3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-11-04 05:19:11 +00:00

Delete FINITE_SET_API_EXAMPLES.md

This commit is contained in:
Nikolaj Bjorner 2025-10-29 16:54:16 -07:00 committed by GitHub
parent f1d91f44ca
commit 8871390b5c
No known key found for this signature in database
GPG key ID: B5690EEEBB952194

View file

@ -1,140 +0,0 @@
# Finite Set API Examples
This document provides usage examples for the finite set API in Java and C#.
## Java Example
```java
import com.microsoft.z3.*;
public class FiniteSetExample {
public static void main(String[] args) {
try (Context ctx = new Context()) {
// Create finite set sort over integers
Sort intSort = ctx.getIntSort();
FiniteSetSort intSetSort = ctx.mkFiniteSetSort(intSort);
// Check if it's a finite set sort
boolean isFiniteSet = ctx.isFiniteSetSort(intSetSort);
System.out.println("Is finite set sort: " + isFiniteSet);
// Get the element sort (basis)
Sort basis = ctx.getFiniteSetSortBasis(intSetSort);
System.out.println("Element sort: " + basis);
// Create sets
Expr emptySet = ctx.mkFiniteSetEmpty(intSetSort);
IntExpr one = ctx.mkInt(1);
IntExpr two = ctx.mkInt(2);
Expr singleton1 = ctx.mkFiniteSetSingleton(one);
Expr singleton2 = ctx.mkFiniteSetSingleton(two);
// Set operations
Expr union = ctx.mkFiniteSetUnion(singleton1, singleton2);
Expr intersect = ctx.mkFiniteSetIntersect(union, singleton1);
Expr difference = ctx.mkFiniteSetDifference(union, singleton1);
// Set queries
BoolExpr member = ctx.mkFiniteSetMember(one, union);
Expr size = ctx.mkFiniteSetSize(union);
BoolExpr subset = ctx.mkFiniteSetSubset(singleton1, union);
// Create integer range [1..10]
Expr range = ctx.mkFiniteSetRange(ctx.mkInt(1), ctx.mkInt(10));
// Solve with finite sets
Solver solver = ctx.mkSolver();
solver.add(ctx.mkFiniteSetMember(one, union));
solver.add(ctx.mkEq(ctx.mkFiniteSetSize(union), ctx.mkInt(2)));
Status status = solver.check();
System.out.println("Solver result: " + status);
}
}
}
```
## C# Example
```csharp
using System;
using Microsoft.Z3;
class FiniteSetExample
{
static void Main(string[] args)
{
using (Context ctx = new Context())
{
// Create finite set sort over integers
Sort intSort = ctx.IntSort;
FiniteSetSort intSetSort = ctx.MkFiniteSetSort(intSort);
// Check if it's a finite set sort
bool isFiniteSet = ctx.IsFiniteSetSort(intSetSort);
Console.WriteLine($"Is finite set sort: {isFiniteSet}");
// Get the element sort (basis)
Sort basis = ctx.GetFiniteSetSortBasis(intSetSort);
// Or use the property:
Sort basis2 = intSetSort.Basis;
Console.WriteLine($"Element sort: {basis}");
// Create sets
Expr emptySet = ctx.MkFiniteSetEmpty(intSetSort);
IntExpr one = ctx.MkInt(1);
IntExpr two = ctx.MkInt(2);
Expr singleton1 = ctx.MkFiniteSetSingleton(one);
Expr singleton2 = ctx.MkFiniteSetSingleton(two);
// Set operations
Expr union = ctx.MkFiniteSetUnion(singleton1, singleton2);
Expr intersect = ctx.MkFiniteSetIntersect(union, singleton1);
Expr difference = ctx.MkFiniteSetDifference(union, singleton1);
// Set queries
BoolExpr member = ctx.MkFiniteSetMember(one, union);
Expr size = ctx.MkFiniteSetSize(union);
BoolExpr subset = ctx.MkFiniteSetSubset(singleton1, union);
// Create integer range [1..10]
Expr range = ctx.MkFiniteSetRange(ctx.MkInt(1), ctx.MkInt(10));
// Solve with finite sets
Solver solver = ctx.MkSolver();
solver.Add(ctx.MkFiniteSetMember(one, union));
solver.Add(ctx.MkEq(ctx.MkFiniteSetSize(union), ctx.MkInt(2)));
Status status = solver.Check();
Console.WriteLine($"Solver result: {status}");
}
}
}
```
## API Methods
### Sort Operations
- **Java**: `mkFiniteSetSort(Sort elemSort)`, `isFiniteSetSort(Sort s)`, `getFiniteSetSortBasis(Sort s)`
- **C#**: `MkFiniteSetSort(Sort elemSort)`, `IsFiniteSetSort(Sort s)`, `GetFiniteSetSortBasis(Sort s)`
### Set Constructors
- **Java**: `mkFiniteSetEmpty(Sort setSort)`, `mkFiniteSetSingleton(Expr elem)`, `mkFiniteSetRange(Expr low, Expr high)`
- **C#**: `MkFiniteSetEmpty(Sort setSort)`, `MkFiniteSetSingleton(Expr elem)`, `MkFiniteSetRange(Expr low, Expr high)`
### Set Operations
- **Java**: `mkFiniteSetUnion(Expr s1, Expr s2)`, `mkFiniteSetIntersect(Expr s1, Expr s2)`, `mkFiniteSetDifference(Expr s1, Expr s2)`
- **C#**: `MkFiniteSetUnion(Expr s1, Expr s2)`, `MkFiniteSetIntersect(Expr s1, Expr s2)`, `MkFiniteSetDifference(Expr s1, Expr s2)`
### Set Queries
- **Java**: `mkFiniteSetMember(Expr elem, Expr set)`, `mkFiniteSetSize(Expr set)`, `mkFiniteSetSubset(Expr s1, Expr s2)`
- **C#**: `MkFiniteSetMember(Expr elem, Expr set)`, `MkFiniteSetSize(Expr set)`, `MkFiniteSetSubset(Expr s1, Expr s2)`
### Set Transformations
- **Java**: `mkFiniteSetMap(Expr f, Expr set)`, `mkFiniteSetFilter(Expr f, Expr set)`
- **C#**: `MkFiniteSetMap(Expr f, Expr set)`, `MkFiniteSetFilter(Expr f, Expr set)`
## Notes
- Finite sets are distinct from array-based sets and provide a more direct representation
- The finite set sort extends `Sort` directly (not `ArraySort`)
- All operations follow the SMT-LIB2 finite set theory syntax
- Native bindings are auto-generated from the C API during build