426,14 @@ class iz3proof_itp_impl : public iz3proof_itp {
itp = mk_true();
break;
default: { // mixed equality
if(get_term_type(x) == LitMixed || get_term_type(y) == LitMixed)
std::cerr << "WARNING: mixed term in leq2eq\n";
if(get_term_type(x) == LitMixed || get_term_type(y) == LitMixed){
// std::cerr << "WARNING: mixed term in leq2eq\n";
std::vector<ast> lits;
lits.push_back(con);
lits.push_back(make(Not,xleqy));
lits.push_back(make(Not,yleqx));
return make_axiom(lits);
}
std::vector<ast> conjs; conjs.resize(3);
conjs[0] = mk_not(con);
conjs[1] = xleqy;
@ -2405,7 +2568,15 @@ class iz3proof_itp_impl : public iz3proof_itp {
frng = srng; // this term will be localized
}
else if(o == Plus || o == Times){ // don't want bound variables inside arith ops
frng = erng; // this term will be localized
// std::cout << "WARNING: non-local arithmetic\n";
// frng = erng; // this term will be localized
}
else if(o == Select){ // treat the array term like a function symbol
prover::range srng = pv->ast_scope(arg(e,0));
if(!(srng.lo > srng.hi) && pv->ranges_intersect(srng,rng)) // localize to desired range if possible
frng = pv->range_glb(srng,rng);
else
frng = srng; // this term will be localized
}
std::vector<ast> largs(nargs);
std::vector<ast> eqs;
@ -2434,7 +2605,7 @@ class iz3proof_itp_impl : public iz3proof_itp {
return e; // this term occurs in range, so it's O.K.
if(is_array_type(get_type(e)))
throw "help!";
std::cerr << "WARNING: array quantifier\n";
// choose a frame for the constraint that is close to range
int frame = pv->range_near(pv->ast_scope(e),rng);

View file

@ -188,6 +188,15 @@ public:
get_Z3_lits(con, lits);
iproof->make_axiom(lits);
}
#ifdef LOCALIZATION_KLUDGE
else if(dk == PR_MODUS_PONENS && pr(prem(proof,0)) == PR_QUANT_INST
&& get_locality_rec(prem(proof,1)) == INT_MAX){
std::vector<ast> lits;
ast con = conc(proof);
get_Z3_lits(con, lits);
iproof->make_axiom(lits);
}
#endif
else {
unsigned nprems = num_prems(proof);
for(unsigned i = 0; i < nprems; i++){
@ -1271,6 +1280,84 @@ public:
return make(Plus,args);
}
ast replace_summands_with_fresh_vars(const ast &t, hash_map<ast,ast> &map){
if(op(t) == Plus){
int nargs = num_args(t);
std::vector<ast> args(nargs);
for(int i = 0; i < nargs; i++)
args[i] = replace_summands_with_fresh_vars(arg(t,i),map);
return make(Plus,args);
}
if(op(t) == Times)
return make(Times,arg(t,0),replace_summands_with_fresh_vars(arg(t,1),map));
if(map.find(t) == map.end())
map[t] = mk_fresh_constant("@s",get_type(t));
return map[t];
}
ast painfully_normalize_ineq(const ast &ineq, hash_map<ast,ast> &map){
ast res = normalize_inequality(ineq);
ast lhs = arg(res,0);
lhs = replace_summands_with_fresh_vars(lhs,map);
res = make(op(res),SortSum(lhs),arg(res,1));
return res;
}
Iproof::node painfully_reconstruct_farkas(const std::vector<ast> &prems, const std::vector<Iproof::node> &pfs, const ast &con){
int nprems = prems.size();
std::vector<ast> pcons(nprems),npcons(nprems);
hash_map<ast,ast> pcon_to_pf, npcon_to_pcon, pain_map;
for(int i = 0; i < nprems; i++){
pcons[i] = conc(prems[i]);
npcons[i] = painfully_normalize_ineq(pcons[i],pain_map);
pcon_to_pf[npcons[i]] = pfs[i];
npcon_to_pcon[npcons[i]] = pcons[i];
}
// ast leq = make(Leq,arg(con,0),arg(con,1));
ast ncon = painfully_normalize_ineq(mk_not(con),pain_map);
pcons.push_back(mk_not(con));
npcons.push_back(ncon);
// ast assumps = make(And,pcons);
ast new_proof;
if(is_sat(npcons,new_proof))
throw "Proof error!";
pfrule dk = pr(new_proof);
int nnp = num_prems(new_proof);
std::vector<Iproof::node> my_prems;
std::vector<ast> farkas_coeffs, my_pcons;
if(dk == PR_TH_LEMMA
&& get_theory_lemma_theory(new_proof) == ArithTheory
&& get_theory_lemma_kind(new_proof) == FarkasKind)
get_farkas_coeffs(new_proof,farkas_coeffs);
else if(dk == PR_UNIT_RESOLUTION && nnp == 2){
for(int i = 0; i < nprems; i++)
farkas_coeffs.push_back(make_int(rational(1)));
}
else
throw "cannot reconstruct farkas proof";
for(int i = 0; i < nnp; i++){
ast p = conc(prem(new_proof,i));
p = really_normalize_ineq(p);
if(pcon_to_pf.find(p) != pcon_to_pf.end()){
my_prems.push_back(pcon_to_pf[p]);
my_pcons.push_back(npcon_to_pcon[p]);
}
else if(p == ncon){
my_prems.push_back(iproof->make_hypothesis(mk_not(con)));
my_pcons.push_back(mk_not(con));
}
else
throw "cannot reconstruct farkas proof";
}
Iproof::node res = iproof->make_farkas(mk_false(),my_prems,my_pcons,farkas_coeffs);
return res;
}
ast really_normalize_ineq(const ast &ineq){
ast res = normalize_inequality(ineq);
res = make(op(res),SortSum(arg(res,0)),arg(res,1));
@ -1309,7 +1396,7 @@ public:
farkas_coeffs.push_back(make_int(rational(1)));
}
else
throw "cannot reconstruct farkas proof";
return painfully_reconstruct_farkas(prems,pfs,con);
for(int i = 0; i < nnp; i++){
ast p = conc(prem(new_proof,i));
@ -1452,9 +1539,11 @@ public:
lits.push_back(from_ast(con));
// pattern match some idioms
if(dk == PR_MODUS_PONENS && pr(prem(proof,0)) == PR_QUANT_INST && pr(prem(proof,1)) == PR_REWRITE ) {
res = iproof->make_axiom(lits);
return res;
if(dk == PR_MODUS_PONENS && pr(prem(proof,0)) == PR_QUANT_INST){
if(get_locality_rec(prem(proof,1)) == INT_MAX) {
res = iproof->make_axiom(lits);
return res;
}
}
if(dk == PR_MODUS_PONENS && expect_clause && op(con) == Or){
Iproof::node clause = translate_main(prem(proof,0),true);
@ -1465,12 +1554,20 @@ public:
if(dk == PR_MODUS_PONENS && expect_clause && op(con) == Or)
std::cout << "foo!\n";
#if 0
if(1 && dk == PR_TRANSITIVITY && pr(prem(proof,1)) == PR_COMMUTATIVITY){
Iproof::node clause = translate_main(prem(proof,0),true);
res = make(commute,clause,conc(prem(proof,0))); // HACK -- we depend on Iproof::node being same as ast.
return res;
}
if(1 && dk == PR_TRANSITIVITY && pr(prem(proof,0)) == PR_COMMUTATIVITY){
Iproof::node clause = translate_main(prem(proof,1),true);
res = make(commute,clause,conc(prem(proof,1))); // HACK -- we depend on Iproof::node being same as ast.
return res;
}
#endif
if(dk == PR_TRANSITIVITY && is_eq_propagate(prem(proof,1))){
try {
res = CombineEqPropagate(proof);
@ -1627,9 +1724,10 @@ public:
break;
case ArrayTheory: {// nothing fancy for this
ast store_array;
if(!get_store_array(con,store_array))
throw unsupported();
res = iproof->make_axiom(lits,ast_scope(store_array));
if(get_store_array(con,store_array))
res = iproof->make_axiom(lits,ast_scope(store_array));
else
res = iproof->make_axiom(lits); // for array extensionality axiom
break;
}
default:
@ -1653,6 +1751,12 @@ public:
res = args[0];
break;
}
case PR_COMMUTATIVITY: {
ast comm_equiv = make(op(con),arg(con,0),arg(con,0));
ast pf = iproof->make_reflexivity(comm_equiv);
res = make(commute,pf,comm_equiv);
break;
}
default:
assert(0 && "translate_main: unsupported proof rule");
throw unsupported();

View file

@ -1465,6 +1465,10 @@ namespace datalog {
if (m_rules.get_num_rules() == 0) {
return l_false;
}
if (m_rules.get_predicate_rules(m_query_pred).empty()) {
return l_false;
}
if (is_linear()) {
if (m_ctx.get_engine() == QBMC_ENGINE) {

0
src/muz/duality/duality_dl_interface.cpp Normal file → Executable file
View file

View file

@ -850,6 +850,13 @@ namespace smt2 {
for (unsigned i = 0; i < sz; i++) {
pdatatype_decl * d = new_dt_decls[i];
SASSERT(d != 0);
symbol duplicated;
if (d->has_duplicate_accessors(duplicated)) {
std::string err_msg = "invalid datatype declaration, repeated accessor identifier '";
err_msg += duplicated.str();
err_msg += "'";
throw parser_exception(err_msg, line, pos);
}
m_ctx.insert(d);
if (d->get_num_params() == 0) {
// if datatype is not parametric... then force instantiation to register accessor, recognizers and constructors...
@ -2070,6 +2077,7 @@ namespace smt2 {
void parse_option_value() {
switch (curr()) {
case scanner::BV_TOKEN:
case scanner::INT_TOKEN:
case scanner::FLOAT_TOKEN:
m_curr_cmd->set_next_arg(m_ctx, m_scanner.get_number());

View file

@ -87,7 +87,7 @@ void display_usage() {
std::cout << "\nResources:\n";
// timeout and memout are now available on Linux and OSX too.
std::cout << " -T:timeout set the timeout (in seconds).\n";
std::cout << " -t:timeout set the soft timeout (in seconds). It only kills the current query.\n";
std::cout << " -t:timeout set the soft timeout (in milli seconds). It only kills the current query.\n";
std::cout << " -memory:Megabytes set a limit for virtual memory consumption.\n";
//
std::cout << "\nOutput:\n";

View file

@ -28,7 +28,6 @@ enum arith_solver_id {
AS_ARITH,
AS_DENSE_DIFF_LOGIC,
AS_UTVPI,
AS_HORN,
AS_OPTINF
};

View file

@ -441,10 +441,10 @@ namespace smt {
virtual bool mbqi_enabled(quantifier *q) const {
if(!m_fparams->m_mbqi_id) return true;
const symbol &s = q->get_qid();
unsigned len = strlen(m_fparams->m_mbqi_id);
size_t len = strlen(m_fparams->m_mbqi_id);
if(s == symbol::null || s.is_numerical())
return len == 0;
return strncmp(s.bare_str(),m_fparams->m_mbqi_id,static_cast<unsigned>(len)) == 0;
return strncmp(s.bare_str(),m_fparams->m_mbqi_id,len) == 0;
}
/* Quantifier id's must begin with the prefix specified by

View file

@ -22,7 +22,6 @@ Revision History:
#include"theory_arith.h"
#include"theory_dense_diff_logic.h"
#include"theory_diff_logic.h"
#include"theory_horn_ineq.h"
#include"theory_utvpi.h"
#include"theory_array.h"
#include"theory_array_full.h"
@ -731,12 +730,6 @@ namespace smt {
m_context.register_plugin(alloc(smt::theory_dense_mi, m_manager, m_params));
}
break;
case AS_HORN:
if (m_params.m_arith_int_only)
m_context.register_plugin(alloc(smt::theory_ihi, m_manager));
else
m_context.register_plugin(alloc(smt::theory_rhi, m_manager));
break;
case AS_UTVPI:
if (m_params.m_arith_int_only)
m_context.register_plugin(alloc(smt::theory_iutvpi, m_manager));

View file

@ -139,22 +139,32 @@ protected:
SASSERT(g.is_well_sorted());
}
struct expr_pos {
unsigned m_parent;
unsigned m_self;
unsigned m_idx;
expr* m_expr;
expr_pos(unsigned p, unsigned s, unsigned i, expr* e):
m_parent(p), m_self(s), m_idx(i), m_expr(e)
{}
expr_pos():
m_parent(0), m_self(0), m_idx(0), m_expr(0)
{}
};
void reduce(expr_ref& result){
SASSERT(m.is_bool(result));
ptr_vector<expr> todo;
ptr_vector<expr> names;
svector<bool> is_checked;
svector<unsigned> parent_ids, self_ids;
svector<expr_pos> todo;
expr_ref_vector fresh_vars(m), trail(m);
expr_ref res(m), tmp(m);
obj_map<expr,std::pair<unsigned, expr*> > cache;
unsigned id = 1;
obj_map<expr, expr_pos> cache;
unsigned id = 1, child_id = 0;
expr_ref n2(m), fml(m);
unsigned path_id = 0, self_pos = 0;
unsigned parent_pos = 0, self_pos = 0, self_idx = 0;
app * a;
unsigned sz;
std::pair<unsigned,expr*> path_r;
ptr_vector<expr> found;
expr_pos path_r;
expr_ref_vector args(m);
expr_ref n = mk_fresh(id, m.mk_bool_sort());
trail.push_back(n);
@ -163,26 +173,25 @@ protected:
tmp = m.mk_not(m.mk_iff(fml, n));
m_solver.assert_expr(tmp);
todo.push_back(fml);
todo.push_back(expr_pos(0,0,0,fml));
names.push_back(n);
is_checked.push_back(false);
parent_ids.push_back(0);
self_ids.push_back(0);
m_solver.push();
while (!todo.empty() && !m_cancel) {
expr_ref res(m);
args.reset();
expr* e = todo.back();
unsigned pos = parent_ids.back();
expr* e = todo.back().m_expr;
self_pos = todo.back().m_self;
parent_pos = todo.back().m_parent;
self_idx = todo.back().m_idx;
n = names.back();
bool checked = is_checked.back();
if (cache.contains(e)) {
goto done;
}
if (m.is_bool(e) && !checked && simplify_bool(n, res)) {
TRACE("ctx_solver_simplify_tactic", tout << "simplified: " << mk_pp(e, m) << " |-> " << mk_pp(res, m) << "\n";);
if (m.is_bool(e) && simplify_bool(n, res)) {
TRACE("ctx_solver_simplify_tactic",
tout << "simplified: " << mk_pp(e, m) << " |-> " << mk_pp(res, m) << "\n";);
goto done;
}
if (!is_app(e)) {
@ -191,49 +200,31 @@ protected:
}
a = to_app(e);
if (!is_checked.back()) {
self_ids.back() = ++path_id;
is_checked.back() = true;
}
self_pos = self_ids.back();
sz = a->get_num_args();
sz = a->get_num_args();
n2 = 0;
found.reset(); // arguments already simplified.
for (unsigned i = 0; i < sz; ++i) {
expr* arg = a->get_arg(i);
if (cache.find(arg, path_r) && !found.contains(arg)) {
if (cache.find(arg, path_r)) {
//
// This is a single traversal version of the context
// simplifier. It simplifies only the first occurrence of
// a sub-term with respect to the context.
//
found.push_back(arg);
if (path_r.first == self_pos) {
TRACE("ctx_solver_simplify_tactic", tout << "cached " << mk_pp(arg, m) << " |-> " << mk_pp(path_r.second, m) << "\n";);
args.push_back(path_r.second);
}
else if (m.is_bool(arg)) {
res = local_simplify(a, n, id, i);
TRACE("ctx_solver_simplify_tactic",
tout << "Already cached: " << path_r.first << " " << mk_pp(arg, m) << " |-> " << mk_pp(res, m) << "\n";);
args.push_back(res);
if (path_r.m_parent == self_pos && path_r.m_idx == i) {
args.push_back(path_r.m_expr);
}
else {
args.push_back(arg);
}
}
else if (!n2 && !found.contains(arg)) {
else if (!n2) {
n2 = mk_fresh(id, m.get_sort(arg));
trail.push_back(n2);
todo.push_back(arg);
parent_ids.push_back(self_pos);
self_ids.push_back(0);
todo.push_back(expr_pos(self_pos, child_id++, i, arg));
names.push_back(n2);
args.push_back(n2);
is_checked.push_back(false);
}
else {
args.push_back(arg);
@ -251,22 +242,16 @@ protected:
done:
if (res) {
cache.insert(e, std::make_pair(pos, res));
}
TRACE("ctx_solver_simplify_tactic",
tout << mk_pp(e, m) << " checked: " << checked << " cached: " << mk_pp(res?res.get():e, m) << "\n";);
cache.insert(e, expr_pos(parent_pos, self_pos, self_idx, res));
}
todo.pop_back();
parent_ids.pop_back();
self_ids.pop_back();
names.pop_back();
is_checked.pop_back();
m_solver.pop(1);
}
if (!m_cancel) {
VERIFY(cache.find(fml, path_r));
result = path_r.second;
result = path_r.m_expr;
}
}
@ -306,32 +291,6 @@ protected:
}
return expr_ref(m.mk_app(fn, m_arith.mk_numeral(rational(id++), true)), m);
}
expr_ref local_simplify(app* a, expr* n, unsigned& id, unsigned index) {
SASSERT(index < a->get_num_args());
SASSERT(m.is_bool(a->get_arg(index)));
expr_ref n2(m), result(m), tmp(m);
n2 = mk_fresh(id, m.get_sort(a->get_arg(index)));
ptr_buffer<expr> args;
for (unsigned i = 0; i < a->get_num_args(); ++i) {
if (i == index) {
args.push_back(n2);
}
else {
args.push_back(a->get_arg(i));
}
}
m_mk_app(a->get_decl(), args.size(), args.c_ptr(), result);
m_solver.push();
tmp = m.mk_eq(result, n);
m_solver.assert_expr(tmp);
if (!simplify_bool(n2, result)) {
result = a->get_arg(index);
}
m_solver.pop(1);
return result;
}
};

View file

@ -1,236 +0,0 @@
/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
theory_horn_ineq.h
Author:
Nikolaj Bjorner (nbjorner) 2013-04-18
Revision History:
The implementaton is derived from theory_diff_logic.
--*/
#include "theory_horn_ineq.h"
#include "theory_horn_ineq_def.h"
namespace smt {
template class theory_horn_ineq<ihi_ext>;
template class theory_horn_ineq<rhi_ext>;
// similar to test_diff_logic:
horn_ineq_tester::horn_ineq_tester(ast_manager& m): m(m), a(m) {}
bool horn_ineq_tester::operator()(expr* e) {
m_todo.reset();
m_pols.reset();
pos_mark.reset();
neg_mark.reset();
m_todo.push_back(e);
m_pols.push_back(l_true);
while (!m_todo.empty()) {
expr* e = m_todo.back();
lbool p = m_pols.back();
m_todo.pop_back();
m_pols.pop_back();
switch (p) {
case l_true:
if (pos_mark.is_marked(e)) {
continue;
}
pos_mark.mark(e, true);
break;
case l_false:
if (neg_mark.is_marked(e)) {
continue;
}
neg_mark.mark(e, true);
break;
case l_undef:
if (pos_mark.is_marked(e) && neg_mark.is_marked(e)) {
continue;
}
pos_mark.mark(e, true);
neg_mark.mark(e, true);
break;
}
if (!test_expr(p, e)) {
return false;
}
}
return true;
}
vector<std::pair<expr*,rational> > const& horn_ineq_tester::get_linearization() const {
return m_terms;
}
bool horn_ineq_tester::test_expr(lbool p, expr* e) {
expr* e1, *e2, *e3;
if (is_var(e)) {
return true;
}
if (!is_app(e)) {
return false;
}
app* ap = to_app(e);
if (m.is_and(ap) || m.is_or(ap)) {
for (unsigned i = 0; i < ap->get_num_args(); ++i) {
m_todo.push_back(ap->get_arg(i));
m_pols.push_back(p);
}
}
else if (m.is_not(e, e1)) {
m_todo.push_back(e);
m_pols.push_back(~p);
}
else if (m.is_ite(e, e1, e2, e3)) {
m_todo.push_back(e1);
m_pols.push_back(l_undef);
m_todo.push_back(e2);
m_pols.push_back(p);
m_todo.push_back(e3);
m_pols.push_back(p);
}
else if (m.is_iff(e, e1, e2)) {
m_todo.push_back(e1);
m_pols.push_back(l_undef);
m_todo.push_back(e2);
m_pols.push_back(l_undef);
m_todo.push_back(e2);
}
else if (m.is_implies(e, e1, e2)) {
m_todo.push_back(e1);
m_pols.push_back(~p);
m_todo.push_back(e2);
m_pols.push_back(p);
}
else if (m.is_eq(e, e1, e2)) {
return linearize(e1, e2) == diff;
}
else if (m.is_true(e) || m.is_false(e)) {
// no-op
}
else if (a.is_le(e, e1, e2) || a.is_ge(e, e2, e1) ||
a.is_lt(e, e1, e2) || a.is_gt(e, e2, e1)) {
if (p == l_false) {
std::swap(e2, e1);
}
classify_t cl = linearize(e1, e2);
switch(p) {
case l_undef:
return cl == diff;
case l_true:
case l_false:
return cl == horn || cl == diff;
}
}
else if (!is_uninterp_const(e)) {
return false;
}
return true;
}
bool horn_ineq_tester::operator()(unsigned num_fmls, expr* const* fmls) {
for (unsigned i = 0; i < num_fmls; ++i) {
if (!(*this)(fmls[i])) {
return false;
}
}
return true;
}
horn_ineq_tester::classify_t horn_ineq_tester::linearize(expr* e) {
m_terms.reset();
m_terms.push_back(std::make_pair(e, rational(1)));
return linearize();
}
horn_ineq_tester::classify_t horn_ineq_tester::linearize(expr* e1, expr* e2) {
m_terms.reset();
m_terms.push_back(std::make_pair(e1, rational(1)));
m_terms.push_back(std::make_pair(e2, rational(-1)));
return linearize();
}
horn_ineq_tester::classify_t horn_ineq_tester::linearize() {
m_weight.reset();
m_coeff_map.reset();
while (!m_terms.empty()) {
expr* e1, *e2;
rational num;
rational mul = m_terms.back().second;
expr* e = m_terms.back().first;
m_terms.pop_back();
if (a.is_add(e)) {
for (unsigned i = 0; i < to_app(e)->get_num_args(); ++i) {
m_terms.push_back(std::make_pair(to_app(e)->get_arg(i), mul));
}
}
else if (a.is_mul(e, e1, e2) && a.is_numeral(e1, num)) {
m_terms.push_back(std::make_pair(e2, mul*num));
}
else if (a.is_mul(e, e2, e1) && a.is_numeral(e1, num)) {
m_terms.push_back(std::make_pair(e2, mul*num));
}
else if (a.is_sub(e, e1, e2)) {
m_terms.push_back(std::make_pair(e1, mul));
m_terms.push_back(std::make_pair(e2, -mul));
}
else if (a.is_uminus(e, e1)) {
m_terms.push_back(std::make_pair(e1, -mul));
}
else if (a.is_numeral(e, num)) {
m_weight += num*mul;
}
else if (a.is_to_real(e, e1)) {
m_terms.push_back(std::make_pair(e1, mul));
}
else if (!is_uninterp_const(e)) {
return non_horn;
}
else {
m_coeff_map.insert_if_not_there2(e, rational(0))->get_data().m_value += mul;
}
}
unsigned num_negative = 0;
unsigned num_positive = 0;
bool is_unit_pos = true, is_unit_neg = true;
obj_map<expr, rational>::iterator it = m_coeff_map.begin();
obj_map<expr, rational>::iterator end = m_coeff_map.end();
for (; it != end; ++it) {
rational r = it->m_value;
if (r.is_zero()) {
continue;
}
m_terms.push_back(std::make_pair(it->m_key, r));
if (r.is_pos()) {
is_unit_pos = is_unit_pos && r.is_one();
num_positive++;
}
else {
is_unit_neg = is_unit_neg && r.is_minus_one();
num_negative++;
}
}
if (num_negative <= 1 && is_unit_pos && is_unit_neg && num_positive <= 1) {
return diff;
}
if (num_positive <= 1 && is_unit_pos) {
return horn;
}
if (num_negative <= 1 && is_unit_neg) {
return co_horn;
}
return non_horn;
}
}

View file

@ -1,328 +0,0 @@
/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
theory_horn_ineq.h
Abstract:
A*x <= weight + D*x, coefficients to A and D are non-negative,
D is a diagonal matrix.
Coefficients to weight may have both signs.
Label variables by weight.
Select inequality that is not satisfied.
Set delta(LHS) := 0
Set delta(RHS(x)) := weight(x) - b
Propagate weight increment through inequalities.
Author:
Nikolaj Bjorner (nbjorner) 2013-04-18
Revision History:
The implementaton is derived from theory_diff_logic.
--*/
#ifndef _THEORY_HORN_INEQ_H_
#define _THEORY_HORN_INEQ_H_
#include"rational.h"
#include"inf_rational.h"
#include"inf_int_rational.h"
#include"inf_eps_rational.h"
#include"smt_theory.h"
#include"arith_decl_plugin.h"
#include"smt_justification.h"
#include"map.h"
#include"smt_params.h"
#include"arith_eq_adapter.h"
#include"smt_model_generator.h"
#include"numeral_factory.h"
#include"smt_clause.h"
namespace smt {
class horn_ineq_tester {
ast_manager& m;
arith_util a;
ptr_vector<expr> m_todo;
svector<lbool> m_pols;
ast_mark pos_mark, neg_mark;
obj_map<expr, rational> m_coeff_map;
rational m_weight;
vector<std::pair<expr*, rational> > m_terms;
public:
enum classify_t {
co_horn,
horn,
diff,
non_horn
};
horn_ineq_tester(ast_manager& m);
// test if formula is in the Horn inequality fragment:
bool operator()(expr* fml);
bool operator()(unsigned num_fmls, expr* const* fmls);
// linearize inequality/equality
classify_t linearize(expr* e);
classify_t linearize(expr* e1, expr* e2);
// retrieve linearization
vector<std::pair<expr*,rational> > const& get_linearization() const;
rational const& get_weight() const { return m_weight; }
private:
bool test_expr(lbool p, expr* e);
classify_t linearize();
};
template<typename Ext>
class theory_horn_ineq : public theory, private Ext {
typedef typename Ext::numeral numeral;
typedef typename Ext::inf_numeral inf_numeral;
typedef literal explanation;
typedef theory_var th_var;
typedef svector<th_var> th_var_vector;
typedef unsigned clause_id;
typedef vector<std::pair<th_var, rational> > coeffs;
class clause;
class graph;
class assignment_trail;
class parent_trail;
class atom {
protected:
bool_var m_bvar;
bool m_true;
int m_pos;
int m_neg;
public:
atom(bool_var bv, int pos, int neg) :
m_bvar(bv), m_true(false),
m_pos(pos), m_neg(neg) {}
~atom() {}
bool_var get_bool_var() const { return m_bvar; }
bool is_true() const { return m_true; }
void assign_eh(bool is_true) { m_true = is_true; }
int get_asserted_edge() const { return this->m_true?m_pos:m_neg; }
int get_pos() const { return m_pos; }
int get_neg() const { return m_neg; }
std::ostream& display(theory_horn_ineq const& th, std::ostream& out) const;
};
typedef svector<atom> atoms;
struct scope {
unsigned m_atoms_lim;
unsigned m_asserted_atoms_lim;
unsigned m_asserted_qhead_old;
};
struct stats {
unsigned m_num_conflicts;
unsigned m_num_assertions;
unsigned m_num_core2th_eqs;
unsigned m_num_core2th_diseqs;
void reset() {
memset(this, 0, sizeof(*this));
}
stats() {
reset();
}
};
stats m_stats;
smt_params m_params;
arith_util a;
arith_eq_adapter m_arith_eq_adapter;
th_var m_zero_int; // cache the variable representing the zero variable.
th_var m_zero_real; // cache the variable representing the zero variable.
graph* m_graph;
atoms m_atoms;
unsigned_vector m_asserted_atoms; // set of asserted atoms
unsigned m_asserted_qhead;
u_map<unsigned> m_bool_var2atom;
svector<scope> m_scopes;
double m_agility;
bool m_lia;
bool m_lra;
bool m_non_horn_ineq_exprs;
horn_ineq_tester m_test;
arith_factory * m_factory;
rational m_delta;
rational m_lambda;
// Set a conflict due to a negative cycle.
void set_neg_cycle_conflict();
// Create a new theory variable.
virtual th_var mk_var(enode* n);
virtual th_var mk_var(expr* n);
void compute_delta();
void found_non_horn_ineq_expr(expr * n);
bool is_interpreted(app* n) const {
return n->get_family_id() == get_family_id();
}
public:
theory_horn_ineq(ast_manager& m);
virtual ~theory_horn_ineq();
virtual theory * mk_fresh(context * new_ctx) { return alloc(theory_horn_ineq, get_manager()); }
virtual char const * get_name() const { return "horn-inequality-logic"; }
/**
\brief See comment in theory::mk_eq_atom
*/
virtual app * mk_eq_atom(expr * lhs, expr * rhs) { return a.mk_eq(lhs, rhs); }
virtual void init(context * ctx);
virtual bool internalize_atom(app * atom, bool gate_ctx);
virtual bool internalize_term(app * term);
virtual void internalize_eq_eh(app * atom, bool_var v);
virtual void assign_eh(bool_var v, bool is_true);
virtual void new_eq_eh(th_var v1, th_var v2) {
m_arith_eq_adapter.new_eq_eh(v1, v2);
}
virtual bool use_diseqs() const { return true; }
virtual void new_diseq_eh(th_var v1, th_var v2) {
m_arith_eq_adapter.new_diseq_eh(v1, v2);
}
virtual void push_scope_eh();
virtual void pop_scope_eh(unsigned num_scopes);
virtual void restart_eh() {
m_arith_eq_adapter.restart_eh();
}
virtual void relevant_eh(app* e) {}
virtual void init_search_eh() {
m_arith_eq_adapter.init_search_eh();
}
virtual final_check_status final_check_eh();
virtual bool is_shared(th_var v) const {
return false;
}
virtual bool can_propagate() {
SASSERT(m_asserted_qhead <= m_asserted_atoms.size());
return m_asserted_qhead != m_asserted_atoms.size();
}
virtual void propagate();
virtual justification * why_is_diseq(th_var v1, th_var v2) {
UNREACHABLE();
return 0;
}
virtual void reset_eh();
virtual void init_model(model_generator & m);
virtual model_value_proc * mk_value(enode * n, model_generator & mg);
virtual bool validate_eq_in_model(th_var v1, th_var v2, bool is_true) const {
return true;
}
virtual void display(std::ostream & out) const;
virtual void collect_statistics(::statistics & st) const;
private:
virtual void new_eq_eh(th_var v1, th_var v2, justification& j) {
m_stats.m_num_core2th_eqs++;
new_eq_or_diseq(true, v1, v2, j);
}
virtual void new_diseq_eh(th_var v1, th_var v2, justification& j) {
m_stats.m_num_core2th_diseqs++;
new_eq_or_diseq(false, v1, v2, j);
}
void negate(coeffs& coeffs, rational& weight);
numeral mk_weight(bool is_real, bool is_strict, rational const& w) const;
void mk_coeffs(vector<std::pair<expr*,rational> >const& terms, coeffs& coeffs, rational& w);
void del_atoms(unsigned old_size);
void propagate_core();
bool propagate_atom(atom const& a);
th_var mk_term(app* n);
th_var mk_num(app* n, rational const& r);
bool is_consistent() const;
th_var expand(bool pos, th_var v, rational & k);
void new_eq_or_diseq(bool is_eq, th_var v1, th_var v2, justification& eq_just);
th_var get_zero(sort* s) const { return a.is_int(s)?m_zero_int:m_zero_real; }
th_var get_zero(expr* e) const { return get_zero(get_manager().get_sort(e)); }
void inc_conflicts();
};
struct rhi_ext {
typedef inf_rational inf_numeral;
typedef inf_eps_rational<inf_rational> numeral;
numeral m_epsilon;
numeral m_minus_infty;
rhi_ext() : m_epsilon(inf_rational(rational(), true)), m_minus_infty(rational(-1),inf_rational()) {}
};
struct ihi_ext {
typedef rational inf_numeral;
typedef inf_eps_rational<rational> numeral;
numeral m_epsilon;
numeral m_minus_infty;
ihi_ext() : m_epsilon(rational(1)), m_minus_infty(rational(-1),rational(0)) {}
};
typedef theory_horn_ineq<rhi_ext> theory_rhi;
typedef theory_horn_ineq<ihi_ext> theory_ihi;
};
#endif /* _THEORY_HORN_INEQ_H_ */

File diff suppressed because it is too large Load diff

View file

@ -25,6 +25,7 @@ Notes:
#include"bv_decl_plugin.h"
#include"expr_replacer.h"
#include"extension_model_converter.h"
#include"filter_model_converter.h"
#include"ast_smt2_pp.h"
class bv_size_reduction_tactic : public tactic {
@ -60,6 +61,7 @@ struct bv_size_reduction_tactic::imp {
obj_map<app, numeral> m_unsigned_lowers;
obj_map<app, numeral> m_unsigned_uppers;
ref<bv_size_reduction_mc> m_mc;
ref<filter_model_converter> m_fmc;
scoped_ptr<expr_replacer> m_replacer;
bool m_produce_models;
volatile bool m_cancel;
@ -121,7 +123,7 @@ struct bv_size_reduction_tactic::imp {
negated = true;
f = to_app(f)->get_arg(0);
}
if (m_util.is_bv_sle(f, lhs, rhs)) {
bv_sz = m_util.get_bv_size(lhs);
if (is_uninterp_const(lhs) && m_util.is_numeral(rhs, val, bv_sz)) {
@ -155,6 +157,7 @@ struct bv_size_reduction_tactic::imp {
else update_signed_lower(to_app(rhs), val);
}
}
#if 0
else if (m_util.is_bv_ule(f, lhs, rhs)) {
if (is_uninterp_const(lhs) && m_util.is_numeral(rhs, val, bv_sz)) {
@ -215,6 +218,7 @@ struct bv_size_reduction_tactic::imp {
numeral u = m_util.norm(entry->get_data().m_value, bv_sz, true);
TRACE("bv_size_reduction", tout << l << " <= " << v->get_decl()->get_name() << " <= " << u << "\n";);
expr * new_def = 0;
app * new_const = 0;
if (l > u) {
g.assert_expr(m.mk_false());
return;
@ -227,15 +231,19 @@ struct bv_size_reduction_tactic::imp {
if (l.is_neg()) {
unsigned i_nb = (u - l).get_num_bits();
unsigned v_nb = m_util.get_bv_size(v);
if (i_nb < v_nb)
new_def = m_util.mk_sign_extend(v_nb - i_nb, m.mk_fresh_const(0, m_util.mk_sort(i_nb)));
if (i_nb < v_nb) {
new_const = m.mk_fresh_const(0, m_util.mk_sort(i_nb));
new_def = m_util.mk_sign_extend(v_nb - i_nb, new_const);
}
}
else {
// 0 <= l <= v <= u
unsigned u_nb = u.get_num_bits();
unsigned v_nb = m_util.get_bv_size(v);
if (u_nb < v_nb)
new_def = m_util.mk_concat(m_util.mk_numeral(numeral(0), v_nb - u_nb), m.mk_fresh_const(0, m_util.mk_sort(u_nb)));
if (u_nb < v_nb) {
new_const = m.mk_fresh_const(0, m_util.mk_sort(u_nb));
new_def = m_util.mk_concat(m_util.mk_numeral(numeral(0), v_nb - u_nb), new_const);
}
}
}
@ -245,6 +253,10 @@ struct bv_size_reduction_tactic::imp {
if (!m_mc)
m_mc = alloc(bv_size_reduction_mc, m);
m_mc->insert(v->get_decl(), new_def);
if (!m_fmc && new_const)
m_fmc = alloc(filter_model_converter, m);
if (new_const)
m_fmc->insert(new_const->get_decl());
}
num_reduced++;
}
@ -283,6 +295,7 @@ struct bv_size_reduction_tactic::imp {
TRACE("bv_size_reduction", tout << l << " <= " << v->get_decl()->get_name() << " <= " << u << "\n";);
expr * new_def = 0;
app * new_const = 0;
if (l > u) {
g.assert_expr(m.mk_false());
return;
@ -294,8 +307,10 @@ struct bv_size_reduction_tactic::imp {
// 0 <= l <= v <= u
unsigned u_nb = u.get_num_bits();
unsigned v_nb = m_util.get_bv_size(v);
if (u_nb < v_nb)
new_def = m_util.mk_concat(m_util.mk_numeral(numeral(0), v_nb - u_nb), m.mk_fresh_const(0, m_util.mk_sort(u_nb)));
if (u_nb < v_nb) {
new_def = m_util.mk_concat(m_util.mk_numeral(numeral(0), v_nb - u_nb), new_const);
new_const = m.mk_fresh_const(0, m_util.mk_sort(u_nb));
}
}
if (new_def) {
@ -304,6 +319,10 @@ struct bv_size_reduction_tactic::imp {
if (!m_mc)
m_mc = alloc(bv_size_reduction_mc, m);
m_mc->insert(v->get_decl(), new_def);
if (!m_fmc && new_const)
m_fmc = alloc(filter_model_converter, m);
if (new_const)
m_fmc->insert(new_const->get_decl());
}
num_reduced++;
TRACE("bv_size_reduction", tout << "New definition = " << mk_ismt2_pp(new_def, m) << "\n";);
@ -328,7 +347,11 @@ struct bv_size_reduction_tactic::imp {
g.update(i, new_f);
}
mc = m_mc.get();
if (m_fmc) {
mc = concat(m_fmc.get(), mc.get());
}
m_mc = 0;
m_fmc = 0;
}
report_tactic_progress(":bv-reduced", num_reduced);
TRACE("after_bv_size_reduction", g.display(tout); if (m_mc) m_mc->display(tout););

View file

@ -1368,12 +1368,12 @@ void fpa2bv_converter::mk_fusedma(func_decl * f, unsigned num, expr * const * ar
not_e_sgn = m_bv_util.mk_bv_not(e_sgn);
not_f_sgn = m_bv_util.mk_bv_not(f_sgn);
not_sign_bv = m_bv_util.mk_bv_not(sign_bv);
res_sgn_c1 = m.mk_app(bvfid, OP_BAND, not_e_sgn, e_sgn, sign_bv);
res_sgn_c1 = m.mk_app(bvfid, OP_BAND, not_e_sgn, f_sgn, sign_bv);
res_sgn_c2 = m.mk_app(bvfid, OP_BAND, e_sgn, not_f_sgn, not_sign_bv);
res_sgn_c3 = m.mk_app(bvfid, OP_BAND, e_sgn, f_sgn);
expr * res_sgn_or_args[3] = { res_sgn_c1, res_sgn_c2, res_sgn_c3 };
res_sgn = m_bv_util.mk_bv_or(3, res_sgn_or_args);
sticky_raw = m_bv_util.mk_extract(sbits-5, 0, sig_abs);
sticky = m_bv_util.mk_zero_extend(sbits+3, m.mk_app(bvfid, OP_BREDOR, sticky_raw.get()));
dbg_decouple("fpa2bv_fma_add_sum_sticky", sticky);

View file

@ -42,7 +42,7 @@ struct is_non_qffpa_predicate {
ast_manager & m;
float_util u;
is_non_qffpa_predicate(ast_manager & _m) :m(_m), u(m) {}
is_non_qffpa_predicate(ast_manager & _m) : m(_m), u(m) {}
void operator()(var *) { throw found(); }
@ -50,7 +50,7 @@ struct is_non_qffpa_predicate {
void operator()(app * n) {
sort * s = get_sort(n);
if (!(m.is_bool(s) || u.is_float(s) || u.is_rm(s)))
if (!m.is_bool(s) && !u.is_float(s) && !u.is_rm(s))
throw found();
family_id fid = n->get_family_id();
if (fid == m.get_basic_family_id())
@ -70,7 +70,7 @@ struct is_non_qffpabv_predicate {
bv_util bu;
float_util fu;
is_non_qffpabv_predicate(ast_manager & _m) :m(_m), bu(m), fu(m) {}
is_non_qffpabv_predicate(ast_manager & _m) : m(_m), bu(m), fu(m) {}
void operator()(var *) { throw found(); }