3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-08-23 19:47:52 +00:00

Fix typos.

This commit is contained in:
Bruce Mitchener 2018-03-09 14:29:22 +07:00
parent 4f9d198c51
commit 878a6ca14f
18 changed files with 38 additions and 38 deletions

View file

@ -33,7 +33,7 @@ def_module_params('fixedpoint',
"updated relation was modified or not"),
('datalog.compile_with_widening', BOOL, False,
"widening will be used to compile recursive rules"),
('datalog.default_table_checked', BOOL, False, "if true, the detault " +
('datalog.default_table_checked', BOOL, False, "if true, the default " +
'table will be default_table inside a wrapper that checks that its results ' +
'are the same as of default_table_checker table'),
('datalog.default_table_checker', SYMBOL, 'null', "see default_table_checked"),
@ -59,7 +59,7 @@ def_module_params('fixedpoint',
('duality.full_expand', BOOL, False, 'Fully expand derivation trees'),
('duality.no_conj', BOOL, False, 'No forced covering (conjectures)'),
('duality.feasible_edges', BOOL, True,
'Don\'t expand definitley infeasible edges'),
'Don\'t expand definitely infeasible edges'),
('duality.use_underapprox', BOOL, False, 'Use underapproximations'),
('duality.stratified_inlining', BOOL, False, 'Use stratified inlining'),
('duality.recursion_bound', UINT, UINT_MAX,
@ -130,7 +130,7 @@ def_module_params('fixedpoint',
('xform.magic', BOOL, False,
"perform symbolic magic set transformation"),
('xform.scale', BOOL, False,
"add scaling variable to linear real arithemtic clauses"),
"add scaling variable to linear real arithmetic clauses"),
('xform.inline_linear', BOOL, True, "try linear inlining method"),
('xform.inline_eager', BOOL, True, "try eager inlining of rules"),
('xform.inline_linear_branch', BOOL, False,
@ -176,7 +176,7 @@ def_module_params('fixedpoint',
('spacer.elim_aux', BOOL, True, "Eliminate auxiliary variables in reachability facts"),
('spacer.reach_as_init', BOOL, True, "Extend initial rules with computed reachability facts"),
('spacer.blast_term_ite', BOOL, True, "Expand non-Boolean ite-terms"),
('spacer.nondet_tie_break', BOOL, False, "Break ties in obligation queue non-deterministicly"),
('spacer.nondet_tie_break', BOOL, False, "Break ties in obligation queue non-deterministically"),
('spacer.reach_dnf', BOOL, True, "Restrict reachability facts to DNF"),
('bmc.linear_unrolling_depth', UINT, UINT_MAX, "Maximal level to explore"),
('spacer.split_farkas_literals', BOOL, False, "Split Farkas literals"),

View file

@ -26,7 +26,7 @@ Implementation:
1) Dealing with multiple quantifiers -> The options fixedpoint.xform.instantiate_arrays.nb_quantifier gives the number of quantifiers per array.
2) Inforcing the instantiation -> We suggest an option (enforce_instantiation) to enforce this abstraction. This transforms
2) Enforcing the instantiation -> We suggest an option (enforce_instantiation) to enforce this abstraction. This transforms
P(a) into P(i, a[i]). This enforces the solver to limit the space search at the cost of imprecise results. This option
corresponds to fixedpoint.xform.instantiate_arrays.enforce

View file

@ -53,7 +53,7 @@ namespace datalog {
*/
void reset(rule * r);
/** Reset subtitution and unify tail tgt_idx of the target rule and the head of the src rule */
/** Reset substitution and unify tail tgt_idx of the target rule and the head of the src rule */
bool unify(expr * e1, expr * e2);
void get_result(rule_ref & res);

View file

@ -45,7 +45,7 @@ namespace datalog {
: m(ctx.get_manager()), m_rm(ctx.get_rule_manager()), m_context(ctx),
m_interp_simplifier(ctx), m_subst(m), m_unif(m), m_ready(false), m_normalize(true) {}
/** Reset subtitution and unify tail tgt_idx of the target rule and the head of the src rule */
/** Reset substitution and unify tail tgt_idx of the target rule and the head of the src rule */
bool unify_rules(rule const& tgt, unsigned tgt_idx, rule const& src);
/**

View file

@ -7,7 +7,7 @@ Module Name:
Abstract:
Add scale factor to linear (Real) arithemetic Horn clauses.
Add scale factor to linear (Real) arithmetic Horn clauses.
The transformation replaces occurrences of isolated constants by
a scale multiplied to each constant.