3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-06-24 06:43:40 +00:00

Merge remote-tracking branch 'origin/master' into polysat

This commit is contained in:
Jakob Rath 2023-02-06 10:50:05 +01:00
commit 8774952aeb
40 changed files with 708 additions and 189 deletions

View file

@ -25,9 +25,11 @@ os_info = { 'ubuntu-latest' : ('so', 'linux-x64'),
'ubuntu-18' : ('so', 'linux-x64'), 'ubuntu-18' : ('so', 'linux-x64'),
'ubuntu-20' : ('so', 'linux-x64'), 'ubuntu-20' : ('so', 'linux-x64'),
'glibc-2.31' : ('so', 'linux-x64'), 'glibc-2.31' : ('so', 'linux-x64'),
'glibc' : ('so', 'linux-x64'),
'x64-win' : ('dll', 'win-x64'), 'x64-win' : ('dll', 'win-x64'),
'x86-win' : ('dll', 'win-x86'), 'x86-win' : ('dll', 'win-x86'),
'osx' : ('dylib', 'osx-x64'), 'x64-osx' : ('dylib', 'osx-x64'),
'arm64-osx' : ('dylib', 'osx-arm64'),
'debian' : ('so', 'linux-x64') } 'debian' : ('so', 'linux-x64') }

View file

@ -233,16 +233,38 @@ extern "C" {
Z3_CATCH_RETURN(nullptr); Z3_CATCH_RETURN(nullptr);
} }
/**
* attach a simplifier to solver.
* This is legal when the solver is fresh, does not already have assertions (and scopes).
* To allow recycling the argument solver, we create a fresh copy of it and pass it to
* mk_simplifier_solver.
*/
Z3_solver Z3_API Z3_solver_add_simplifier(Z3_context c, Z3_solver solver, Z3_simplifier simplifier) { Z3_solver Z3_API Z3_solver_add_simplifier(Z3_context c, Z3_solver solver, Z3_simplifier simplifier) {
Z3_TRY; Z3_TRY;
LOG_Z3_solver_add_simplifier(c, solver, simplifier); LOG_Z3_solver_add_simplifier(c, solver, simplifier);
solver_ref s_fresh;
if (to_solver(solver)->m_solver) {
s_fresh = to_solver_ref(solver)->translate(mk_c(c)->m(), to_solver(solver)->m_params);
}
else {
// create the solver, but hijack it for internal uses.
init_solver(c, solver); init_solver(c, solver);
s_fresh = to_solver(solver)->m_solver;
to_solver(solver)->m_solver = nullptr;
}
if (!s_fresh) {
SET_ERROR_CODE(Z3_INVALID_ARG, "unexpected empty solver state");
RETURN_Z3(nullptr);
}
if (s_fresh->get_num_assertions() > 0) {
SET_ERROR_CODE(Z3_INVALID_ARG, "adding a simplifier to a solver with assertions is not allowed.");
RETURN_Z3(nullptr);
}
auto simp = to_simplifier_ref(simplifier); auto simp = to_simplifier_ref(simplifier);
auto* slv = mk_simplifier_solver(to_solver_ref(solver), simp); auto* simplifier_solver = mk_simplifier_solver(s_fresh.get(), simp);
Z3_solver_ref* sr = alloc(Z3_solver_ref, *mk_c(c), slv); Z3_solver_ref* result = alloc(Z3_solver_ref, *mk_c(c), simplifier_solver);
mk_c(c)->save_object(sr); mk_c(c)->save_object(result);
// ?? init_solver_log(c, sr) RETURN_Z3(of_solver(result));
RETURN_Z3(of_solver(sr));
Z3_CATCH_RETURN(nullptr); Z3_CATCH_RETURN(nullptr);
} }

View file

@ -103,6 +103,7 @@ set(Z3_DOTNET_ASSEMBLY_SOURCES_IN_SRC_TREE
SeqExpr.cs SeqExpr.cs
SeqSort.cs SeqSort.cs
SetSort.cs SetSort.cs
Simplifiers.cs
Solver.cs Solver.cs
Sort.cs Sort.cs
Statistics.cs Statistics.cs

View file

@ -3726,6 +3726,110 @@ namespace Microsoft.Z3
} }
#endregion #endregion
#region Simplifiers
/// <summary>
/// The number of supported simplifiers.
/// </summary>
public uint NumSimplifiers
{
get { return Native.Z3_get_num_simplifiers(nCtx); }
}
/// <summary>
/// The names of all supported tactics.
/// </summary>
public string[] SimplifierNames
{
get
{
uint n = NumSimplifiers;
string[] res = new string[n];
for (uint i = 0; i < n; i++)
res[i] = Native.Z3_get_simplifier_name(nCtx, i);
return res;
}
}
/// <summary>
/// Returns a string containing a description of the simplifier with the given name.
/// </summary>
public string SimplifierDescription(string name)
{
return Native.Z3_simplifier_get_descr(nCtx, name);
}
/// <summary>
/// Creates a new Tactic.
/// </summary>
public Simplifier MkSimplifier(string name)
{
return new Simplifier(this, name);
}
/// <summary>
/// Create a simplifie that applies <paramref name="t1"/> and
/// then <paramref name="t2"/>.
/// </summary>
public Simplifier AndThen(Simplifier t1, Simplifier t2, params Simplifier[] ts)
{
Debug.Assert(t1 != null);
Debug.Assert(t2 != null);
// Debug.Assert(ts == null || Contract.ForAll(0, ts.Length, j => ts[j] != null));
CheckContextMatch(t1);
CheckContextMatch(t2);
CheckContextMatch<Simplifier>(ts);
IntPtr last = IntPtr.Zero;
if (ts != null && ts.Length > 0)
{
last = ts[ts.Length - 1].NativeObject;
for (int i = ts.Length - 2; i >= 0; i--)
last = Native.Z3_simplifier_and_then(nCtx, ts[i].NativeObject, last);
}
if (last != IntPtr.Zero)
{
last = Native.Z3_simplifier_and_then(nCtx, t2.NativeObject, last);
return new Simplifier(this, Native.Z3_simplifier_and_then(nCtx, t1.NativeObject, last));
}
else
return new Simplifier(this, Native.Z3_simplifier_and_then(nCtx, t1.NativeObject, t2.NativeObject));
}
/// <summary>
/// Create a simplifier that applies <paramref name="t1"/> and then
/// then <paramref name="t2"/>.
/// </summary>
/// <remarks>
/// Shorthand for <c>AndThen</c>.
/// </remarks>
public Simplifier Then(Simplifier t1, Simplifier t2, params Simplifier[] ts)
{
Debug.Assert(t1 != null);
Debug.Assert(t2 != null);
// Debug.Assert(ts == null || Contract.ForAll(0, ts.Length, j => ts[j] != null));
return AndThen(t1, t2, ts);
}
/// <summary>
/// Create a tactic that applies <paramref name="t"/> using the given set of parameters <paramref name="p"/>.
/// </summary>
public Simplifier UsingParams(Simplifier t, Params p)
{
Debug.Assert(t != null);
Debug.Assert(p != null);
CheckContextMatch(t);
CheckContextMatch(p);
return new Simplifier(this, Native.Z3_simplifier_using_params(nCtx, t.NativeObject, p.NativeObject));
}
#endregion
#region Probes #region Probes
/// <summary> /// <summary>
/// The number of supported Probes. /// The number of supported Probes.
@ -3926,6 +4030,16 @@ namespace Microsoft.Z3
return new Solver(this, Native.Z3_mk_simple_solver(nCtx)); return new Solver(this, Native.Z3_mk_simple_solver(nCtx));
} }
/// <summary>
/// Creates a solver that uses an incremental simplifier.
/// </summary>
public Solver MkSolver(Solver s, Simplifier t)
{
Debug.Assert(t != null);
Debug.Assert(s != null);
return new Solver(this, Native.Z3_solver_add_simplifier(nCtx, s.NativeObject, t.NativeObject));
}
/// <summary> /// <summary>
/// Creates a solver that is implemented using the given tactic. /// Creates a solver that is implemented using the given tactic.
/// </summary> /// </summary>
@ -3939,6 +4053,8 @@ namespace Microsoft.Z3
return new Solver(this, Native.Z3_mk_solver_from_tactic(nCtx, t.NativeObject)); return new Solver(this, Native.Z3_mk_solver_from_tactic(nCtx, t.NativeObject));
} }
#endregion #endregion
#region Fixedpoints #region Fixedpoints

View file

@ -0,0 +1,78 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
Simplifiers.cs
Abstract:
Z3 Managed API: Simplifiers
Author:
Christoph Wintersteiger (cwinter) 2012-03-21
--*/
using System;
using System.Diagnostics;
namespace Microsoft.Z3
{
/// <summary>
/// Simplifiers are the basic building block for creating custom solvers with incremental pre-processing.
/// The complete list of simplifiers may be obtained using <c>Context.NumSimplifiers</c>
/// and <c>Context.SimplifierNames</c>.
/// It may also be obtained using the command <c>(help-simplifier)</c> in the SMT 2.0 front-end.
/// </summary>
public class Simplifier : Z3Object
{
/// <summary>
/// A string containing a description of parameters accepted by the tactic.
/// </summary>
public string Help
{
get
{
return Native.Z3_simplifier_get_help(Context.nCtx, NativeObject);
}
}
/// <summary>
/// Retrieves parameter descriptions for Simplifiers.
/// </summary>
public ParamDescrs ParameterDescriptions
{
get { return new ParamDescrs(Context, Native.Z3_simplifier_get_param_descrs(Context.nCtx, NativeObject)); }
}
#region Internal
internal Simplifier(Context ctx, IntPtr obj)
: base(ctx, obj)
{
Debug.Assert(ctx != null);
}
internal Simplifier(Context ctx, string name)
: base(ctx, Native.Z3_mk_simplifier(ctx.nCtx, name))
{
Debug.Assert(ctx != null);
}
internal override void IncRef(IntPtr o)
{
Native.Z3_simplifier_inc_ref(Context.nCtx, o);
}
internal override void DecRef(IntPtr o)
{
lock (Context)
{
if (Context.nCtx != IntPtr.Zero)
Native.Z3_simplifier_dec_ref(Context.nCtx, o);
}
}
#endregion
}
}

View file

@ -165,6 +165,8 @@ set(Z3_JAVA_JAR_SOURCE_FILES
SeqExpr.java SeqExpr.java
SeqSort.java SeqSort.java
SetSort.java SetSort.java
Simplifier.java
SimplifierDecRefQueue.java
SolverDecRefQueue.java SolverDecRefQueue.java
Solver.java Solver.java
Sort.java Sort.java

View file

@ -3081,6 +3081,106 @@ public class Context implements AutoCloseable {
Native.interrupt(nCtx()); Native.interrupt(nCtx());
} }
/**
* The number of supported simplifiers.
**/
public int getNumSimplifiers()
{
return Native.getNumSimplifiers(nCtx());
}
/**
* The names of all supported simplifiers.
**/
public String[] getSimplifierNames()
{
int n = getNumSimplifiers();
String[] res = new String[n];
for (int i = 0; i < n; i++)
res[i] = Native.getSimplifierName(nCtx(), i);
return res;
}
/**
* Returns a string containing a description of the simplifier with the given
* name.
**/
public String getSimplifierDescription(String name)
{
return Native.simplifierGetDescr(nCtx(), name);
}
/**
* Creates a new Simplifier.
**/
public Simplifier mkSimplifier(String name)
{
return new Simplifier(this, name);
}
/**
* Create a simplifier that applies {@code t1} and then {@code t1}
**/
public Simplifier andThen(Simplifier t1, Simplifier t2, Simplifier... ts)
{
checkContextMatch(t1);
checkContextMatch(t2);
checkContextMatch(ts);
long last = 0;
if (ts != null && ts.length > 0)
{
last = ts[ts.length - 1].getNativeObject();
for (int i = ts.length - 2; i >= 0; i--) {
last = Native.simplifierAndThen(nCtx(), ts[i].getNativeObject(),
last);
}
}
if (last != 0)
{
last = Native.simplifierAndThen(nCtx(), t2.getNativeObject(), last);
return new Simplifier(this, Native.simplifierAndThen(nCtx(),
t1.getNativeObject(), last));
} else
return new Simplifier(this, Native.simplifierAndThen(nCtx(),
t1.getNativeObject(), t2.getNativeObject()));
}
/**
* Create a simplifier that applies {@code t1} and then {@code t2}
*
* Remarks: Shorthand for {@code AndThen}.
**/
public Simplifier then(Simplifier t1, Simplifier t2, Simplifier... ts)
{
return andThen(t1, t2, ts);
}
/**
* Create a simplifier that applies {@code t} using the given set of
* parameters {@code p}.
**/
public Simplifier usingParams(Simplifier t, Params p)
{
checkContextMatch(t);
checkContextMatch(p);
return new Simplifier(this, Native.simplifierUsingParams(nCtx(),
t.getNativeObject(), p.getNativeObject()));
}
/**
* Create a simplifier that applies {@code t} using the given set of
* parameters {@code p}.
* Remarks: Alias for
* {@code UsingParams}
**/
public Simplifier with(Simplifier t, Params p)
{
return usingParams(t, p);
}
/** /**
* The number of supported Probes. * The number of supported Probes.
**/ **/
@ -3279,6 +3379,14 @@ public class Context implements AutoCloseable {
t.getNativeObject())); t.getNativeObject()));
} }
/**
* Creates a solver that is uses the simplifier pre-processing.
**/
public Solver mkSolver(Solver s, Simplifier simp)
{
return new Solver(this, Native.solverAddSimplifier(nCtx(), s.getNativeObject(), simp.getNativeObject()));
}
/** /**
* Create a Fixedpoint context. * Create a Fixedpoint context.
**/ **/
@ -4209,6 +4317,7 @@ public class Context implements AutoCloseable {
private SolverDecRefQueue m_Solver_DRQ = new SolverDecRefQueue(); private SolverDecRefQueue m_Solver_DRQ = new SolverDecRefQueue();
private StatisticsDecRefQueue m_Statistics_DRQ = new StatisticsDecRefQueue(); private StatisticsDecRefQueue m_Statistics_DRQ = new StatisticsDecRefQueue();
private TacticDecRefQueue m_Tactic_DRQ = new TacticDecRefQueue(); private TacticDecRefQueue m_Tactic_DRQ = new TacticDecRefQueue();
private SimplifierDecRefQueue m_Simplifier_DRQ = new SimplifierDecRefQueue();
private FixedpointDecRefQueue m_Fixedpoint_DRQ = new FixedpointDecRefQueue(); private FixedpointDecRefQueue m_Fixedpoint_DRQ = new FixedpointDecRefQueue();
private OptimizeDecRefQueue m_Optimize_DRQ = new OptimizeDecRefQueue(); private OptimizeDecRefQueue m_Optimize_DRQ = new OptimizeDecRefQueue();
private ConstructorDecRefQueue m_Constructor_DRQ = new ConstructorDecRefQueue(); private ConstructorDecRefQueue m_Constructor_DRQ = new ConstructorDecRefQueue();
@ -4293,6 +4402,11 @@ public class Context implements AutoCloseable {
return m_Tactic_DRQ; return m_Tactic_DRQ;
} }
public IDecRefQueue<Simplifier> getSimplifierDRQ()
{
return m_Simplifier_DRQ;
}
public IDecRefQueue<Fixedpoint> getFixedpointDRQ() public IDecRefQueue<Fixedpoint> getFixedpointDRQ()
{ {
return m_Fixedpoint_DRQ; return m_Fixedpoint_DRQ;
@ -4323,6 +4437,7 @@ public class Context implements AutoCloseable {
m_Optimize_DRQ.forceClear(this); m_Optimize_DRQ.forceClear(this);
m_Statistics_DRQ.forceClear(this); m_Statistics_DRQ.forceClear(this);
m_Tactic_DRQ.forceClear(this); m_Tactic_DRQ.forceClear(this);
m_Simplifier_DRQ.forceClear(this);
m_Fixedpoint_DRQ.forceClear(this); m_Fixedpoint_DRQ.forceClear(this);
m_boolSort = null; m_boolSort = null;

View file

@ -0,0 +1,58 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
Simplifiers.cs
Abstract:
Z3 Managed API: Simplifiers
Author:
Christoph Wintersteiger (cwinter) 2012-03-21
--*/
package com.microsoft.z3;
public class Simplifier extends Z3Object {
/*
* A string containing a description of parameters accepted by the simplifier.
*/
public String getHelp()
{
return Native.simplifierGetHelp(getContext().nCtx(), getNativeObject());
}
/*
* Retrieves parameter descriptions for Simplifiers.
*/
public ParamDescrs getParameterDescriptions() {
return new ParamDescrs(getContext(), Native.simplifierGetParamDescrs(getContext().nCtx(), getNativeObject()));
}
Simplifier(Context ctx, long obj)
{
super(ctx, obj);
}
Simplifier(Context ctx, String name)
{
super(ctx, Native.mkSimplifier(ctx.nCtx(), name));
}
@Override
void incRef()
{
Native.simplifierIncRef(getContext().nCtx(), getNativeObject());
}
@Override
void addToReferenceQueue() {
getContext().getSimplifierDRQ().storeReference(getContext(), this);
}
}

View file

@ -0,0 +1,31 @@
/**
Copyright (c) 2012-2014 Microsoft Corporation
Module Name:
SimplifierDecRefQueue.java
Abstract:
Author:
@author Christoph Wintersteiger (cwinter) 2012-03-15
Notes:
**/
package com.microsoft.z3;
class SimplifierDecRefQueue extends IDecRefQueue<Simplifier> {
public SimplifierDecRefQueue()
{
super();
}
@Override
protected void decRef(Context ctx, long obj)
{
Native.simplifierDecRef(ctx.nCtx(), obj);
}
}

View file

@ -8214,8 +8214,6 @@ class Simplifier:
def add(self, solver): def add(self, solver):
"""Return a solver that applies the simplification pre-processing specified by the simplifier""" """Return a solver that applies the simplification pre-processing specified by the simplifier"""
print(solver.solver)
print(self.simplifier)
return Solver(Z3_solver_add_simplifier(self.ctx.ref(), solver.solver, self.simplifier), self.ctx) return Solver(Z3_solver_add_simplifier(self.ctx.ref(), solver.solver, self.simplifier), self.ctx)
def help(self): def help(self):
@ -9074,7 +9072,7 @@ def PbGe(args, k):
def PbEq(args, k, ctx=None): def PbEq(args, k, ctx=None):
"""Create a Pseudo-Boolean inequality k constraint. """Create a Pseudo-Boolean equality k constraint.
>>> a, b, c = Bools('a b c') >>> a, b, c = Bools('a b c')
>>> f = PbEq(((a,1),(b,3),(c,2)), 3) >>> f = PbEq(((a,1),(b,3),(c,2)), 3)

View file

@ -60,7 +60,7 @@ namespace recfun {
func_decl_ref m_pred; //<! predicate used for this case func_decl_ref m_pred; //<! predicate used for this case
expr_ref_vector m_guards; //<! conjunction that is equivalent to this case expr_ref_vector m_guards; //<! conjunction that is equivalent to this case
expr_ref m_rhs; //<! if guard is true, `f(t1...tn) = rhs` holds expr_ref m_rhs; //<! if guard is true, `f(t1...tn) = rhs` holds
def * m_def; //<! definition this is a part of def * m_def = nullptr;; //<! definition this is a part of
bool m_immediate = false; //<! does `rhs` contain no defined_fun/case_pred? bool m_immediate = false; //<! does `rhs` contain no defined_fun/case_pred?
case_def(ast_manager& m): case_def(ast_manager& m):

View file

@ -90,6 +90,7 @@ public:
* Freeze internal functions * Freeze internal functions
*/ */
void freeze(expr* term); void freeze(expr* term);
void freeze(expr_ref_vector const& terms) { for (expr* t : terms) freeze(t); }
bool frozen(func_decl* f) const { return m_frozen.is_marked(f); } bool frozen(func_decl* f) const { return m_frozen.is_marked(f); }
bool frozen(expr* f) const { return is_app(f) && m_frozen.is_marked(to_app(f)->get_decl()); } bool frozen(expr* f) const { return is_app(f) && m_frozen.is_marked(to_app(f)->get_decl()); }
void freeze_suffix(); void freeze_suffix();

View file

@ -41,7 +41,7 @@ expr_ref dominator_simplifier::simplify_ite(app * ite) {
if (is_subexpr(child, t) && !is_subexpr(child, e)) if (is_subexpr(child, t) && !is_subexpr(child, e))
simplify_rec(child); simplify_rec(child);
pop(scope_level() - old_lvl); local_pop(scope_level() - old_lvl);
expr_ref new_t = simplify_arg(t); expr_ref new_t = simplify_arg(t);
reset_cache(); reset_cache();
if (!assert_expr(new_c, true)) { if (!assert_expr(new_c, true)) {
@ -50,7 +50,7 @@ expr_ref dominator_simplifier::simplify_ite(app * ite) {
for (expr * child : tree(ite)) for (expr * child : tree(ite))
if (is_subexpr(child, e) && !is_subexpr(child, t)) if (is_subexpr(child, e) && !is_subexpr(child, t))
simplify_rec(child); simplify_rec(child);
pop(scope_level() - old_lvl); local_pop(scope_level() - old_lvl);
expr_ref new_e = simplify_arg(e); expr_ref new_e = simplify_arg(e);
if (c == new_c && t == new_t && e == new_e) { if (c == new_c && t == new_t && e == new_e) {
@ -159,7 +159,7 @@ expr_ref dominator_simplifier::simplify_and_or(bool is_and, app * e) {
r = simplify_arg(arg); r = simplify_arg(arg);
args.push_back(r); args.push_back(r);
if (!assert_expr(r, !is_and)) { if (!assert_expr(r, !is_and)) {
pop(scope_level() - old_lvl); local_pop(scope_level() - old_lvl);
r = is_and ? m.mk_false() : m.mk_true(); r = is_and ? m.mk_false() : m.mk_true();
reset_cache(); reset_cache();
return true; return true;
@ -181,7 +181,7 @@ expr_ref dominator_simplifier::simplify_and_or(bool is_and, app * e) {
args.reverse(); args.reverse();
} }
pop(scope_level() - old_lvl); local_pop(scope_level() - old_lvl);
reset_cache(); reset_cache();
return { is_and ? mk_and(args) : mk_or(args), m }; return { is_and ? mk_and(args) : mk_or(args), m };
} }
@ -191,7 +191,7 @@ expr_ref dominator_simplifier::simplify_not(app * e) {
ENSURE(m.is_not(e, ee)); ENSURE(m.is_not(e, ee));
unsigned old_lvl = scope_level(); unsigned old_lvl = scope_level();
expr_ref t = simplify_rec(ee); expr_ref t = simplify_rec(ee);
pop(scope_level() - old_lvl); local_pop(scope_level() - old_lvl);
reset_cache(); reset_cache();
return mk_not(t); return mk_not(t);
} }
@ -245,7 +245,7 @@ void dominator_simplifier::reduce() {
} }
m_fmls.update(i, dependent_expr(m, r, new_pr, d)); m_fmls.update(i, dependent_expr(m, r, new_pr, d));
} }
pop(scope_level()); local_pop(scope_level());
// go backwards // go backwards
m_forward = false; m_forward = false;
@ -268,7 +268,7 @@ void dominator_simplifier::reduce() {
} }
m_fmls.update(i, dependent_expr(m, r, new_pr, d)); m_fmls.update(i, dependent_expr(m, r, new_pr, d));
} }
pop(scope_level()); local_pop(scope_level());
} }
SASSERT(scope_level() == 0); SASSERT(scope_level() == 0);
} }

View file

@ -48,7 +48,7 @@ class dominator_simplifier : public dependent_expr_simplifier {
expr* idom(expr *e) const { return m_dominators.idom(e); } expr* idom(expr *e) const { return m_dominators.idom(e); }
unsigned scope_level() { return m_simplifier->scope_level(); } unsigned scope_level() { return m_simplifier->scope_level(); }
void pop(unsigned n) { SASSERT(n <= m_simplifier->scope_level()); m_simplifier->pop(n); } void local_pop(unsigned n) { SASSERT(n <= m_simplifier->scope_level()); m_simplifier->pop(n); }
bool assert_expr(expr* f, bool sign) { return m_simplifier->assert_expr(f, sign); } bool assert_expr(expr* f, bool sign) { return m_simplifier->assert_expr(f, sign); }

View file

@ -592,7 +592,8 @@ void eliminate_predicates::try_find_macro(clause& cl) {
} }
if (cl.is_unit()) { if (cl.is_unit()) {
expr* body = cl.sign(0) ? m.mk_false() : m.mk_true(); expr* body = cl.sign(0) ? m.mk_false() : m.mk_true();
if (can_be_qdef(cl.atom(0), body)) { expr* x = cl.atom(0);
if (can_be_qdef(x, body)) {
insert_quasi_macro(to_app(x), body, cl); insert_quasi_macro(to_app(x), body, cl);
return; return;
} }

View file

@ -780,7 +780,6 @@ void demodulator_rewriter::operator()(expr_ref_vector const& exprs,
demodulator_match_subst::demodulator_match_subst(ast_manager & m): demodulator_match_subst::demodulator_match_subst(ast_manager & m):
m(m),
m_subst(m) { m_subst(m) {
} }

View file

@ -111,7 +111,6 @@ class demodulator_match_subst {
typedef std::pair<expr *, expr *> expr_pair; typedef std::pair<expr *, expr *> expr_pair;
typedef obj_pair_hashtable<expr, expr> cache; typedef obj_pair_hashtable<expr, expr> cache;
ast_manager & m;
substitution m_subst; substitution m_subst;
cache m_cache; cache m_cache;
svector<expr_pair> m_todo; svector<expr_pair> m_todo;

View file

@ -296,9 +296,10 @@ public:
} }
void execute(cmd_context & ctx) override { void execute(cmd_context & ctx) override {
if (!m_tactic) { if (!m_tactic)
throw cmd_exception("apply needs a tactic argument"); throw cmd_exception("apply needs a tactic argument");
} if (ctx.ignore_check())
return;
params_ref p = ctx.params().merge_default_params(ps()); params_ref p = ctx.params().merge_default_params(ps());
tactic_ref tref = using_params(sexpr2tactic(ctx, m_tactic), p); tactic_ref tref = using_params(sexpr2tactic(ctx, m_tactic), p);
{ {

View file

@ -1819,7 +1819,6 @@ namespace dd {
return p.val(); return p.val();
} }
pdd pdd::shl(unsigned n) const { pdd pdd::shl(unsigned n) const {
return (*this) * rational::power_of_two(n); return (*this) * rational::power_of_two(n);
} }

View file

@ -222,7 +222,7 @@ public:
m_d_x.resize(m_d_A.column_count()); m_d_x.resize(m_d_A.column_count());
pop_basis(k); pop_basis(k);
m_stacked_simplex_strategy.pop(k); m_stacked_simplex_strategy.pop(k);
settings().simplex_strategy() = m_stacked_simplex_strategy; settings().set_simplex_strategy(m_stacked_simplex_strategy);
lp_assert(m_r_solver.basis_heading_is_correct()); lp_assert(m_r_solver.basis_heading_is_correct());
lp_assert(!need_to_presolve_with_double_solver() || m_d_solver.basis_heading_is_correct()); lp_assert(!need_to_presolve_with_double_solver() || m_d_solver.basis_heading_is_correct());
} }

View file

@ -300,7 +300,7 @@ namespace lp {
m_term_register.shrink(m_term_count); m_term_register.shrink(m_term_count);
m_terms.resize(m_term_count); m_terms.resize(m_term_count);
m_simplex_strategy.pop(k); m_simplex_strategy.pop(k);
m_settings.simplex_strategy() = m_simplex_strategy; m_settings.set_simplex_strategy(m_simplex_strategy);
lp_assert(sizes_are_correct()); lp_assert(sizes_are_correct());
lp_assert((!m_settings.use_tableau()) || m_mpq_lar_core_solver.m_r_solver.reduced_costs_are_correct_tableau()); lp_assert((!m_settings.use_tableau()) || m_mpq_lar_core_solver.m_r_solver.reduced_costs_are_correct_tableau());
m_usage_in_terms.pop(k); m_usage_in_terms.pop(k);
@ -465,10 +465,10 @@ namespace lp {
switch (settings().simplex_strategy()) { switch (settings().simplex_strategy()) {
case simplex_strategy_enum::tableau_rows: case simplex_strategy_enum::tableau_rows:
settings().simplex_strategy() = simplex_strategy_enum::tableau_costs; settings().set_simplex_strategy(simplex_strategy_enum::tableau_costs);
prepare_costs_for_r_solver(term); prepare_costs_for_r_solver(term);
ret = maximize_term_on_tableau(term, term_max); ret = maximize_term_on_tableau(term, term_max);
settings().simplex_strategy() = simplex_strategy_enum::tableau_rows; settings().set_simplex_strategy(simplex_strategy_enum::tableau_rows);
set_costs_to_zero(term); set_costs_to_zero(term);
m_mpq_lar_core_solver.m_r_solver.set_status(lp_status::OPTIMAL); m_mpq_lar_core_solver.m_r_solver.set_status(lp_status::OPTIMAL);
return ret; return ret;
@ -2006,10 +2006,10 @@ namespace lp {
void lar_solver::decide_on_strategy_and_adjust_initial_state() { void lar_solver::decide_on_strategy_and_adjust_initial_state() {
lp_assert(strategy_is_undecided()); lp_assert(strategy_is_undecided());
if (m_columns_to_ul_pairs.size() > m_settings.column_number_threshold_for_using_lu_in_lar_solver) { if (m_columns_to_ul_pairs.size() > m_settings.column_number_threshold_for_using_lu_in_lar_solver) {
m_settings.simplex_strategy() = simplex_strategy_enum::lu; m_settings.set_simplex_strategy(simplex_strategy_enum::lu);
} }
else { else {
m_settings.simplex_strategy() = simplex_strategy_enum::tableau_rows; // todo: when to switch to tableau_costs? m_settings.set_simplex_strategy(simplex_strategy_enum::tableau_rows); // todo: when to switch to tableau_costs?
} }
adjust_initial_state(); adjust_initial_state();
} }

View file

@ -74,9 +74,9 @@ public:
vector<X> & m_x; // a feasible solution, the fist time set in the constructor vector<X> & m_x; // a feasible solution, the fist time set in the constructor
vector<T> & m_costs; vector<T> & m_costs;
lp_settings & m_settings; lp_settings & m_settings;
lu<static_matrix<T, X>> * m_factorization = nullptr;
vector<T> m_y; // the buffer for yB = cb vector<T> m_y; // the buffer for yB = cb
// a device that is able to solve Bx=c, xB=d, and change the basis // a device that is able to solve Bx=c, xB=d, and change the basis
lu<static_matrix<T, X>> * m_factorization;
const column_namer & m_column_names; const column_namer & m_column_names;
indexed_vector<T> m_w; // the vector featuring in 24.3 of the Chvatal book indexed_vector<T> m_w; // the vector featuring in 24.3 of the Chvatal book
vector<T> m_d; // the vector of reduced costs vector<T> m_d; // the vector of reduced costs

View file

@ -55,7 +55,6 @@ lp_core_solver_base(static_matrix<T, X> & A,
m_costs(costs), m_costs(costs),
m_settings(settings), m_settings(settings),
m_y(m_m()), m_y(m_m()),
m_factorization(nullptr),
m_column_names(column_names), m_column_names(column_names),
m_w(m_m()), m_w(m_m()),
m_d(m_n()), m_d(m_n()),

View file

@ -336,8 +336,8 @@ public:
return m_simplex_strategy; return m_simplex_strategy;
} }
simplex_strategy_enum & simplex_strategy() { void set_simplex_strategy(simplex_strategy_enum s) {
return m_simplex_strategy; m_simplex_strategy = s;
} }
bool use_lu() const { bool use_lu() const {

View file

@ -131,7 +131,7 @@ namespace nla {
return l_false; return l_false;
} }
if (xval >= 3 && yval != 0 & rval <= yval + 1) { if (xval >= 3 && yval != 0 && rval <= yval + 1) {
new_lemma lemma(c, "x >= 3, y != 0 => x^y > ln(x)y + 1"); new_lemma lemma(c, "x >= 3, y != 0 => x^y > ln(x)y + 1");
lemma |= ineq(x, llc::LT, rational(3)); lemma |= ineq(x, llc::LT, rational(3));
lemma |= ineq(y, llc::EQ, rational::zero()); lemma |= ineq(y, llc::EQ, rational::zero());

View file

@ -378,7 +378,7 @@ void lemma_cluster_finder::cluster(lemma_ref &lemma) {
<< pattern << "\n" << pattern << "\n"
<< " and lemma cube: " << lcube << "\n";); << " and lemma cube: " << lcube << "\n";);
for (const lemma_ref &l : neighbours) { for (auto l : neighbours) {
SASSERT(cluster->can_contain(l)); SASSERT(cluster->can_contain(l));
bool added = cluster->add_lemma(l, false); bool added = cluster->add_lemma(l, false);
(void)added; (void)added;

View file

@ -1513,10 +1513,11 @@ namespace qe {
propagate_assignment(*model_eval); propagate_assignment(*model_eval);
VERIFY(CHOOSE_VAR == update_current(*model_eval, true)); VERIFY(CHOOSE_VAR == update_current(*model_eval, true));
SASSERT(m_current->fml()); SASSERT(m_current->fml());
if (l_true != m_solver.check()) { if (l_true != m_solver.check())
return l_true; return l_true;
}
m_solver.get_model(model); m_solver.get_model(model);
if (!model)
return l_undef;
model_eval = alloc(model_evaluator, *model); model_eval = alloc(model_evaluator, *model);
search_tree* st = m_current; search_tree* st = m_current;
update_current(*model_eval, false); update_current(*model_eval, false);

View file

@ -65,6 +65,8 @@ namespace sat {
m_phase = PS_RANDOM; m_phase = PS_RANDOM;
else if (s == symbol("frozen")) else if (s == symbol("frozen"))
m_phase = PS_FROZEN; m_phase = PS_FROZEN;
else if (s == symbol("local_search"))
m_phase = PS_LOCAL_SEARCH;
else else
throw sat_param_exception("invalid phase selection strategy: always_false, always_true, basic_caching, caching, random"); throw sat_param_exception("invalid phase selection strategy: always_false, always_true, basic_caching, caching, random");

View file

@ -28,6 +28,7 @@ namespace sat {
PS_ALWAYS_FALSE, PS_ALWAYS_FALSE,
PS_BASIC_CACHING, PS_BASIC_CACHING,
PS_SAT_CACHING, PS_SAT_CACHING,
PS_LOCAL_SEARCH,
PS_FROZEN, PS_FROZEN,
PS_RANDOM PS_RANDOM
}; };

View file

@ -49,6 +49,7 @@ namespace sat {
else if (should_parallel_sync()) do_parallel_sync(); else if (should_parallel_sync()) do_parallel_sync();
else shift_weights(); else shift_weights();
} }
log();
return m_min_sz == 0 ? l_true : l_undef; return m_min_sz == 0 ? l_true : l_undef;
} }
@ -66,9 +67,9 @@ namespace sat {
<< std::setw(10) << kflips_per_sec << std::setw(10) << kflips_per_sec
<< std::setw(10) << m_flips << std::setw(10) << m_flips
<< std::setw(10) << m_restart_count << std::setw(10) << m_restart_count
<< std::setw(10) << m_reinit_count << std::setw(11) << m_reinit_count
<< std::setw(10) << m_unsat_vars.size() << std::setw(13) << m_unsat_vars.size()
<< std::setw(10) << m_shifts; << std::setw(9) << m_shifts;
if (m_par) verbose_stream() << std::setw(10) << m_parsync_count; if (m_par) verbose_stream() << std::setw(10) << m_parsync_count;
verbose_stream() << ")\n"); verbose_stream() << ")\n");
m_stopwatch.start(); m_stopwatch.start();
@ -90,18 +91,18 @@ namespace sat {
unsigned n = 1; unsigned n = 1;
bool_var v0 = null_bool_var; bool_var v0 = null_bool_var;
for (bool_var v : m_unsat_vars) { for (bool_var v : m_unsat_vars) {
int r = reward(v); double r = reward(v);
if (r > 0) { if (r > 0.0) {
sum_pos += score(r); sum_pos += score(r);
} }
else if (r == 0 && sum_pos == 0 && (m_rand() % (n++)) == 0) { else if (r == 0.0 && sum_pos == 0 && (m_rand() % (n++)) == 0) {
v0 = v; v0 = v;
} }
} }
if (sum_pos > 0) { if (sum_pos > 0) {
double lim_pos = ((double) m_rand() / (1.0 + m_rand.max_value())) * sum_pos; double lim_pos = ((double) m_rand() / (1.0 + m_rand.max_value())) * sum_pos;
for (bool_var v : m_unsat_vars) { for (bool_var v : m_unsat_vars) {
int r = reward(v); double r = reward(v);
if (r > 0) { if (r > 0) {
lim_pos -= score(r); lim_pos -= score(r);
if (lim_pos <= 0) { if (lim_pos <= 0) {
@ -121,7 +122,7 @@ namespace sat {
* TBD: map reward value to a score, possibly through an exponential function, such as * TBD: map reward value to a score, possibly through an exponential function, such as
* exp(-tau/r), where tau > 0 * exp(-tau/r), where tau > 0
*/ */
double ddfw::mk_score(unsigned r) { double ddfw::mk_score(double r) {
return r; return r;
} }
@ -235,7 +236,7 @@ namespace sat {
for (unsigned cls_idx : use_list(*this, lit)) { for (unsigned cls_idx : use_list(*this, lit)) {
clause_info& ci = m_clauses[cls_idx]; clause_info& ci = m_clauses[cls_idx];
ci.del(lit); ci.del(lit);
unsigned w = ci.m_weight; double w = ci.m_weight;
// cls becomes false: flip any variable in clause to receive reward w // cls becomes false: flip any variable in clause to receive reward w
switch (ci.m_num_trues) { switch (ci.m_num_trues) {
case 0: { case 0: {
@ -257,7 +258,7 @@ namespace sat {
} }
for (unsigned cls_idx : use_list(*this, nlit)) { for (unsigned cls_idx : use_list(*this, nlit)) {
clause_info& ci = m_clauses[cls_idx]; clause_info& ci = m_clauses[cls_idx];
unsigned w = ci.m_weight; double w = ci.m_weight;
// the clause used to have a single true (pivot) literal, now it has two. // the clause used to have a single true (pivot) literal, now it has two.
// Then the previous pivot is no longer penalized for flipping. // Then the previous pivot is no longer penalized for flipping.
switch (ci.m_num_trues) { switch (ci.m_num_trues) {
@ -406,10 +407,9 @@ namespace sat {
void ddfw::save_best_values() { void ddfw::save_best_values() {
if (m_unsat.empty()) { if (m_unsat.empty()) {
m_model.reserve(num_vars()); m_model.reserve(num_vars());
for (unsigned i = 0; i < num_vars(); ++i) { for (unsigned i = 0; i < num_vars(); ++i)
m_model[i] = to_lbool(value(i)); m_model[i] = to_lbool(value(i));
} }
}
if (m_unsat.size() < m_min_sz) { if (m_unsat.size() < m_min_sz) {
m_models.reset(); m_models.reset();
// skip saving the first model. // skip saving the first model.
@ -422,14 +422,12 @@ namespace sat {
} }
unsigned h = value_hash(); unsigned h = value_hash();
if (!m_models.contains(h)) { if (!m_models.contains(h)) {
for (unsigned v = 0; v < num_vars(); ++v) { for (unsigned v = 0; v < num_vars(); ++v)
bias(v) += value(v) ? 1 : -1; bias(v) += value(v) ? 1 : -1;
}
m_models.insert(h); m_models.insert(h);
if (m_models.size() > m_config.m_max_num_models) { if (m_models.size() > m_config.m_max_num_models)
m_models.erase(*m_models.begin()); m_models.erase(*m_models.begin());
} }
}
m_min_sz = m_unsat.size(); m_min_sz = m_unsat.size();
} }
@ -450,10 +448,9 @@ namespace sat {
3. select multiple clauses instead of just one per clause in unsat. 3. select multiple clauses instead of just one per clause in unsat.
*/ */
bool ddfw::select_clause(unsigned max_weight, unsigned max_trues, clause_info const& cn, unsigned& n) { bool ddfw::select_clause(double max_weight, clause_info const& cn, unsigned& n) {
if (cn.m_num_trues == 0 || cn.m_weight < max_weight) { if (cn.m_num_trues == 0 || cn.m_weight + 1e-5 < max_weight)
return false; return false;
}
if (cn.m_weight > max_weight) { if (cn.m_weight > max_weight) {
n = 2; n = 2;
return true; return true;
@ -462,51 +459,72 @@ namespace sat {
} }
unsigned ddfw::select_max_same_sign(unsigned cf_idx) { unsigned ddfw::select_max_same_sign(unsigned cf_idx) {
clause const& c = get_clause(cf_idx); auto& ci = m_clauses[cf_idx];
unsigned max_weight = 2;
unsigned max_trues = 0;
unsigned cl = UINT_MAX; // clause pointer to same sign, max weight satisfied clause. unsigned cl = UINT_MAX; // clause pointer to same sign, max weight satisfied clause.
clause const& c = *ci.m_clause;
double max_weight = m_init_weight;
unsigned n = 1; unsigned n = 1;
for (literal lit : c) { for (literal lit : c) {
for (unsigned cn_idx : use_list(*this, lit)) { for (unsigned cn_idx : use_list(*this, lit)) {
auto& cn = m_clauses[cn_idx]; auto& cn = m_clauses[cn_idx];
if (select_clause(max_weight, max_trues, cn, n)) { if (select_clause(max_weight, cn, n)) {
cl = cn_idx; cl = cn_idx;
max_weight = cn.m_weight; max_weight = cn.m_weight;
max_trues = cn.m_num_trues;
} }
} }
} }
return cl; return cl;
} }
void ddfw::transfer_weight(unsigned from, unsigned to, double w) {
auto& cf = m_clauses[to];
auto& cn = m_clauses[from];
if (cn.m_weight < w)
return;
cf.m_weight += w;
cn.m_weight -= w;
for (literal lit : get_clause(to))
inc_reward(lit, w);
if (cn.m_num_trues == 1)
inc_reward(to_literal(cn.m_trues), w);
}
unsigned ddfw::select_random_true_clause() {
unsigned num_clauses = m_clauses.size();
unsigned rounds = 100 * num_clauses;
for (unsigned i = 0; i < rounds; ++i) {
unsigned idx = (m_rand() * m_rand()) % num_clauses;
auto & cn = m_clauses[idx];
if (cn.is_true() && cn.m_weight >= m_init_weight)
return idx;
}
return UINT_MAX;
}
// 1% chance to disregard neighbor
inline bool ddfw::disregard_neighbor() {
return false; // rand() % 1000 == 0;
}
double ddfw::calculate_transfer_weight(double w) {
return (w > m_init_weight) ? m_init_weight : 1;
}
void ddfw::shift_weights() { void ddfw::shift_weights() {
++m_shifts; ++m_shifts;
for (unsigned cf_idx : m_unsat) { for (unsigned to_idx : m_unsat) {
auto& cf = m_clauses[cf_idx]; auto& cf = m_clauses[to_idx];
SASSERT(!cf.is_true()); SASSERT(!cf.is_true());
unsigned cn_idx = select_max_same_sign(cf_idx); unsigned from_idx = select_max_same_sign(to_idx);
while (cn_idx == UINT_MAX) { if (from_idx == UINT_MAX || disregard_neighbor())
unsigned idx = (m_rand() * m_rand()) % m_clauses.size(); from_idx = select_random_true_clause();
auto & cn = m_clauses[idx]; if (from_idx == UINT_MAX)
if (cn.is_true() && cn.m_weight >= 2) { continue;
cn_idx = idx; auto & cn = m_clauses[from_idx];
}
}
auto & cn = m_clauses[cn_idx];
SASSERT(cn.is_true()); SASSERT(cn.is_true());
unsigned wn = cn.m_weight; double w = calculate_transfer_weight(cn.m_weight);
SASSERT(wn >= 2); transfer_weight(from_idx, to_idx, w);
unsigned inc = (wn > 2) ? 2 : 1;
SASSERT(wn - inc >= 1);
cf.m_weight += inc;
cn.m_weight -= inc;
for (literal lit : get_clause(cf_idx)) {
inc_reward(lit, inc);
}
if (cn.m_num_trues == 1) {
inc_reward(to_literal(cn.m_trues), inc);
}
} }
// DEBUG_CODE(invariant();); // DEBUG_CODE(invariant(););
} }
@ -543,7 +561,7 @@ namespace sat {
VERIFY(found); VERIFY(found);
} }
for (unsigned v = 0; v < num_vars(); ++v) { for (unsigned v = 0; v < num_vars(); ++v) {
int v_reward = 0; double v_reward = 0;
literal lit(v, !value(v)); literal lit(v, !value(v));
for (unsigned j : m_use_list[lit.index()]) { for (unsigned j : m_use_list[lit.index()]) {
clause_info const& ci = m_clauses[j]; clause_info const& ci = m_clauses[j];
@ -559,7 +577,7 @@ namespace sat {
} }
} }
IF_VERBOSE(0, if (v_reward != reward(v)) verbose_stream() << v << " " << v_reward << " " << reward(v) << "\n"); IF_VERBOSE(0, if (v_reward != reward(v)) verbose_stream() << v << " " << v_reward << " " << reward(v) << "\n");
SASSERT(reward(v) == v_reward); // SASSERT(reward(v) == v_reward);
} }
DEBUG_CODE( DEBUG_CODE(
for (auto const& ci : m_clauses) { for (auto const& ci : m_clauses) {

View file

@ -34,10 +34,10 @@ namespace sat {
class ddfw : public i_local_search { class ddfw : public i_local_search {
struct clause_info { struct clause_info {
clause_info(clause* cl, unsigned init_weight): m_weight(init_weight), m_trues(0), m_num_trues(0), m_clause(cl) {} clause_info(clause* cl, double init_weight): m_weight(init_weight), m_clause(cl) {}
unsigned m_weight; // weight of clause double m_weight; // weight of clause
unsigned m_trues; // set of literals that are true unsigned m_trues = 0; // set of literals that are true
unsigned m_num_trues; // size of true set unsigned m_num_trues = 0; // size of true set
clause* m_clause; clause* m_clause;
bool is_true() const { return m_num_trues > 0; } bool is_true() const { return m_num_trues > 0; }
void add(literal lit) { ++m_num_trues; m_trues += lit.index(); } void add(literal lit) { ++m_num_trues; m_trues += lit.index(); }
@ -65,12 +65,12 @@ namespace sat {
}; };
struct var_info { struct var_info {
var_info(): m_value(false), m_reward(0), m_make_count(0), m_bias(0), m_reward_avg(1e-5) {} var_info() {}
bool m_value; bool m_value = false;
int m_reward; double m_reward = 0;
unsigned m_make_count; unsigned m_make_count = 0;
int m_bias; int m_bias = 0;
ema m_reward_avg; ema m_reward_avg = 1e-5;
}; };
config m_config; config m_config;
@ -82,6 +82,7 @@ namespace sat {
svector<double> m_probs; // var -> probability of flipping svector<double> m_probs; // var -> probability of flipping
svector<double> m_scores; // reward -> score svector<double> m_scores; // reward -> score
model m_model; // var -> best assignment model m_model; // var -> best assignment
unsigned m_init_weight = 2;
vector<unsigned_vector> m_use_list; vector<unsigned_vector> m_use_list;
unsigned_vector m_flat_use_list; unsigned_vector m_flat_use_list;
@ -90,11 +91,11 @@ namespace sat {
indexed_uint_set m_unsat; indexed_uint_set m_unsat;
indexed_uint_set m_unsat_vars; // set of variables that are in unsat clauses indexed_uint_set m_unsat_vars; // set of variables that are in unsat clauses
random_gen m_rand; random_gen m_rand;
unsigned m_num_non_binary_clauses{ 0 }; unsigned m_num_non_binary_clauses = 0;
unsigned m_restart_count{ 0 }, m_reinit_count{ 0 }, m_parsync_count{ 0 }; unsigned m_restart_count = 0, m_reinit_count = 0, m_parsync_count = 0;
uint64_t m_restart_next{ 0 }, m_reinit_next{ 0 }, m_parsync_next{ 0 }; uint64_t m_restart_next = 0, m_reinit_next = 0, m_parsync_next = 0;
uint64_t m_flips{ 0 }, m_last_flips{ 0 }, m_shifts{ 0 }; uint64_t m_flips = 0, m_last_flips = 0, m_shifts = 0;
unsigned m_min_sz{ 0 }; unsigned m_min_sz = 0;
hashtable<unsigned, unsigned_hash, default_eq<unsigned>> m_models; hashtable<unsigned, unsigned_hash, default_eq<unsigned>> m_models;
stopwatch m_stopwatch; stopwatch m_stopwatch;
@ -112,9 +113,9 @@ namespace sat {
void flatten_use_list(); void flatten_use_list();
double mk_score(unsigned r); double mk_score(double r);
inline double score(unsigned r) { return r; } // TBD: { for (unsigned sz = m_scores.size(); sz <= r; ++sz) m_scores.push_back(mk_score(sz)); return m_scores[r]; } inline double score(double r) { return r; } // TBD: { for (unsigned sz = m_scores.size(); sz <= r; ++sz) m_scores.push_back(mk_score(sz)); return m_scores[r]; }
inline unsigned num_vars() const { return m_vars.size(); } inline unsigned num_vars() const { return m_vars.size(); }
@ -124,9 +125,9 @@ namespace sat {
inline bool value(bool_var v) const { return m_vars[v].m_value; } inline bool value(bool_var v) const { return m_vars[v].m_value; }
inline int& reward(bool_var v) { return m_vars[v].m_reward; } inline double& reward(bool_var v) { return m_vars[v].m_reward; }
inline int reward(bool_var v) const { return m_vars[v].m_reward; } inline double reward(bool_var v) const { return m_vars[v].m_reward; }
inline int& bias(bool_var v) { return m_vars[v].m_bias; } inline int& bias(bool_var v) { return m_vars[v].m_bias; }
@ -136,7 +137,7 @@ namespace sat {
inline clause const& get_clause(unsigned idx) const { return *m_clauses[idx].m_clause; } inline clause const& get_clause(unsigned idx) const { return *m_clauses[idx].m_clause; }
inline unsigned get_weight(unsigned idx) const { return m_clauses[idx].m_weight; } inline double get_weight(unsigned idx) const { return m_clauses[idx].m_weight; }
inline bool is_true(unsigned idx) const { return m_clauses[idx].is_true(); } inline bool is_true(unsigned idx) const { return m_clauses[idx].is_true(); }
@ -154,9 +155,9 @@ namespace sat {
if (--make_count(v) == 0) m_unsat_vars.remove(v); if (--make_count(v) == 0) m_unsat_vars.remove(v);
} }
inline void inc_reward(literal lit, int inc) { reward(lit.var()) += inc; } inline void inc_reward(literal lit, double w) { reward(lit.var()) += w; }
inline void dec_reward(literal lit, int inc) { reward(lit.var()) -= inc; } inline void dec_reward(literal lit, double w) { reward(lit.var()) -= w; }
// flip activity // flip activity
bool do_flip(); bool do_flip();
@ -166,17 +167,20 @@ namespace sat {
// shift activity // shift activity
void shift_weights(); void shift_weights();
inline double calculate_transfer_weight(double w);
// reinitialize weights activity // reinitialize weights activity
bool should_reinit_weights(); bool should_reinit_weights();
void do_reinit_weights(); void do_reinit_weights();
inline bool select_clause(unsigned max_weight, unsigned max_trues, clause_info const& cn, unsigned& n); inline bool select_clause(double max_weight, clause_info const& cn, unsigned& n);
// restart activity // restart activity
bool should_restart(); bool should_restart();
void do_restart(); void do_restart();
void reinit_values(); void reinit_values();
unsigned select_random_true_clause();
// parallel integration // parallel integration
bool should_parallel_sync(); bool should_parallel_sync();
void do_parallel_sync(); void do_parallel_sync();
@ -193,6 +197,10 @@ namespace sat {
void add_assumptions(); void add_assumptions();
inline void transfer_weight(unsigned from, unsigned to, double w);
inline bool disregard_neighbor();
public: public:
ddfw(): m_par(nullptr) {} ddfw(): m_par(nullptr) {}
@ -211,6 +219,8 @@ namespace sat {
void add(solver const& s) override; void add(solver const& s) override;
bool get_value(bool_var v) const override { return value(v); }
std::ostream& display(std::ostream& out) const; std::ostream& display(std::ostream& out) const;
// for parallel integration // for parallel integration

View file

@ -1331,10 +1331,7 @@ namespace sat {
ERROR_EX ERROR_EX
}; };
lbool solver::invoke_local_search(unsigned num_lits, literal const* lits) { struct solver::scoped_ls {
literal_vector _lits(num_lits, lits);
for (literal lit : m_user_scope_literals) _lits.push_back(~lit);
struct scoped_ls {
solver& s; solver& s;
scoped_ls(solver& s): s(s) {} scoped_ls(solver& s): s(s) {}
~scoped_ls() { ~scoped_ls() {
@ -1342,6 +1339,29 @@ namespace sat {
s.m_local_search = nullptr; s.m_local_search = nullptr;
} }
}; };
void solver::bounded_local_search() {
literal_vector _lits;
scoped_limits scoped_rl(rlimit());
m_local_search = alloc(ddfw);
scoped_ls _ls(*this);
SASSERT(m_local_search);
m_local_search->add(*this);
m_local_search->updt_params(m_params);
m_local_search->set_seed(m_rand());
scoped_rl.push_child(&(m_local_search->rlimit()));
m_local_search->rlimit().push(500000);
m_local_search->reinit(*this);
m_local_search->check(_lits.size(), _lits.data(), nullptr);
for (unsigned i = 0; i < m_phase.size(); ++i)
m_best_phase[i] = m_local_search->get_value(i);
}
lbool solver::invoke_local_search(unsigned num_lits, literal const* lits) {
literal_vector _lits(num_lits, lits);
for (literal lit : m_user_scope_literals)
_lits.push_back(~lit);
scoped_ls _ls(*this); scoped_ls _ls(*this);
if (inconsistent()) if (inconsistent())
return l_false; return l_false;
@ -1624,6 +1644,7 @@ namespace sat {
case PS_FROZEN: case PS_FROZEN:
return m_best_phase[next]; return m_best_phase[next];
case PS_SAT_CACHING: case PS_SAT_CACHING:
case PS_LOCAL_SEARCH:
if (m_search_state == s_unsat) if (m_search_state == s_unsat)
return m_phase[next]; return m_phase[next];
return m_best_phase[next]; return m_best_phase[next];
@ -2823,7 +2844,7 @@ namespace sat {
} }
bool solver::is_two_phase() const { bool solver::is_two_phase() const {
return m_config.m_phase == PS_SAT_CACHING; return m_config.m_phase == PS_SAT_CACHING || m_config.m_phase == PS_LOCAL_SEARCH;
} }
bool solver::is_sat_phase() const { bool solver::is_sat_phase() const {
@ -2923,6 +2944,10 @@ namespace sat {
case PS_RANDOM: case PS_RANDOM:
for (auto& p : m_phase) p = (m_rand() % 2) == 0; for (auto& p : m_phase) p = (m_rand() % 2) == 0;
break; break;
case PS_LOCAL_SEARCH:
if (m_search_state == s_sat)
bounded_local_search();
break;
default: default:
UNREACHABLE(); UNREACHABLE();
break; break;

View file

@ -589,7 +589,9 @@ namespace sat {
lbool do_ddfw_search(unsigned num_lits, literal const* lits); lbool do_ddfw_search(unsigned num_lits, literal const* lits);
lbool do_prob_search(unsigned num_lits, literal const* lits); lbool do_prob_search(unsigned num_lits, literal const* lits);
lbool invoke_local_search(unsigned num_lits, literal const* lits); lbool invoke_local_search(unsigned num_lits, literal const* lits);
void bounded_local_search();
lbool do_unit_walk(); lbool do_unit_walk();
struct scoped_ls;
// ----------------------- // -----------------------
// //

View file

@ -91,7 +91,7 @@ namespace sat {
virtual model const& get_model() const = 0; virtual model const& get_model() const = 0;
virtual void collect_statistics(statistics& st) const = 0; virtual void collect_statistics(statistics& st) const = 0;
virtual double get_priority(bool_var v) const { return 0; } virtual double get_priority(bool_var v) const { return 0; }
virtual bool get_value(bool_var v) const { return true; }
}; };
class proof_hint { class proof_hint {

View file

@ -80,7 +80,7 @@ void run_solver(smt_params_helper & params, char const * mps_file_name) {
solver->settings().set_message_ostream(&std::cout); solver->settings().set_message_ostream(&std::cout);
solver->settings().report_frequency = params.arith_rep_freq(); solver->settings().report_frequency = params.arith_rep_freq();
solver->settings().print_statistics = params.arith_print_stats(); solver->settings().print_statistics = params.arith_print_stats();
solver->settings().simplex_strategy() = lp:: simplex_strategy_enum::lu; solver->settings().set_simplex_strategy(lp:: simplex_strategy_enum::lu);
solver->find_maximal_solution(); solver->find_maximal_solution();

View file

@ -671,7 +671,6 @@ namespace smt {
out << "equivalence classes:\n"; out << "equivalence classes:\n";
for (enode * n : ctx.enodes()) { for (enode * n : ctx.enodes()) {
expr * e = n->get_expr();
expr * r = n->get_root()->get_expr(); expr * r = n->get_root()->get_expr();
out << r->get_id() << " --> " << enode_pp(n, ctx) << "\n"; out << r->get_id() << " --> " << enode_pp(n, ctx) << "\n";
} }

View file

@ -95,18 +95,30 @@ class simplifier_solver : public solver {
expr_ref_vector m_assumptions; expr_ref_vector m_assumptions;
model_converter_ref m_mc; model_converter_ref m_mc;
bool m_inconsistent = false; bool m_inconsistent = false;
expr_safe_replace m_core_replace;
void replace(expr_ref_vector& r) {
expr_ref tmp(m);
for (unsigned i = 0; i < r.size(); ++i) {
m_core_replace(r.get(i), tmp);
r[i] = tmp;
}
}
void flush(expr_ref_vector& assumptions) { void flush(expr_ref_vector& assumptions) {
unsigned qhead = m_preprocess_state.qhead(); unsigned qhead = m_preprocess_state.qhead();
if (qhead < m_fmls.size()) { expr_ref_vector orig_assumptions(assumptions);
for (expr* a : assumptions) m_core_replace.reset();
m_preprocess_state.freeze(a); if (qhead < m_fmls.size() || !assumptions.empty()) {
TRACE("solver", tout << "qhead " << qhead << "\n"); TRACE("solver", tout << "qhead " << qhead << "\n");
m_preprocess_state.replay(qhead, assumptions); m_preprocess_state.replay(qhead, assumptions);
m_preprocess_state.freeze(assumptions);
m_preprocess.reduce(); m_preprocess.reduce();
if (!m.inc()) if (!m.inc())
return; return;
m_preprocess_state.advance_qhead(); m_preprocess_state.advance_qhead();
for (unsigned i = 0; i < assumptions.size(); ++i)
m_core_replace.insert(assumptions.get(i), orig_assumptions.get(i));
} }
m_mc = m_preprocess_state.model_trail().get_model_converter(); m_mc = m_preprocess_state.model_trail().get_model_converter();
m_cached_mc = nullptr; m_cached_mc = nullptr;
@ -148,6 +160,7 @@ public:
m_preprocess_state(*this), m_preprocess_state(*this),
m_preprocess(m, s->get_params(), m_preprocess_state), m_preprocess(m, s->get_params(), m_preprocess_state),
m_assumptions(m), m_assumptions(m),
m_core_replace(m),
m_proof(m) m_proof(m)
{ {
if (fac) if (fac)
@ -189,7 +202,7 @@ public:
lbool check_sat_core(unsigned num_assumptions, expr* const* assumptions) override { lbool check_sat_core(unsigned num_assumptions, expr* const* assumptions) override {
expr_ref_vector _assumptions(m, num_assumptions, assumptions); expr_ref_vector _assumptions(m, num_assumptions, assumptions);
flush(_assumptions); flush(_assumptions);
return s->check_sat_core(num_assumptions, assumptions); return s->check_sat_core(num_assumptions, _assumptions.data());
} }
void collect_statistics(statistics& st) const override { void collect_statistics(statistics& st) const override {
@ -211,7 +224,7 @@ public:
} }
proof_ref m_proof; proof_ref m_proof;
proof* get_proof_core() { proof* get_proof_core() override {
proof* p = s->get_proof(); proof* p = s->get_proof();
m_proof = p; m_proof = p;
if (p) { if (p) {
@ -258,7 +271,7 @@ public:
std::string reason_unknown() const override { return s->reason_unknown(); } std::string reason_unknown() const override { return s->reason_unknown(); }
void set_reason_unknown(char const* msg) override { s->set_reason_unknown(msg); } void set_reason_unknown(char const* msg) override { s->set_reason_unknown(msg); }
void get_labels(svector<symbol>& r) override { s->get_labels(r); } void get_labels(svector<symbol>& r) override { s->get_labels(r); }
void get_unsat_core(expr_ref_vector& r) { s->get_unsat_core(r); } void get_unsat_core(expr_ref_vector& r) override { s->get_unsat_core(r); replace(r); }
ast_manager& get_manager() const override { return s->get_manager(); } ast_manager& get_manager() const override { return s->get_manager(); }
void reset_params(params_ref const& p) override { s->reset_params(p); } void reset_params(params_ref const& p) override { s->reset_params(p); }
params_ref const& get_params() const override { return s->get_params(); } params_ref const& get_params() const override { return s->get_params(); }
@ -273,15 +286,59 @@ public:
unsigned get_num_assumptions() const override { return s->get_num_assumptions(); } unsigned get_num_assumptions() const override { return s->get_num_assumptions(); }
expr* get_assumption(unsigned idx) const override { return s->get_assumption(idx); } expr* get_assumption(unsigned idx) const override { return s->get_assumption(idx); }
unsigned get_scope_level() const override { return s->get_scope_level(); } unsigned get_scope_level() const override { return s->get_scope_level(); }
lbool check_sat_cc(expr_ref_vector const& cube, vector<expr_ref_vector> const& clauses) override { return check_sat_cc(cube, clauses); }
void set_progress_callback(progress_callback* callback) override { s->set_progress_callback(callback); } void set_progress_callback(progress_callback* callback) override { s->set_progress_callback(callback); }
lbool get_consequences(expr_ref_vector const& asms, expr_ref_vector const& vars, expr_ref_vector& consequences) override {
return s->get_consequences(asms, vars, consequences);
}
lbool find_mutexes(expr_ref_vector const& vars, vector<expr_ref_vector>& mutexes) override { return s->find_mutexes(vars, mutexes); }
lbool preferred_sat(expr_ref_vector const& asms, vector<expr_ref_vector>& cores) override { return s->preferred_sat(asms, cores); }
expr_ref_vector cube(expr_ref_vector& vars, unsigned backtrack_level) override { return s->cube(vars, backtrack_level); } lbool get_consequences(expr_ref_vector const& asms, expr_ref_vector const& vars, expr_ref_vector& consequences) override {
expr_ref_vector es(m);
es.append(asms);
es.append(vars);
flush(es);
expr_ref_vector asms1(m, asms.size(), es.data());
expr_ref_vector vars1(m, vars.size(), es.data() + asms.size());
lbool r = s->get_consequences(asms1, vars1, consequences);
replace(consequences);
return r;
}
lbool check_sat_cc(expr_ref_vector const& cube, vector<expr_ref_vector> const& clauses) override {
expr_ref_vector es(m);
es.append(cube);
for (auto const& c : clauses)
es.append(c);
flush(es);
expr_ref_vector cube1(m, cube.size(), es.data());
vector<expr_ref_vector> clauses1;
unsigned offset = cube.size();
for (auto const& c : clauses) {
clauses1.push_back(expr_ref_vector(m, c.size(), es.data() + offset));
offset += c.size();
}
return s->check_sat_cc(cube1, clauses1);
}
lbool find_mutexes(expr_ref_vector const& vars, vector<expr_ref_vector>& mutexes) override {
expr_ref_vector vars1(vars);
flush(vars1);
lbool r = s->find_mutexes(vars1, mutexes);
for (auto& mux : mutexes)
replace(mux);
return r;
}
lbool preferred_sat(expr_ref_vector const& asms, vector<expr_ref_vector>& cores) override {
expr_ref_vector asms1(asms);
flush(asms1);
lbool r = s->preferred_sat(asms1, cores);
for (auto& c : cores)
replace(c);
return r;
}
// todo flush?
expr_ref_vector cube(expr_ref_vector& vars, unsigned backtrack_level) override {
return s->cube(vars, backtrack_level);
}
expr* congruence_root(expr* e) override { return s->congruence_root(e); } expr* congruence_root(expr* e) override { return s->congruence_root(e); }
expr* congruence_next(expr* e) override { return s->congruence_next(e); } expr* congruence_next(expr* e) override { return s->congruence_next(e); }
std::ostream& display(std::ostream& out, unsigned n, expr* const* assumptions) const override { std::ostream& display(std::ostream& out, unsigned n, expr* const* assumptions) const override {

View file

@ -1391,7 +1391,7 @@ void update_settings(argument_parser & args_parser, lp_settings& settings) {
settings.set_random_seed(n); settings.set_random_seed(n);
} }
if (get_int_from_args_parser("--simplex_strategy", args_parser, n)) { if (get_int_from_args_parser("--simplex_strategy", args_parser, n)) {
settings.simplex_strategy() = static_cast<simplex_strategy_enum>(n); settings.set_simplex_strategy(static_cast<simplex_strategy_enum>(n));
} }
} }

View file

@ -43,7 +43,7 @@ class tbv_manager {
ptr_vector<tbv> allocated_tbvs; ptr_vector<tbv> allocated_tbvs;
public: public:
tbv_manager(unsigned n): m(2*n) {} tbv_manager(unsigned n): m(2*n) {}
tbv_manager(const tbv_manager& m) = delete; tbv_manager(tbv_manager const& m) = delete;
~tbv_manager(); ~tbv_manager();
void reset(); void reset();
tbv* allocate(); tbv* allocate();
@ -154,11 +154,9 @@ public:
}; };
inline std::ostream& operator<<(std::ostream& out, tbv_ref const& c) { inline std::ostream& operator<<(std::ostream& out, tbv_ref const& c) {
const char* names[] = { "z", "0", "1", "x" }; char const* names[] = { "z", "0", "1", "x" };
for (unsigned i = c.num_tbits(); i > 0; i--) { for (unsigned i = c.num_tbits(); i-- > 0; ) {
out << names[(unsigned)c[i - 1]]; out << names[static_cast<unsigned>(c[i])];
} }
return out; return out;
} }

View file

@ -413,22 +413,6 @@ inline size_t megabytes_to_bytes(unsigned mb) {
return r; return r;
} }
/** Compact version of std::all_of */
template <typename Container, typename Predicate>
bool all_of(Container const& c, Predicate p)
{
using std::begin, std::end; // allows begin(c) to also find c.begin()
return std::all_of(begin(c), end(c), std::forward<Predicate>(p));
}
/** Compact version of std::any_of */
template <typename Container, typename Predicate>
bool any_of(Container const& c, Predicate p)
{
using std::begin, std::end; // allows begin(c) to also find c.begin()
return std::any_of(begin(c), end(c), std::forward<Predicate>(p));
}
/** Compact version of std::count */ /** Compact version of std::count */
template <typename Container, typename Item> template <typename Container, typename Item>
std::size_t count(Container const& c, Item x) std::size_t count(Container const& c, Item x)