mirror of
https://github.com/Z3Prover/z3
synced 2025-10-08 00:41:56 +00:00
mul-saturation wip
fixup conflict explanations in mul_saturation, add parameter to enable it, add statistics
This commit is contained in:
parent
ad2c97a4df
commit
88844a84aa
9 changed files with 165 additions and 101 deletions
|
@ -34,6 +34,7 @@ void lp::lp_settings::updt_params(params_ref const& _p) {
|
|||
report_frequency = p.arith_rep_freq();
|
||||
m_simplex_strategy = static_cast<lp::simplex_strategy_enum>(p.arith_simplex_strategy());
|
||||
m_nlsat_delay = p.arith_nl_delay();
|
||||
m_enable_stellensatz = p.arith_nl_stellensatz();
|
||||
auto eps = p.arith_epsilon();
|
||||
m_epsilon = rational(std::max(1, (int)(100000*eps)), 100000);
|
||||
m_dio = lp_p.dio();
|
||||
|
|
|
@ -137,6 +137,7 @@ struct statistics {
|
|||
unsigned m_bounds_tightening_conflicts = 0;
|
||||
unsigned m_bounds_tightenings = 0;
|
||||
unsigned m_nla_throttled_lemmas = 0;
|
||||
unsigned m_nla_stellensatz = 0;
|
||||
|
||||
::statistics m_st = {};
|
||||
|
||||
|
@ -176,6 +177,7 @@ struct statistics {
|
|||
st.update("arith-bounds-tightening-conflicts", m_bounds_tightening_conflicts);
|
||||
st.update("arith-bounds-tightenings", m_bounds_tightenings);
|
||||
st.update("arith-nla-throttled-lemmas", m_nla_throttled_lemmas);
|
||||
st.update("arith-nla-stellensatz", m_nla_stellensatz);
|
||||
st.copy(m_st);
|
||||
}
|
||||
};
|
||||
|
@ -260,6 +262,7 @@ private:
|
|||
bool m_dio_run_gcd = true;
|
||||
public:
|
||||
bool m_enable_relevancy = false;
|
||||
bool m_enable_stellensatz = true;
|
||||
unsigned dio_calls_period() const { return m_dio_calls_period; }
|
||||
unsigned & dio_calls_period() { return m_dio_calls_period; }
|
||||
bool print_external_var_name() const { return m_print_external_var_name; }
|
||||
|
|
|
@ -40,6 +40,7 @@ namespace lp {
|
|||
EQ = 0,
|
||||
NE = 3
|
||||
};
|
||||
|
||||
typedef unsigned lpvar;
|
||||
const lpvar null_lpvar = UINT_MAX;
|
||||
const constraint_index null_ci = UINT_MAX;
|
||||
|
|
|
@ -1333,7 +1333,7 @@ lbool core::check() {
|
|||
return l_false;
|
||||
}
|
||||
|
||||
if (false && no_effect())
|
||||
if (no_effect() && lp_settings().m_enable_stellensatz)
|
||||
ret = m_mul_saturate.saturate();
|
||||
|
||||
if (no_effect() && should_run_bounded_nlsat())
|
||||
|
|
|
@ -1,19 +1,30 @@
|
|||
/*++
|
||||
Copyright (c) 2025 Microsoft Corporation
|
||||
|
||||
given a monic m = x * y * z ... with evaluation val(m) != val(x) * val(y) * val(z) ...
|
||||
given a monic m = x * y * z ... used in a constraint that is false under the current evaluation of x,y,z
|
||||
|
||||
saturate constraints with respect to m
|
||||
in other words, if a constraint contains x*y + p >= 0,
|
||||
then include the constraint z >= 0 => x*y*z + z*p >= 0
|
||||
then include the constraint x*y*z + z*p >= 0
|
||||
assuming current value of z is non-negative.
|
||||
Check if the system with new constraints is LP feasible.
|
||||
If it is not, then produce a lemma that explains the infeasibility.
|
||||
Check if the system with new constraints is LP (and MIP) feasible.
|
||||
If it is not, then produce a lemma that explains infeasibility.
|
||||
|
||||
Strategy 1: The lemma is in terms of the original constraints and bounds.
|
||||
Strategy 2: Attempt to eliminate new monomials from the lemma by relying on Farkas multipliers.
|
||||
If it succeeds to eliminate new monomials we have a lemma that is a linear
|
||||
combination of existing variables.
|
||||
The idea is that a conflict over the new system is a set of multipliers lambda, such
|
||||
that lambda * A is separated from b for the constraints Axy >= b.
|
||||
The coefficients in lambda are non-negative.
|
||||
They correspond to variables x, y where x are variables from the input constraints
|
||||
and y are new variables introduced for new monomials.
|
||||
We can test if lambda allows eliminating y by taking a subset of lambda indices where
|
||||
A has rows containing y_i for some fresh y_i. Replace those rows r_j by the partial sum of
|
||||
of rows multiplied by lambda_j. The sum r_j1 * lambda_j1 + .. + r_jk * lambda_jk does not
|
||||
contain y_i. Repeat the same process with other variables y_i'. If a sum is
|
||||
generated without any y, it is a linear consequence of the new constraints but not
|
||||
necessarily derivable with the old constraints.
|
||||
Strategy 3: The lemma uses the new constraints.
|
||||
|
||||
--*/
|
||||
|
@ -38,7 +49,8 @@ namespace nla {
|
|||
}
|
||||
|
||||
void mul_saturate::init_solver() {
|
||||
local_solver = alloc(lp::lar_solver);
|
||||
lra_solver = alloc(lp::lar_solver);
|
||||
int_solver = alloc(lp::int_solver, *lra_solver);
|
||||
m_vars2mon.reset();
|
||||
m_mon2vars.reset();
|
||||
m_values.reset();
|
||||
|
@ -50,6 +62,7 @@ namespace nla {
|
|||
auto const& lra = c().lra_solver();
|
||||
auto sz = lra.number_of_vars();
|
||||
for (unsigned v = 0; v < sz; ++v) {
|
||||
// Declare v into lra_solver
|
||||
unsigned w;
|
||||
if (m_coi.mons().contains(v))
|
||||
init_monomial(v);
|
||||
|
@ -59,24 +72,28 @@ namespace nla {
|
|||
auto const& t = lra.get_term(v);
|
||||
// Assumption: variables in coefficients are always declared before term variable.
|
||||
SASSERT(all_of(t, [&](auto p) { return p.j() < v; }));
|
||||
w = local_solver->add_term(t.coeffs_as_vector(), v);
|
||||
w = lra_solver->add_term(t.coeffs_as_vector(), v);
|
||||
}
|
||||
else
|
||||
w = local_solver->add_var(v, lra.var_is_int(v));
|
||||
w = lra_solver->add_var(v, lra.var_is_int(v));
|
||||
|
||||
// assert bounds on v in the new solver.
|
||||
VERIFY(w == v);
|
||||
if (lra.column_has_lower_bound(v)) {
|
||||
auto lo_dep = lra.get_column_lower_bound_witness(v);
|
||||
auto lo_bound = lra.get_lower_bound(v);
|
||||
auto k = lo_bound.y > 0 ? lp::lconstraint_kind::GT : lp::lconstraint_kind::GE;
|
||||
auto ci = local_solver->add_var_bound(v, k, lo_bound.x);
|
||||
auto rhs = lo_bound.x;
|
||||
auto dep = lra.get_column_lower_bound_witness(v);
|
||||
auto ci = lra_solver->add_var_bound(v, k, rhs);
|
||||
m_ci2dep.setx(ci, dep, nullptr);
|
||||
}
|
||||
if (lra.column_has_upper_bound(v)) {
|
||||
auto hi_dep = lra.get_column_upper_bound_witness(v);
|
||||
auto hi_bound = lra.get_upper_bound(v);
|
||||
auto k = hi_bound.y < 0 ? lp::lconstraint_kind::LT : lp::lconstraint_kind::LE;
|
||||
auto ci = local_solver->add_var_bound(v, k, hi_bound.x);
|
||||
m_ci2dep.setx(ci, hi_dep, nullptr);
|
||||
auto rhs = hi_bound.x;
|
||||
auto dep = lra.get_column_upper_bound_witness(v);
|
||||
auto ci = lra_solver->add_var_bound(v, k, rhs);
|
||||
m_ci2dep.setx(ci, dep, nullptr);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -96,81 +113,106 @@ namespace nla {
|
|||
void mul_saturate::add_lemma(lp::explanation const& ex1) {
|
||||
auto& lra = c().lra_solver();
|
||||
lp::explanation ex2;
|
||||
for (auto p : ex1) {
|
||||
lp::constraint_index src_ci;
|
||||
if (!m_new_mul_constraints.find(p.ci(), src_ci))
|
||||
src_ci = p.ci();
|
||||
auto dep = m_ci2dep.get(src_ci, nullptr);
|
||||
local_solver->push_explanation(dep, ex2);
|
||||
}
|
||||
for (auto [v, sign, dep] : m_var_signs) {
|
||||
if (!dep) {
|
||||
verbose_stream() << "TODO explain non-implied bound\n";
|
||||
continue;
|
||||
}
|
||||
local_solver->push_explanation(dep, ex2);
|
||||
}
|
||||
lemma_builder new_lemma(c(), "stellensatz");
|
||||
new_lemma &= ex2;
|
||||
IF_VERBOSE(1, verbose_stream() << "unsat \n" << new_lemma << "\n");
|
||||
TRACE(arith, tout << "unsat\n" << new_lemma << "\n");
|
||||
for (auto p : ex1) {
|
||||
auto dep = m_ci2dep.get(p.ci(), nullptr);
|
||||
lra_solver->push_explanation(dep, ex2);
|
||||
if (!m_new_mul_constraints.contains(p.ci()))
|
||||
continue;
|
||||
|
||||
auto const& bounds = m_new_mul_constraints[p.ci()];
|
||||
for (auto const& b : bounds) {
|
||||
if (std::holds_alternative<u_dependency*>(b)) {
|
||||
auto dep = *std::get_if<u_dependency*>(&b);
|
||||
lra_solver->push_explanation(dep, ex2);
|
||||
}
|
||||
else {
|
||||
auto const &[v, k, rhs] = *std::get_if<bound>(&b);
|
||||
new_lemma |= ineq(v, negate(k), rhs);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
new_lemma &= ex2;
|
||||
IF_VERBOSE(5, verbose_stream() << "unsat \n" << new_lemma << "\n");
|
||||
TRACE(arith, tout << "unsat\n" << new_lemma << "\n");
|
||||
c().lra_solver().settings().stats().m_nla_stellensatz++;
|
||||
}
|
||||
|
||||
|
||||
lbool mul_saturate::solve(lp::explanation& ex) {
|
||||
for (auto const& [new_ci, old_ci] : m_new_mul_constraints)
|
||||
local_solver->activate(new_ci);
|
||||
auto st = local_solver->solve();
|
||||
lbool r = l_undef;
|
||||
if (st == lp::lp_status::INFEASIBLE) {
|
||||
local_solver->get_infeasibility_explanation(ex);
|
||||
r = l_false;
|
||||
}
|
||||
if (st == lp::lp_status::OPTIMAL || st == lp::lp_status::FEASIBLE) {
|
||||
// TODO: check model just in case it got lucky.
|
||||
IF_VERBOSE(1, verbose_stream() << "saturation is LP feasible, maybe it is a model of the NLA problem\n");
|
||||
}
|
||||
IF_VERBOSE(0, display(verbose_stream()));
|
||||
lbool r = solve_lra(ex);
|
||||
if (r != l_true)
|
||||
return r;
|
||||
r = solve_lia(ex);
|
||||
if (r != l_true)
|
||||
return r;
|
||||
// if (r == l_true) check if solution satisfies constraints
|
||||
// variables outside the slice have values from the outer solver.
|
||||
return l_undef;
|
||||
}
|
||||
|
||||
lbool mul_saturate::solve_lra(lp::explanation& ex) {
|
||||
auto st = lra_solver->solve();
|
||||
if (st == lp::lp_status::INFEASIBLE) {
|
||||
lra_solver->get_infeasibility_explanation(ex);
|
||||
return l_false;
|
||||
}
|
||||
else if (lra_solver->is_feasible())
|
||||
return l_true;
|
||||
else
|
||||
return l_undef;
|
||||
}
|
||||
|
||||
lbool mul_saturate::solve_lia(lp::explanation& ex) {
|
||||
switch (int_solver->check(&ex)) {
|
||||
case lp::lia_move::sat:
|
||||
return l_true;
|
||||
case lp::lia_move::conflict:
|
||||
return l_false;
|
||||
default: // TODO: an option is to perform (bounded) search here to get an LIA verdict.
|
||||
return l_undef;
|
||||
}
|
||||
return l_undef;
|
||||
}
|
||||
|
||||
// record new monomials that are created and recursively down-saturate with respect to these.
|
||||
// this is a simplistic pass
|
||||
void mul_saturate::add_multiply_constraints() {
|
||||
m_new_mul_constraints.reset();
|
||||
m_seen_vars.reset();
|
||||
m_var_signs.reset();
|
||||
m_to_refine.reset();
|
||||
vector<svector<lp::constraint_index>> var2cs;
|
||||
|
||||
for (auto ci : local_solver->constraints().indices()) {
|
||||
auto const& con = local_solver->constraints()[ci];
|
||||
// current approach: only resolve against var2cs, which is initialized
|
||||
// with monomials in the input.
|
||||
|
||||
for (auto ci : lra_solver->constraints().indices()) {
|
||||
auto const& con = lra_solver->constraints()[ci];
|
||||
for (auto [coeff, v] : con.coeffs()) {
|
||||
if (v >= var2cs.size())
|
||||
var2cs.resize(v + 1);
|
||||
var2cs[v].push_back(ci);
|
||||
}
|
||||
|
||||
// insert monomials to be refined
|
||||
insert_monomials_from_constraint(ci);
|
||||
}
|
||||
|
||||
for (unsigned it = 0; it < m_to_refine.size(); ++it) {
|
||||
auto j = m_to_refine[it];
|
||||
verbose_stream() << "refining " << j << " := " << m_mon2vars[j] << "\n";
|
||||
auto vars = m_mon2vars[j];
|
||||
for (auto v : vars) {
|
||||
if (v >= var2cs.size())
|
||||
continue;
|
||||
auto cs = var2cs[v];
|
||||
for (auto ci : cs) {
|
||||
for (auto [coeff, u] : local_solver->constraints()[ci].coeffs()) {
|
||||
for (auto [coeff, u] : lra_solver->constraints()[ci].coeffs()) {
|
||||
if (u == v)
|
||||
add_multiply_constraint(ci, j, v);
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
IF_VERBOSE(0,
|
||||
IF_VERBOSE(5,
|
||||
c().lra_solver().display(verbose_stream() << "original\n");
|
||||
c().display(verbose_stream());
|
||||
display(verbose_stream() << "saturated\n"));
|
||||
|
@ -178,52 +220,60 @@ namespace nla {
|
|||
|
||||
// multiply by remaining vars
|
||||
void mul_saturate::add_multiply_constraint(lp::constraint_index old_ci, lp::lpvar mi, lpvar x) {
|
||||
lp::lar_base_constraint const& con = local_solver->constraints()[old_ci];
|
||||
lp::lar_base_constraint const& con = lra_solver->constraints()[old_ci];
|
||||
auto &lra = c().lra_solver();
|
||||
auto const& lhs = con.coeffs();
|
||||
auto const& rhs = con.rhs();
|
||||
auto k = con.kind();
|
||||
if (k == lp::lconstraint_kind::NE || k == lp::lconstraint_kind::EQ)
|
||||
return; // not supported
|
||||
auto sign = false;
|
||||
auto sign = false, strict = true;
|
||||
svector<lpvar> vars;
|
||||
bool first = true;
|
||||
for (auto v : c().emon(mi).vars()) {
|
||||
for (auto v : m_mon2vars[mi]) {
|
||||
if (v != x || !first)
|
||||
vars.push_back(v);
|
||||
else
|
||||
first = false;
|
||||
}
|
||||
// compute sign of vars
|
||||
SASSERT(!first); // v was a member and was removed
|
||||
|
||||
vector<bound_justification> bounds;
|
||||
// compute bounds constraints and sign of vars
|
||||
|
||||
auto add_bound = [&](lpvar v, lp::lconstraint_kind k, int r) {
|
||||
bound b(v, k, rational(r));
|
||||
bounds.push_back(b);
|
||||
};
|
||||
for (auto v : vars) {
|
||||
if (m_seen_vars.contains(v))
|
||||
continue;
|
||||
m_seen_vars.insert(v);
|
||||
// retrieve bounds of v
|
||||
// if v has positive lower bound add as positive
|
||||
// if v has negative upper bound add as negative
|
||||
// otherwise, soft-fail (for now unsound)
|
||||
// proper signs of variables from old tableau should be extracted using lra_solver()
|
||||
// instead of local_solver.
|
||||
// TODO is to also add case where lower or upper bound is zero and then the sign
|
||||
// of the inequality is relaxed if it is strict.
|
||||
// otherwise look at the current value of v and add bounds assumption based on current sign.
|
||||
if (lra.number_of_vars() > v && lra.column_has_lower_bound(v) && lra.get_lower_bound(v).is_pos()) {
|
||||
m_var_signs.push_back({v, false, lra.get_column_lower_bound_witness(v)});
|
||||
bounds.push_back(lra.get_column_lower_bound_witness(v));
|
||||
}
|
||||
else if (lra.number_of_vars() > v && lra.column_has_upper_bound(v) && lra.get_upper_bound(v).is_neg()) {
|
||||
m_var_signs.push_back({v, true, lra.get_column_upper_bound_witness(v)});
|
||||
bounds.push_back(lra.get_column_upper_bound_witness(v));
|
||||
sign = !sign;
|
||||
}
|
||||
else if (m_values[v].is_neg()) {
|
||||
m_var_signs.push_back({v, true, nullptr});
|
||||
if (lra.var_is_int(v))
|
||||
add_bound(v, lp::lconstraint_kind::LE, -1);
|
||||
else
|
||||
add_bound(v, lp::lconstraint_kind::LT, 0);
|
||||
sign = !sign;
|
||||
}
|
||||
else if (m_values[v].is_pos()) {
|
||||
m_var_signs.push_back({v, false, nullptr});
|
||||
if (lra.var_is_int(v))
|
||||
add_bound(v, lp::lconstraint_kind::GE, 1);
|
||||
else
|
||||
add_bound(v, lp::lconstraint_kind::GT, 0);
|
||||
}
|
||||
else {
|
||||
IF_VERBOSE(0, verbose_stream() << "not separated from 0\n");
|
||||
return;
|
||||
SASSERT(m_values[v] == 0);
|
||||
strict = false;
|
||||
add_bound(v, lp::lconstraint_kind::GE, 0);
|
||||
}
|
||||
}
|
||||
lp::lar_term new_lhs;
|
||||
|
@ -246,34 +296,35 @@ namespace nla {
|
|||
new_rhs = 0;
|
||||
}
|
||||
|
||||
if (sign) {
|
||||
if (sign)
|
||||
k = swap_side(k);
|
||||
|
||||
if (!strict) {
|
||||
switch (k) {
|
||||
case lp::lconstraint_kind::LE:
|
||||
case lp::lconstraint_kind::GT:
|
||||
k = lp::lconstraint_kind::GE;
|
||||
break;
|
||||
case lp::lconstraint_kind::LT:
|
||||
k = lp::lconstraint_kind::GT;
|
||||
break;
|
||||
case lp::lconstraint_kind::GE:
|
||||
k = lp::lconstraint_kind::LE;
|
||||
break;
|
||||
case lp::lconstraint_kind::GT:
|
||||
k = lp::lconstraint_kind::LT;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
}
|
||||
display_constraint(verbose_stream(), old_ci) << " -> ";
|
||||
display_constraint(verbose_stream(), new_lhs.coeffs_as_vector(), k, new_rhs) << "\n";
|
||||
auto ti = local_solver->add_term(new_lhs.coeffs_as_vector(), local_solver->number_of_vars());
|
||||
auto new_ci = local_solver->add_var_bound(ti, k, new_rhs);
|
||||
|
||||
auto ti = lra_solver->add_term(new_lhs.coeffs_as_vector(), lra_solver->number_of_vars());
|
||||
auto new_ci = lra_solver->add_var_bound(ti, k, new_rhs);
|
||||
IF_VERBOSE(4, display_constraint(verbose_stream(), old_ci) << " -> ";
|
||||
display_constraint(verbose_stream(), new_lhs.coeffs_as_vector(), k, new_rhs) << "\n");
|
||||
insert_monomials_from_constraint(new_ci);
|
||||
m_values.push_back(term_value);
|
||||
SASSERT(m_values.size() - 1 == ti);
|
||||
m_new_mul_constraints.insert(new_ci, old_ci);
|
||||
m_new_mul_constraints.insert(new_ci, bounds);
|
||||
m_ci2dep.setx(new_ci, m_ci2dep.get(old_ci, nullptr), nullptr);
|
||||
}
|
||||
|
||||
// Insert a (new) monomial representing product of vars.
|
||||
// if the length of vars is 1 then the new monomial is vars[0]
|
||||
// if the same monomial was previous defined, return the previously defined monomial.
|
||||
// otherwise create a fresh variable representing the monomial.
|
||||
lpvar mul_saturate::add_monomial(svector<lpvar> const& vars) {
|
||||
lpvar v;
|
||||
if (vars.size() == 1)
|
||||
|
@ -300,23 +351,25 @@ namespace nla {
|
|||
}
|
||||
|
||||
lpvar mul_saturate::add_var(bool is_int) {
|
||||
auto v = local_solver->number_of_vars();
|
||||
auto w = local_solver->add_var(v, is_int);
|
||||
VERIFY(v == w);
|
||||
auto v = lra_solver->number_of_vars();
|
||||
auto w = lra_solver->add_var(v, is_int);
|
||||
SASSERT(v == w);
|
||||
return w;
|
||||
}
|
||||
|
||||
// if a constraint is false, then insert _all_ monomials from that constraint.
|
||||
// other approach: use a lex ordering on monomials and insert the lex leading monomial.
|
||||
void mul_saturate::insert_monomials_from_constraint(lp::constraint_index ci) {
|
||||
if (constraint_is_true(ci))
|
||||
return;
|
||||
auto const& con = local_solver->constraints()[ci];
|
||||
auto const& con = lra_solver->constraints()[ci];
|
||||
for (auto [coeff, v] : con.coeffs())
|
||||
if (c().is_monic_var(v))
|
||||
m_to_refine.insert(v);
|
||||
}
|
||||
|
||||
bool mul_saturate::constraint_is_true(lp::constraint_index ci) {
|
||||
auto const& con = local_solver->constraints()[ci];
|
||||
auto const& con = lra_solver->constraints()[ci];
|
||||
auto lhs = -con.rhs();
|
||||
for (auto const& [coeff, v] : con.coeffs())
|
||||
lhs += coeff * m_values[v];
|
||||
|
@ -340,7 +393,7 @@ namespace nla {
|
|||
}
|
||||
|
||||
std::ostream& mul_saturate::display(std::ostream& out) const {
|
||||
local_solver->display(out);
|
||||
lra_solver->display(out);
|
||||
for (auto const& [vars, v] : m_vars2mon) {
|
||||
out << "j" << v << " := ";
|
||||
display_product(out, vars);
|
||||
|
@ -362,7 +415,7 @@ namespace nla {
|
|||
}
|
||||
|
||||
std::ostream& mul_saturate::display_constraint(std::ostream& out, lp::constraint_index ci) const {
|
||||
auto const& con = local_solver->constraints()[ci];
|
||||
auto const& con = lra_solver->constraints()[ci];
|
||||
return display_constraint(out, con.coeffs(), con.kind(), con.rhs());
|
||||
}
|
||||
|
||||
|
|
|
@ -5,6 +5,8 @@
|
|||
#pragma once
|
||||
|
||||
#include "math/lp/nla_coi.h"
|
||||
#include "math/lp/int_solver.h"
|
||||
#include <variant>
|
||||
|
||||
namespace nla {
|
||||
|
||||
|
@ -12,18 +14,19 @@ namespace nla {
|
|||
class lar_solver;
|
||||
class mul_saturate : common {
|
||||
|
||||
struct var_sign {
|
||||
|
||||
struct bound {
|
||||
lpvar v = lp::null_lpvar;
|
||||
bool is_neg = false;
|
||||
u_dependency* dep = nullptr;
|
||||
lp::lconstraint_kind k;
|
||||
rational rhs;
|
||||
};
|
||||
using bound_justification = std::variant<u_dependency*, bound>;
|
||||
|
||||
coi m_coi;
|
||||
// source of multiplication constraint
|
||||
u_map<lp::constraint_index> m_new_mul_constraints;
|
||||
svector<var_sign> m_var_signs;
|
||||
tracked_uint_set m_seen_vars;
|
||||
u_map<vector<bound_justification>> m_new_mul_constraints;
|
||||
indexed_uint_set m_to_refine;
|
||||
scoped_ptr<lp::lar_solver> local_solver;
|
||||
scoped_ptr<lp::lar_solver> lra_solver;
|
||||
scoped_ptr<lp::int_solver> int_solver;
|
||||
ptr_vector<u_dependency> m_ci2dep;
|
||||
vector<rational> m_values;
|
||||
struct eq {
|
||||
|
@ -51,6 +54,8 @@ namespace nla {
|
|||
|
||||
// solving
|
||||
lbool solve(lp::explanation& ex);
|
||||
lbool solve_lra(lp::explanation &ex);
|
||||
lbool solve_lia(lp::explanation &ex);
|
||||
|
||||
// lemmas
|
||||
void add_lemma(lp::explanation const& ex);
|
||||
|
|
|
@ -88,6 +88,7 @@ def_module_params(module_name='smt',
|
|||
('arith.nl.propagate_linear_monomials', BOOL, True, 'propagate linear monomials'),
|
||||
('arith.nl.optimize_bounds', BOOL, True, 'enable bounds optimization'),
|
||||
('arith.nl.cross_nested', BOOL, True, 'enable cross-nested consistency checking'),
|
||||
('arith.nl.stellensatz', BOOL, False, 'enable stellensatz saturation'),
|
||||
('arith.nl.log', BOOL, False, 'Log lemmas sent to nra solver'),
|
||||
('arith.propagate_eqs', BOOL, True, 'propagate (cheap) equalities'),
|
||||
('arith.epsilon', DOUBLE, 1.0, 'initial value of epsilon used for model generation of infinitesimals'),
|
||||
|
|
|
@ -3467,15 +3467,15 @@ public:
|
|||
|
||||
void set_conflict_or_lemma(literal_vector const& core, bool is_conflict) {
|
||||
reset_evidence();
|
||||
for (literal lit : core) {
|
||||
for (literal lit : core)
|
||||
m_core.push_back(lit);
|
||||
}
|
||||
|
||||
// lp().shrink_explanation_to_minimum(m_explanation); // todo, enable when perf is fixed
|
||||
++m_num_conflicts;
|
||||
++m_stats.m_conflicts;
|
||||
for (auto ev : m_explanation)
|
||||
set_evidence(ev.ci(), m_core, m_eqs);
|
||||
if (m_eqs.empty() && all_of(m_core, [&](literal l) { return ctx().get_assignment(l) == l_false; }))
|
||||
if (all_of(m_core, [&](literal l) { return ctx().get_assignment(l) == l_false; }))
|
||||
is_conflict = true;
|
||||
TRACE(arith_conflict,
|
||||
tout << "@" << ctx().get_scope_level() << (is_conflict ? " conflict":" lemma");
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue