mirror of
https://github.com/Z3Prover/z3
synced 2025-04-24 17:45:32 +00:00
Merge remote-tracking branch 'origin/master' into polysat
This commit is contained in:
commit
8774952aeb
40 changed files with 708 additions and 189 deletions
|
@ -233,16 +233,38 @@ extern "C" {
|
|||
Z3_CATCH_RETURN(nullptr);
|
||||
}
|
||||
|
||||
/**
|
||||
* attach a simplifier to solver.
|
||||
* This is legal when the solver is fresh, does not already have assertions (and scopes).
|
||||
* To allow recycling the argument solver, we create a fresh copy of it and pass it to
|
||||
* mk_simplifier_solver.
|
||||
*/
|
||||
Z3_solver Z3_API Z3_solver_add_simplifier(Z3_context c, Z3_solver solver, Z3_simplifier simplifier) {
|
||||
Z3_TRY;
|
||||
LOG_Z3_solver_add_simplifier(c, solver, simplifier);
|
||||
init_solver(c, solver);
|
||||
solver_ref s_fresh;
|
||||
if (to_solver(solver)->m_solver) {
|
||||
s_fresh = to_solver_ref(solver)->translate(mk_c(c)->m(), to_solver(solver)->m_params);
|
||||
}
|
||||
else {
|
||||
// create the solver, but hijack it for internal uses.
|
||||
init_solver(c, solver);
|
||||
s_fresh = to_solver(solver)->m_solver;
|
||||
to_solver(solver)->m_solver = nullptr;
|
||||
}
|
||||
if (!s_fresh) {
|
||||
SET_ERROR_CODE(Z3_INVALID_ARG, "unexpected empty solver state");
|
||||
RETURN_Z3(nullptr);
|
||||
}
|
||||
if (s_fresh->get_num_assertions() > 0) {
|
||||
SET_ERROR_CODE(Z3_INVALID_ARG, "adding a simplifier to a solver with assertions is not allowed.");
|
||||
RETURN_Z3(nullptr);
|
||||
}
|
||||
auto simp = to_simplifier_ref(simplifier);
|
||||
auto* slv = mk_simplifier_solver(to_solver_ref(solver), simp);
|
||||
Z3_solver_ref* sr = alloc(Z3_solver_ref, *mk_c(c), slv);
|
||||
mk_c(c)->save_object(sr);
|
||||
// ?? init_solver_log(c, sr)
|
||||
RETURN_Z3(of_solver(sr));
|
||||
auto* simplifier_solver = mk_simplifier_solver(s_fresh.get(), simp);
|
||||
Z3_solver_ref* result = alloc(Z3_solver_ref, *mk_c(c), simplifier_solver);
|
||||
mk_c(c)->save_object(result);
|
||||
RETURN_Z3(of_solver(result));
|
||||
Z3_CATCH_RETURN(nullptr);
|
||||
}
|
||||
|
||||
|
|
|
@ -103,6 +103,7 @@ set(Z3_DOTNET_ASSEMBLY_SOURCES_IN_SRC_TREE
|
|||
SeqExpr.cs
|
||||
SeqSort.cs
|
||||
SetSort.cs
|
||||
Simplifiers.cs
|
||||
Solver.cs
|
||||
Sort.cs
|
||||
Statistics.cs
|
||||
|
|
|
@ -3726,6 +3726,110 @@ namespace Microsoft.Z3
|
|||
}
|
||||
#endregion
|
||||
|
||||
#region Simplifiers
|
||||
/// <summary>
|
||||
/// The number of supported simplifiers.
|
||||
/// </summary>
|
||||
public uint NumSimplifiers
|
||||
{
|
||||
get { return Native.Z3_get_num_simplifiers(nCtx); }
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// The names of all supported tactics.
|
||||
/// </summary>
|
||||
public string[] SimplifierNames
|
||||
{
|
||||
get
|
||||
{
|
||||
|
||||
uint n = NumSimplifiers;
|
||||
string[] res = new string[n];
|
||||
for (uint i = 0; i < n; i++)
|
||||
res[i] = Native.Z3_get_simplifier_name(nCtx, i);
|
||||
return res;
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Returns a string containing a description of the simplifier with the given name.
|
||||
/// </summary>
|
||||
public string SimplifierDescription(string name)
|
||||
{
|
||||
|
||||
return Native.Z3_simplifier_get_descr(nCtx, name);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Creates a new Tactic.
|
||||
/// </summary>
|
||||
public Simplifier MkSimplifier(string name)
|
||||
{
|
||||
|
||||
return new Simplifier(this, name);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Create a simplifie that applies <paramref name="t1"/> and
|
||||
/// then <paramref name="t2"/>.
|
||||
/// </summary>
|
||||
public Simplifier AndThen(Simplifier t1, Simplifier t2, params Simplifier[] ts)
|
||||
{
|
||||
Debug.Assert(t1 != null);
|
||||
Debug.Assert(t2 != null);
|
||||
// Debug.Assert(ts == null || Contract.ForAll(0, ts.Length, j => ts[j] != null));
|
||||
|
||||
|
||||
CheckContextMatch(t1);
|
||||
CheckContextMatch(t2);
|
||||
CheckContextMatch<Simplifier>(ts);
|
||||
|
||||
IntPtr last = IntPtr.Zero;
|
||||
if (ts != null && ts.Length > 0)
|
||||
{
|
||||
last = ts[ts.Length - 1].NativeObject;
|
||||
for (int i = ts.Length - 2; i >= 0; i--)
|
||||
last = Native.Z3_simplifier_and_then(nCtx, ts[i].NativeObject, last);
|
||||
}
|
||||
if (last != IntPtr.Zero)
|
||||
{
|
||||
last = Native.Z3_simplifier_and_then(nCtx, t2.NativeObject, last);
|
||||
return new Simplifier(this, Native.Z3_simplifier_and_then(nCtx, t1.NativeObject, last));
|
||||
}
|
||||
else
|
||||
return new Simplifier(this, Native.Z3_simplifier_and_then(nCtx, t1.NativeObject, t2.NativeObject));
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Create a simplifier that applies <paramref name="t1"/> and then
|
||||
/// then <paramref name="t2"/>.
|
||||
/// </summary>
|
||||
/// <remarks>
|
||||
/// Shorthand for <c>AndThen</c>.
|
||||
/// </remarks>
|
||||
public Simplifier Then(Simplifier t1, Simplifier t2, params Simplifier[] ts)
|
||||
{
|
||||
Debug.Assert(t1 != null);
|
||||
Debug.Assert(t2 != null);
|
||||
// Debug.Assert(ts == null || Contract.ForAll(0, ts.Length, j => ts[j] != null));
|
||||
|
||||
return AndThen(t1, t2, ts);
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Create a tactic that applies <paramref name="t"/> using the given set of parameters <paramref name="p"/>.
|
||||
/// </summary>
|
||||
public Simplifier UsingParams(Simplifier t, Params p)
|
||||
{
|
||||
Debug.Assert(t != null);
|
||||
Debug.Assert(p != null);
|
||||
|
||||
CheckContextMatch(t);
|
||||
CheckContextMatch(p);
|
||||
return new Simplifier(this, Native.Z3_simplifier_using_params(nCtx, t.NativeObject, p.NativeObject));
|
||||
}
|
||||
#endregion
|
||||
|
||||
#region Probes
|
||||
/// <summary>
|
||||
/// The number of supported Probes.
|
||||
|
@ -3926,6 +4030,16 @@ namespace Microsoft.Z3
|
|||
return new Solver(this, Native.Z3_mk_simple_solver(nCtx));
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Creates a solver that uses an incremental simplifier.
|
||||
/// </summary>
|
||||
public Solver MkSolver(Solver s, Simplifier t)
|
||||
{
|
||||
Debug.Assert(t != null);
|
||||
Debug.Assert(s != null);
|
||||
return new Solver(this, Native.Z3_solver_add_simplifier(nCtx, s.NativeObject, t.NativeObject));
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Creates a solver that is implemented using the given tactic.
|
||||
/// </summary>
|
||||
|
@ -3939,6 +4053,8 @@ namespace Microsoft.Z3
|
|||
|
||||
return new Solver(this, Native.Z3_mk_solver_from_tactic(nCtx, t.NativeObject));
|
||||
}
|
||||
|
||||
|
||||
#endregion
|
||||
|
||||
#region Fixedpoints
|
||||
|
|
78
src/api/dotnet/Simplifiers.cs
Normal file
78
src/api/dotnet/Simplifiers.cs
Normal file
|
@ -0,0 +1,78 @@
|
|||
/*++
|
||||
Copyright (c) 2012 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
Simplifiers.cs
|
||||
|
||||
Abstract:
|
||||
|
||||
Z3 Managed API: Simplifiers
|
||||
|
||||
Author:
|
||||
|
||||
Christoph Wintersteiger (cwinter) 2012-03-21
|
||||
|
||||
--*/
|
||||
|
||||
using System;
|
||||
using System.Diagnostics;
|
||||
|
||||
namespace Microsoft.Z3
|
||||
{
|
||||
/// <summary>
|
||||
/// Simplifiers are the basic building block for creating custom solvers with incremental pre-processing.
|
||||
/// The complete list of simplifiers may be obtained using <c>Context.NumSimplifiers</c>
|
||||
/// and <c>Context.SimplifierNames</c>.
|
||||
/// It may also be obtained using the command <c>(help-simplifier)</c> in the SMT 2.0 front-end.
|
||||
/// </summary>
|
||||
public class Simplifier : Z3Object
|
||||
{
|
||||
/// <summary>
|
||||
/// A string containing a description of parameters accepted by the tactic.
|
||||
/// </summary>
|
||||
public string Help
|
||||
{
|
||||
get
|
||||
{
|
||||
|
||||
return Native.Z3_simplifier_get_help(Context.nCtx, NativeObject);
|
||||
}
|
||||
}
|
||||
|
||||
/// <summary>
|
||||
/// Retrieves parameter descriptions for Simplifiers.
|
||||
/// </summary>
|
||||
public ParamDescrs ParameterDescriptions
|
||||
{
|
||||
get { return new ParamDescrs(Context, Native.Z3_simplifier_get_param_descrs(Context.nCtx, NativeObject)); }
|
||||
}
|
||||
|
||||
#region Internal
|
||||
internal Simplifier(Context ctx, IntPtr obj)
|
||||
: base(ctx, obj)
|
||||
{
|
||||
Debug.Assert(ctx != null);
|
||||
}
|
||||
internal Simplifier(Context ctx, string name)
|
||||
: base(ctx, Native.Z3_mk_simplifier(ctx.nCtx, name))
|
||||
{
|
||||
Debug.Assert(ctx != null);
|
||||
}
|
||||
|
||||
internal override void IncRef(IntPtr o)
|
||||
{
|
||||
Native.Z3_simplifier_inc_ref(Context.nCtx, o);
|
||||
}
|
||||
|
||||
internal override void DecRef(IntPtr o)
|
||||
{
|
||||
lock (Context)
|
||||
{
|
||||
if (Context.nCtx != IntPtr.Zero)
|
||||
Native.Z3_simplifier_dec_ref(Context.nCtx, o);
|
||||
}
|
||||
}
|
||||
#endregion
|
||||
}
|
||||
}
|
|
@ -165,6 +165,8 @@ set(Z3_JAVA_JAR_SOURCE_FILES
|
|||
SeqExpr.java
|
||||
SeqSort.java
|
||||
SetSort.java
|
||||
Simplifier.java
|
||||
SimplifierDecRefQueue.java
|
||||
SolverDecRefQueue.java
|
||||
Solver.java
|
||||
Sort.java
|
||||
|
|
|
@ -3081,6 +3081,106 @@ public class Context implements AutoCloseable {
|
|||
Native.interrupt(nCtx());
|
||||
}
|
||||
|
||||
/**
|
||||
* The number of supported simplifiers.
|
||||
**/
|
||||
public int getNumSimplifiers()
|
||||
{
|
||||
return Native.getNumSimplifiers(nCtx());
|
||||
}
|
||||
|
||||
/**
|
||||
* The names of all supported simplifiers.
|
||||
**/
|
||||
public String[] getSimplifierNames()
|
||||
{
|
||||
|
||||
int n = getNumSimplifiers();
|
||||
String[] res = new String[n];
|
||||
for (int i = 0; i < n; i++)
|
||||
res[i] = Native.getSimplifierName(nCtx(), i);
|
||||
return res;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns a string containing a description of the simplifier with the given
|
||||
* name.
|
||||
**/
|
||||
public String getSimplifierDescription(String name)
|
||||
{
|
||||
return Native.simplifierGetDescr(nCtx(), name);
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a new Simplifier.
|
||||
**/
|
||||
public Simplifier mkSimplifier(String name)
|
||||
{
|
||||
return new Simplifier(this, name);
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a simplifier that applies {@code t1} and then {@code t1}
|
||||
**/
|
||||
public Simplifier andThen(Simplifier t1, Simplifier t2, Simplifier... ts)
|
||||
|
||||
{
|
||||
checkContextMatch(t1);
|
||||
checkContextMatch(t2);
|
||||
checkContextMatch(ts);
|
||||
|
||||
long last = 0;
|
||||
if (ts != null && ts.length > 0)
|
||||
{
|
||||
last = ts[ts.length - 1].getNativeObject();
|
||||
for (int i = ts.length - 2; i >= 0; i--) {
|
||||
last = Native.simplifierAndThen(nCtx(), ts[i].getNativeObject(),
|
||||
last);
|
||||
}
|
||||
}
|
||||
if (last != 0)
|
||||
{
|
||||
last = Native.simplifierAndThen(nCtx(), t2.getNativeObject(), last);
|
||||
return new Simplifier(this, Native.simplifierAndThen(nCtx(),
|
||||
t1.getNativeObject(), last));
|
||||
} else
|
||||
return new Simplifier(this, Native.simplifierAndThen(nCtx(),
|
||||
t1.getNativeObject(), t2.getNativeObject()));
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a simplifier that applies {@code t1} and then {@code t2}
|
||||
*
|
||||
* Remarks: Shorthand for {@code AndThen}.
|
||||
**/
|
||||
public Simplifier then(Simplifier t1, Simplifier t2, Simplifier... ts)
|
||||
{
|
||||
return andThen(t1, t2, ts);
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a simplifier that applies {@code t} using the given set of
|
||||
* parameters {@code p}.
|
||||
**/
|
||||
public Simplifier usingParams(Simplifier t, Params p)
|
||||
{
|
||||
checkContextMatch(t);
|
||||
checkContextMatch(p);
|
||||
return new Simplifier(this, Native.simplifierUsingParams(nCtx(),
|
||||
t.getNativeObject(), p.getNativeObject()));
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a simplifier that applies {@code t} using the given set of
|
||||
* parameters {@code p}.
|
||||
* Remarks: Alias for
|
||||
* {@code UsingParams}
|
||||
**/
|
||||
public Simplifier with(Simplifier t, Params p)
|
||||
{
|
||||
return usingParams(t, p);
|
||||
}
|
||||
|
||||
/**
|
||||
* The number of supported Probes.
|
||||
**/
|
||||
|
@ -3279,6 +3379,14 @@ public class Context implements AutoCloseable {
|
|||
t.getNativeObject()));
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a solver that is uses the simplifier pre-processing.
|
||||
**/
|
||||
public Solver mkSolver(Solver s, Simplifier simp)
|
||||
{
|
||||
return new Solver(this, Native.solverAddSimplifier(nCtx(), s.getNativeObject(), simp.getNativeObject()));
|
||||
}
|
||||
|
||||
/**
|
||||
* Create a Fixedpoint context.
|
||||
**/
|
||||
|
@ -4209,6 +4317,7 @@ public class Context implements AutoCloseable {
|
|||
private SolverDecRefQueue m_Solver_DRQ = new SolverDecRefQueue();
|
||||
private StatisticsDecRefQueue m_Statistics_DRQ = new StatisticsDecRefQueue();
|
||||
private TacticDecRefQueue m_Tactic_DRQ = new TacticDecRefQueue();
|
||||
private SimplifierDecRefQueue m_Simplifier_DRQ = new SimplifierDecRefQueue();
|
||||
private FixedpointDecRefQueue m_Fixedpoint_DRQ = new FixedpointDecRefQueue();
|
||||
private OptimizeDecRefQueue m_Optimize_DRQ = new OptimizeDecRefQueue();
|
||||
private ConstructorDecRefQueue m_Constructor_DRQ = new ConstructorDecRefQueue();
|
||||
|
@ -4293,6 +4402,11 @@ public class Context implements AutoCloseable {
|
|||
return m_Tactic_DRQ;
|
||||
}
|
||||
|
||||
public IDecRefQueue<Simplifier> getSimplifierDRQ()
|
||||
{
|
||||
return m_Simplifier_DRQ;
|
||||
}
|
||||
|
||||
public IDecRefQueue<Fixedpoint> getFixedpointDRQ()
|
||||
{
|
||||
return m_Fixedpoint_DRQ;
|
||||
|
@ -4323,6 +4437,7 @@ public class Context implements AutoCloseable {
|
|||
m_Optimize_DRQ.forceClear(this);
|
||||
m_Statistics_DRQ.forceClear(this);
|
||||
m_Tactic_DRQ.forceClear(this);
|
||||
m_Simplifier_DRQ.forceClear(this);
|
||||
m_Fixedpoint_DRQ.forceClear(this);
|
||||
|
||||
m_boolSort = null;
|
||||
|
|
58
src/api/java/Simplifier.java
Normal file
58
src/api/java/Simplifier.java
Normal file
|
@ -0,0 +1,58 @@
|
|||
/*++
|
||||
Copyright (c) 2012 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
Simplifiers.cs
|
||||
|
||||
Abstract:
|
||||
|
||||
Z3 Managed API: Simplifiers
|
||||
|
||||
Author:
|
||||
|
||||
Christoph Wintersteiger (cwinter) 2012-03-21
|
||||
|
||||
--*/
|
||||
|
||||
package com.microsoft.z3;
|
||||
|
||||
|
||||
public class Simplifier extends Z3Object {
|
||||
/*
|
||||
* A string containing a description of parameters accepted by the simplifier.
|
||||
*/
|
||||
|
||||
public String getHelp()
|
||||
{
|
||||
return Native.simplifierGetHelp(getContext().nCtx(), getNativeObject());
|
||||
}
|
||||
|
||||
/*
|
||||
* Retrieves parameter descriptions for Simplifiers.
|
||||
*/
|
||||
public ParamDescrs getParameterDescriptions() {
|
||||
return new ParamDescrs(getContext(), Native.simplifierGetParamDescrs(getContext().nCtx(), getNativeObject()));
|
||||
}
|
||||
|
||||
Simplifier(Context ctx, long obj)
|
||||
{
|
||||
super(ctx, obj);
|
||||
}
|
||||
|
||||
Simplifier(Context ctx, String name)
|
||||
{
|
||||
super(ctx, Native.mkSimplifier(ctx.nCtx(), name));
|
||||
}
|
||||
|
||||
@Override
|
||||
void incRef()
|
||||
{
|
||||
Native.simplifierIncRef(getContext().nCtx(), getNativeObject());
|
||||
}
|
||||
|
||||
@Override
|
||||
void addToReferenceQueue() {
|
||||
getContext().getSimplifierDRQ().storeReference(getContext(), this);
|
||||
}
|
||||
}
|
31
src/api/java/SimplifierDecRefQueue.java
Normal file
31
src/api/java/SimplifierDecRefQueue.java
Normal file
|
@ -0,0 +1,31 @@
|
|||
/**
|
||||
Copyright (c) 2012-2014 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
SimplifierDecRefQueue.java
|
||||
|
||||
Abstract:
|
||||
|
||||
Author:
|
||||
|
||||
@author Christoph Wintersteiger (cwinter) 2012-03-15
|
||||
|
||||
Notes:
|
||||
|
||||
**/
|
||||
|
||||
package com.microsoft.z3;
|
||||
|
||||
class SimplifierDecRefQueue extends IDecRefQueue<Simplifier> {
|
||||
public SimplifierDecRefQueue()
|
||||
{
|
||||
super();
|
||||
}
|
||||
|
||||
@Override
|
||||
protected void decRef(Context ctx, long obj)
|
||||
{
|
||||
Native.simplifierDecRef(ctx.nCtx(), obj);
|
||||
}
|
||||
}
|
|
@ -8214,8 +8214,6 @@ class Simplifier:
|
|||
|
||||
def add(self, solver):
|
||||
"""Return a solver that applies the simplification pre-processing specified by the simplifier"""
|
||||
print(solver.solver)
|
||||
print(self.simplifier)
|
||||
return Solver(Z3_solver_add_simplifier(self.ctx.ref(), solver.solver, self.simplifier), self.ctx)
|
||||
|
||||
def help(self):
|
||||
|
@ -9074,7 +9072,7 @@ def PbGe(args, k):
|
|||
|
||||
|
||||
def PbEq(args, k, ctx=None):
|
||||
"""Create a Pseudo-Boolean inequality k constraint.
|
||||
"""Create a Pseudo-Boolean equality k constraint.
|
||||
|
||||
>>> a, b, c = Bools('a b c')
|
||||
>>> f = PbEq(((a,1),(b,3),(c,2)), 3)
|
||||
|
|
|
@ -60,7 +60,7 @@ namespace recfun {
|
|||
func_decl_ref m_pred; //<! predicate used for this case
|
||||
expr_ref_vector m_guards; //<! conjunction that is equivalent to this case
|
||||
expr_ref m_rhs; //<! if guard is true, `f(t1...tn) = rhs` holds
|
||||
def * m_def; //<! definition this is a part of
|
||||
def * m_def = nullptr;; //<! definition this is a part of
|
||||
bool m_immediate = false; //<! does `rhs` contain no defined_fun/case_pred?
|
||||
|
||||
case_def(ast_manager& m):
|
||||
|
|
|
@ -90,7 +90,8 @@ public:
|
|||
* Freeze internal functions
|
||||
*/
|
||||
void freeze(expr* term);
|
||||
bool frozen(func_decl* f) const { return m_frozen.is_marked(f); }
|
||||
void freeze(expr_ref_vector const& terms) { for (expr* t : terms) freeze(t); }
|
||||
bool frozen(func_decl* f) const { return m_frozen.is_marked(f); }
|
||||
bool frozen(expr* f) const { return is_app(f) && m_frozen.is_marked(to_app(f)->get_decl()); }
|
||||
void freeze_suffix();
|
||||
|
||||
|
|
|
@ -41,7 +41,7 @@ expr_ref dominator_simplifier::simplify_ite(app * ite) {
|
|||
if (is_subexpr(child, t) && !is_subexpr(child, e))
|
||||
simplify_rec(child);
|
||||
|
||||
pop(scope_level() - old_lvl);
|
||||
local_pop(scope_level() - old_lvl);
|
||||
expr_ref new_t = simplify_arg(t);
|
||||
reset_cache();
|
||||
if (!assert_expr(new_c, true)) {
|
||||
|
@ -50,7 +50,7 @@ expr_ref dominator_simplifier::simplify_ite(app * ite) {
|
|||
for (expr * child : tree(ite))
|
||||
if (is_subexpr(child, e) && !is_subexpr(child, t))
|
||||
simplify_rec(child);
|
||||
pop(scope_level() - old_lvl);
|
||||
local_pop(scope_level() - old_lvl);
|
||||
expr_ref new_e = simplify_arg(e);
|
||||
|
||||
if (c == new_c && t == new_t && e == new_e) {
|
||||
|
@ -159,7 +159,7 @@ expr_ref dominator_simplifier::simplify_and_or(bool is_and, app * e) {
|
|||
r = simplify_arg(arg);
|
||||
args.push_back(r);
|
||||
if (!assert_expr(r, !is_and)) {
|
||||
pop(scope_level() - old_lvl);
|
||||
local_pop(scope_level() - old_lvl);
|
||||
r = is_and ? m.mk_false() : m.mk_true();
|
||||
reset_cache();
|
||||
return true;
|
||||
|
@ -181,7 +181,7 @@ expr_ref dominator_simplifier::simplify_and_or(bool is_and, app * e) {
|
|||
args.reverse();
|
||||
}
|
||||
|
||||
pop(scope_level() - old_lvl);
|
||||
local_pop(scope_level() - old_lvl);
|
||||
reset_cache();
|
||||
return { is_and ? mk_and(args) : mk_or(args), m };
|
||||
}
|
||||
|
@ -191,7 +191,7 @@ expr_ref dominator_simplifier::simplify_not(app * e) {
|
|||
ENSURE(m.is_not(e, ee));
|
||||
unsigned old_lvl = scope_level();
|
||||
expr_ref t = simplify_rec(ee);
|
||||
pop(scope_level() - old_lvl);
|
||||
local_pop(scope_level() - old_lvl);
|
||||
reset_cache();
|
||||
return mk_not(t);
|
||||
}
|
||||
|
@ -245,7 +245,7 @@ void dominator_simplifier::reduce() {
|
|||
}
|
||||
m_fmls.update(i, dependent_expr(m, r, new_pr, d));
|
||||
}
|
||||
pop(scope_level());
|
||||
local_pop(scope_level());
|
||||
|
||||
// go backwards
|
||||
m_forward = false;
|
||||
|
@ -268,7 +268,7 @@ void dominator_simplifier::reduce() {
|
|||
}
|
||||
m_fmls.update(i, dependent_expr(m, r, new_pr, d));
|
||||
}
|
||||
pop(scope_level());
|
||||
local_pop(scope_level());
|
||||
}
|
||||
SASSERT(scope_level() == 0);
|
||||
}
|
||||
|
|
|
@ -48,7 +48,7 @@ class dominator_simplifier : public dependent_expr_simplifier {
|
|||
expr* idom(expr *e) const { return m_dominators.idom(e); }
|
||||
|
||||
unsigned scope_level() { return m_simplifier->scope_level(); }
|
||||
void pop(unsigned n) { SASSERT(n <= m_simplifier->scope_level()); m_simplifier->pop(n); }
|
||||
void local_pop(unsigned n) { SASSERT(n <= m_simplifier->scope_level()); m_simplifier->pop(n); }
|
||||
bool assert_expr(expr* f, bool sign) { return m_simplifier->assert_expr(f, sign); }
|
||||
|
||||
|
||||
|
|
|
@ -567,9 +567,9 @@ void eliminate_predicates::try_find_macro(clause& cl) {
|
|||
return false;
|
||||
app* x = to_app(_x);
|
||||
return
|
||||
can_be_quasi_macro_head(x, cl.m_bound.size()) &&
|
||||
is_macro_safe(y) &&
|
||||
!occurs(x->get_decl(), y);
|
||||
can_be_quasi_macro_head(x, cl.m_bound.size()) &&
|
||||
is_macro_safe(y) &&
|
||||
!occurs(x->get_decl(), y);
|
||||
};
|
||||
|
||||
if (cl.is_unit() && m.is_eq(cl.atom(0), x, y)) {
|
||||
|
@ -592,7 +592,8 @@ void eliminate_predicates::try_find_macro(clause& cl) {
|
|||
}
|
||||
if (cl.is_unit()) {
|
||||
expr* body = cl.sign(0) ? m.mk_false() : m.mk_true();
|
||||
if (can_be_qdef(cl.atom(0), body)) {
|
||||
expr* x = cl.atom(0);
|
||||
if (can_be_qdef(x, body)) {
|
||||
insert_quasi_macro(to_app(x), body, cl);
|
||||
return;
|
||||
}
|
||||
|
|
|
@ -780,7 +780,6 @@ void demodulator_rewriter::operator()(expr_ref_vector const& exprs,
|
|||
|
||||
|
||||
demodulator_match_subst::demodulator_match_subst(ast_manager & m):
|
||||
m(m),
|
||||
m_subst(m) {
|
||||
}
|
||||
|
||||
|
|
|
@ -111,7 +111,6 @@ class demodulator_match_subst {
|
|||
typedef std::pair<expr *, expr *> expr_pair;
|
||||
typedef obj_pair_hashtable<expr, expr> cache;
|
||||
|
||||
ast_manager & m;
|
||||
substitution m_subst;
|
||||
cache m_cache;
|
||||
svector<expr_pair> m_todo;
|
||||
|
|
|
@ -296,9 +296,10 @@ public:
|
|||
}
|
||||
|
||||
void execute(cmd_context & ctx) override {
|
||||
if (!m_tactic) {
|
||||
if (!m_tactic)
|
||||
throw cmd_exception("apply needs a tactic argument");
|
||||
}
|
||||
if (ctx.ignore_check())
|
||||
return;
|
||||
params_ref p = ctx.params().merge_default_params(ps());
|
||||
tactic_ref tref = using_params(sexpr2tactic(ctx, m_tactic), p);
|
||||
{
|
||||
|
|
|
@ -190,7 +190,7 @@ namespace dd {
|
|||
while (p2 != 0 && !m_todo.empty()) {
|
||||
PDD r = m_todo.back();
|
||||
m_todo.pop_back();
|
||||
if (is_marked(r))
|
||||
if (is_marked(r))
|
||||
continue;
|
||||
set_mark(r);
|
||||
if (!is_val(r)) {
|
||||
|
@ -203,7 +203,7 @@ namespace dd {
|
|||
p2 = val(r).trailing_zeros();
|
||||
}
|
||||
m_todo.reset();
|
||||
return p2;
|
||||
return p2;
|
||||
}
|
||||
|
||||
pdd pdd_manager::subst_val(pdd const& p, pdd const& s) {
|
||||
|
@ -1816,9 +1816,8 @@ namespace dd {
|
|||
pdd p = *this;
|
||||
while (!p.is_val())
|
||||
p = p.lo();
|
||||
return p.val();
|
||||
return p.val();
|
||||
}
|
||||
|
||||
|
||||
pdd pdd::shl(unsigned n) const {
|
||||
return (*this) * rational::power_of_two(n);
|
||||
|
|
|
@ -222,7 +222,7 @@ public:
|
|||
m_d_x.resize(m_d_A.column_count());
|
||||
pop_basis(k);
|
||||
m_stacked_simplex_strategy.pop(k);
|
||||
settings().simplex_strategy() = m_stacked_simplex_strategy;
|
||||
settings().set_simplex_strategy(m_stacked_simplex_strategy);
|
||||
lp_assert(m_r_solver.basis_heading_is_correct());
|
||||
lp_assert(!need_to_presolve_with_double_solver() || m_d_solver.basis_heading_is_correct());
|
||||
}
|
||||
|
|
|
@ -300,7 +300,7 @@ namespace lp {
|
|||
m_term_register.shrink(m_term_count);
|
||||
m_terms.resize(m_term_count);
|
||||
m_simplex_strategy.pop(k);
|
||||
m_settings.simplex_strategy() = m_simplex_strategy;
|
||||
m_settings.set_simplex_strategy(m_simplex_strategy);
|
||||
lp_assert(sizes_are_correct());
|
||||
lp_assert((!m_settings.use_tableau()) || m_mpq_lar_core_solver.m_r_solver.reduced_costs_are_correct_tableau());
|
||||
m_usage_in_terms.pop(k);
|
||||
|
@ -465,10 +465,10 @@ namespace lp {
|
|||
switch (settings().simplex_strategy()) {
|
||||
|
||||
case simplex_strategy_enum::tableau_rows:
|
||||
settings().simplex_strategy() = simplex_strategy_enum::tableau_costs;
|
||||
settings().set_simplex_strategy(simplex_strategy_enum::tableau_costs);
|
||||
prepare_costs_for_r_solver(term);
|
||||
ret = maximize_term_on_tableau(term, term_max);
|
||||
settings().simplex_strategy() = simplex_strategy_enum::tableau_rows;
|
||||
settings().set_simplex_strategy(simplex_strategy_enum::tableau_rows);
|
||||
set_costs_to_zero(term);
|
||||
m_mpq_lar_core_solver.m_r_solver.set_status(lp_status::OPTIMAL);
|
||||
return ret;
|
||||
|
@ -2006,10 +2006,10 @@ namespace lp {
|
|||
void lar_solver::decide_on_strategy_and_adjust_initial_state() {
|
||||
lp_assert(strategy_is_undecided());
|
||||
if (m_columns_to_ul_pairs.size() > m_settings.column_number_threshold_for_using_lu_in_lar_solver) {
|
||||
m_settings.simplex_strategy() = simplex_strategy_enum::lu;
|
||||
m_settings.set_simplex_strategy(simplex_strategy_enum::lu);
|
||||
}
|
||||
else {
|
||||
m_settings.simplex_strategy() = simplex_strategy_enum::tableau_rows; // todo: when to switch to tableau_costs?
|
||||
m_settings.set_simplex_strategy(simplex_strategy_enum::tableau_rows); // todo: when to switch to tableau_costs?
|
||||
}
|
||||
adjust_initial_state();
|
||||
}
|
||||
|
|
|
@ -74,9 +74,9 @@ public:
|
|||
vector<X> & m_x; // a feasible solution, the fist time set in the constructor
|
||||
vector<T> & m_costs;
|
||||
lp_settings & m_settings;
|
||||
lu<static_matrix<T, X>> * m_factorization = nullptr;
|
||||
vector<T> m_y; // the buffer for yB = cb
|
||||
// a device that is able to solve Bx=c, xB=d, and change the basis
|
||||
lu<static_matrix<T, X>> * m_factorization;
|
||||
const column_namer & m_column_names;
|
||||
indexed_vector<T> m_w; // the vector featuring in 24.3 of the Chvatal book
|
||||
vector<T> m_d; // the vector of reduced costs
|
||||
|
|
|
@ -55,7 +55,6 @@ lp_core_solver_base(static_matrix<T, X> & A,
|
|||
m_costs(costs),
|
||||
m_settings(settings),
|
||||
m_y(m_m()),
|
||||
m_factorization(nullptr),
|
||||
m_column_names(column_names),
|
||||
m_w(m_m()),
|
||||
m_d(m_n()),
|
||||
|
|
|
@ -336,8 +336,8 @@ public:
|
|||
return m_simplex_strategy;
|
||||
}
|
||||
|
||||
simplex_strategy_enum & simplex_strategy() {
|
||||
return m_simplex_strategy;
|
||||
void set_simplex_strategy(simplex_strategy_enum s) {
|
||||
m_simplex_strategy = s;
|
||||
}
|
||||
|
||||
bool use_lu() const {
|
||||
|
|
|
@ -131,7 +131,7 @@ namespace nla {
|
|||
return l_false;
|
||||
}
|
||||
|
||||
if (xval >= 3 && yval != 0 & rval <= yval + 1) {
|
||||
if (xval >= 3 && yval != 0 && rval <= yval + 1) {
|
||||
new_lemma lemma(c, "x >= 3, y != 0 => x^y > ln(x)y + 1");
|
||||
lemma |= ineq(x, llc::LT, rational(3));
|
||||
lemma |= ineq(y, llc::EQ, rational::zero());
|
||||
|
|
|
@ -378,7 +378,7 @@ void lemma_cluster_finder::cluster(lemma_ref &lemma) {
|
|||
<< pattern << "\n"
|
||||
<< " and lemma cube: " << lcube << "\n";);
|
||||
|
||||
for (const lemma_ref &l : neighbours) {
|
||||
for (auto l : neighbours) {
|
||||
SASSERT(cluster->can_contain(l));
|
||||
bool added = cluster->add_lemma(l, false);
|
||||
(void)added;
|
||||
|
|
|
@ -1513,10 +1513,11 @@ namespace qe {
|
|||
propagate_assignment(*model_eval);
|
||||
VERIFY(CHOOSE_VAR == update_current(*model_eval, true));
|
||||
SASSERT(m_current->fml());
|
||||
if (l_true != m_solver.check()) {
|
||||
return l_true;
|
||||
}
|
||||
if (l_true != m_solver.check())
|
||||
return l_true;
|
||||
m_solver.get_model(model);
|
||||
if (!model)
|
||||
return l_undef;
|
||||
model_eval = alloc(model_evaluator, *model);
|
||||
search_tree* st = m_current;
|
||||
update_current(*model_eval, false);
|
||||
|
|
|
@ -65,6 +65,8 @@ namespace sat {
|
|||
m_phase = PS_RANDOM;
|
||||
else if (s == symbol("frozen"))
|
||||
m_phase = PS_FROZEN;
|
||||
else if (s == symbol("local_search"))
|
||||
m_phase = PS_LOCAL_SEARCH;
|
||||
else
|
||||
throw sat_param_exception("invalid phase selection strategy: always_false, always_true, basic_caching, caching, random");
|
||||
|
||||
|
|
|
@ -28,6 +28,7 @@ namespace sat {
|
|||
PS_ALWAYS_FALSE,
|
||||
PS_BASIC_CACHING,
|
||||
PS_SAT_CACHING,
|
||||
PS_LOCAL_SEARCH,
|
||||
PS_FROZEN,
|
||||
PS_RANDOM
|
||||
};
|
||||
|
|
|
@ -49,6 +49,7 @@ namespace sat {
|
|||
else if (should_parallel_sync()) do_parallel_sync();
|
||||
else shift_weights();
|
||||
}
|
||||
log();
|
||||
return m_min_sz == 0 ? l_true : l_undef;
|
||||
}
|
||||
|
||||
|
@ -66,9 +67,9 @@ namespace sat {
|
|||
<< std::setw(10) << kflips_per_sec
|
||||
<< std::setw(10) << m_flips
|
||||
<< std::setw(10) << m_restart_count
|
||||
<< std::setw(10) << m_reinit_count
|
||||
<< std::setw(10) << m_unsat_vars.size()
|
||||
<< std::setw(10) << m_shifts;
|
||||
<< std::setw(11) << m_reinit_count
|
||||
<< std::setw(13) << m_unsat_vars.size()
|
||||
<< std::setw(9) << m_shifts;
|
||||
if (m_par) verbose_stream() << std::setw(10) << m_parsync_count;
|
||||
verbose_stream() << ")\n");
|
||||
m_stopwatch.start();
|
||||
|
@ -90,18 +91,18 @@ namespace sat {
|
|||
unsigned n = 1;
|
||||
bool_var v0 = null_bool_var;
|
||||
for (bool_var v : m_unsat_vars) {
|
||||
int r = reward(v);
|
||||
if (r > 0) {
|
||||
double r = reward(v);
|
||||
if (r > 0.0) {
|
||||
sum_pos += score(r);
|
||||
}
|
||||
else if (r == 0 && sum_pos == 0 && (m_rand() % (n++)) == 0) {
|
||||
else if (r == 0.0 && sum_pos == 0 && (m_rand() % (n++)) == 0) {
|
||||
v0 = v;
|
||||
}
|
||||
}
|
||||
if (sum_pos > 0) {
|
||||
double lim_pos = ((double) m_rand() / (1.0 + m_rand.max_value())) * sum_pos;
|
||||
for (bool_var v : m_unsat_vars) {
|
||||
int r = reward(v);
|
||||
double r = reward(v);
|
||||
if (r > 0) {
|
||||
lim_pos -= score(r);
|
||||
if (lim_pos <= 0) {
|
||||
|
@ -121,7 +122,7 @@ namespace sat {
|
|||
* TBD: map reward value to a score, possibly through an exponential function, such as
|
||||
* exp(-tau/r), where tau > 0
|
||||
*/
|
||||
double ddfw::mk_score(unsigned r) {
|
||||
double ddfw::mk_score(double r) {
|
||||
return r;
|
||||
}
|
||||
|
||||
|
@ -201,7 +202,7 @@ namespace sat {
|
|||
m_shifts = 0;
|
||||
m_stopwatch.start();
|
||||
}
|
||||
|
||||
|
||||
void ddfw::reinit(solver& s) {
|
||||
add(s);
|
||||
add_assumptions();
|
||||
|
@ -235,7 +236,7 @@ namespace sat {
|
|||
for (unsigned cls_idx : use_list(*this, lit)) {
|
||||
clause_info& ci = m_clauses[cls_idx];
|
||||
ci.del(lit);
|
||||
unsigned w = ci.m_weight;
|
||||
double w = ci.m_weight;
|
||||
// cls becomes false: flip any variable in clause to receive reward w
|
||||
switch (ci.m_num_trues) {
|
||||
case 0: {
|
||||
|
@ -257,7 +258,7 @@ namespace sat {
|
|||
}
|
||||
for (unsigned cls_idx : use_list(*this, nlit)) {
|
||||
clause_info& ci = m_clauses[cls_idx];
|
||||
unsigned w = ci.m_weight;
|
||||
double w = ci.m_weight;
|
||||
// the clause used to have a single true (pivot) literal, now it has two.
|
||||
// Then the previous pivot is no longer penalized for flipping.
|
||||
switch (ci.m_num_trues) {
|
||||
|
@ -406,9 +407,8 @@ namespace sat {
|
|||
void ddfw::save_best_values() {
|
||||
if (m_unsat.empty()) {
|
||||
m_model.reserve(num_vars());
|
||||
for (unsigned i = 0; i < num_vars(); ++i) {
|
||||
for (unsigned i = 0; i < num_vars(); ++i)
|
||||
m_model[i] = to_lbool(value(i));
|
||||
}
|
||||
}
|
||||
if (m_unsat.size() < m_min_sz) {
|
||||
m_models.reset();
|
||||
|
@ -422,13 +422,11 @@ namespace sat {
|
|||
}
|
||||
unsigned h = value_hash();
|
||||
if (!m_models.contains(h)) {
|
||||
for (unsigned v = 0; v < num_vars(); ++v) {
|
||||
for (unsigned v = 0; v < num_vars(); ++v)
|
||||
bias(v) += value(v) ? 1 : -1;
|
||||
}
|
||||
m_models.insert(h);
|
||||
if (m_models.size() > m_config.m_max_num_models) {
|
||||
if (m_models.size() > m_config.m_max_num_models)
|
||||
m_models.erase(*m_models.begin());
|
||||
}
|
||||
}
|
||||
m_min_sz = m_unsat.size();
|
||||
}
|
||||
|
@ -450,10 +448,9 @@ namespace sat {
|
|||
3. select multiple clauses instead of just one per clause in unsat.
|
||||
*/
|
||||
|
||||
bool ddfw::select_clause(unsigned max_weight, unsigned max_trues, clause_info const& cn, unsigned& n) {
|
||||
if (cn.m_num_trues == 0 || cn.m_weight < max_weight) {
|
||||
bool ddfw::select_clause(double max_weight, clause_info const& cn, unsigned& n) {
|
||||
if (cn.m_num_trues == 0 || cn.m_weight + 1e-5 < max_weight)
|
||||
return false;
|
||||
}
|
||||
if (cn.m_weight > max_weight) {
|
||||
n = 2;
|
||||
return true;
|
||||
|
@ -462,51 +459,72 @@ namespace sat {
|
|||
}
|
||||
|
||||
unsigned ddfw::select_max_same_sign(unsigned cf_idx) {
|
||||
clause const& c = get_clause(cf_idx);
|
||||
unsigned max_weight = 2;
|
||||
unsigned max_trues = 0;
|
||||
auto& ci = m_clauses[cf_idx];
|
||||
unsigned cl = UINT_MAX; // clause pointer to same sign, max weight satisfied clause.
|
||||
clause const& c = *ci.m_clause;
|
||||
double max_weight = m_init_weight;
|
||||
unsigned n = 1;
|
||||
for (literal lit : c) {
|
||||
for (unsigned cn_idx : use_list(*this, lit)) {
|
||||
auto& cn = m_clauses[cn_idx];
|
||||
if (select_clause(max_weight, max_trues, cn, n)) {
|
||||
if (select_clause(max_weight, cn, n)) {
|
||||
cl = cn_idx;
|
||||
max_weight = cn.m_weight;
|
||||
max_trues = cn.m_num_trues;
|
||||
}
|
||||
}
|
||||
}
|
||||
return cl;
|
||||
}
|
||||
|
||||
void ddfw::transfer_weight(unsigned from, unsigned to, double w) {
|
||||
auto& cf = m_clauses[to];
|
||||
auto& cn = m_clauses[from];
|
||||
if (cn.m_weight < w)
|
||||
return;
|
||||
cf.m_weight += w;
|
||||
cn.m_weight -= w;
|
||||
|
||||
for (literal lit : get_clause(to))
|
||||
inc_reward(lit, w);
|
||||
if (cn.m_num_trues == 1)
|
||||
inc_reward(to_literal(cn.m_trues), w);
|
||||
}
|
||||
|
||||
unsigned ddfw::select_random_true_clause() {
|
||||
unsigned num_clauses = m_clauses.size();
|
||||
unsigned rounds = 100 * num_clauses;
|
||||
for (unsigned i = 0; i < rounds; ++i) {
|
||||
unsigned idx = (m_rand() * m_rand()) % num_clauses;
|
||||
auto & cn = m_clauses[idx];
|
||||
if (cn.is_true() && cn.m_weight >= m_init_weight)
|
||||
return idx;
|
||||
}
|
||||
return UINT_MAX;
|
||||
}
|
||||
|
||||
// 1% chance to disregard neighbor
|
||||
inline bool ddfw::disregard_neighbor() {
|
||||
return false; // rand() % 1000 == 0;
|
||||
}
|
||||
|
||||
double ddfw::calculate_transfer_weight(double w) {
|
||||
return (w > m_init_weight) ? m_init_weight : 1;
|
||||
}
|
||||
|
||||
void ddfw::shift_weights() {
|
||||
++m_shifts;
|
||||
for (unsigned cf_idx : m_unsat) {
|
||||
auto& cf = m_clauses[cf_idx];
|
||||
for (unsigned to_idx : m_unsat) {
|
||||
auto& cf = m_clauses[to_idx];
|
||||
SASSERT(!cf.is_true());
|
||||
unsigned cn_idx = select_max_same_sign(cf_idx);
|
||||
while (cn_idx == UINT_MAX) {
|
||||
unsigned idx = (m_rand() * m_rand()) % m_clauses.size();
|
||||
auto & cn = m_clauses[idx];
|
||||
if (cn.is_true() && cn.m_weight >= 2) {
|
||||
cn_idx = idx;
|
||||
}
|
||||
}
|
||||
auto & cn = m_clauses[cn_idx];
|
||||
unsigned from_idx = select_max_same_sign(to_idx);
|
||||
if (from_idx == UINT_MAX || disregard_neighbor())
|
||||
from_idx = select_random_true_clause();
|
||||
if (from_idx == UINT_MAX)
|
||||
continue;
|
||||
auto & cn = m_clauses[from_idx];
|
||||
SASSERT(cn.is_true());
|
||||
unsigned wn = cn.m_weight;
|
||||
SASSERT(wn >= 2);
|
||||
unsigned inc = (wn > 2) ? 2 : 1;
|
||||
SASSERT(wn - inc >= 1);
|
||||
cf.m_weight += inc;
|
||||
cn.m_weight -= inc;
|
||||
for (literal lit : get_clause(cf_idx)) {
|
||||
inc_reward(lit, inc);
|
||||
}
|
||||
if (cn.m_num_trues == 1) {
|
||||
inc_reward(to_literal(cn.m_trues), inc);
|
||||
}
|
||||
double w = calculate_transfer_weight(cn.m_weight);
|
||||
transfer_weight(from_idx, to_idx, w);
|
||||
}
|
||||
// DEBUG_CODE(invariant(););
|
||||
}
|
||||
|
@ -543,7 +561,7 @@ namespace sat {
|
|||
VERIFY(found);
|
||||
}
|
||||
for (unsigned v = 0; v < num_vars(); ++v) {
|
||||
int v_reward = 0;
|
||||
double v_reward = 0;
|
||||
literal lit(v, !value(v));
|
||||
for (unsigned j : m_use_list[lit.index()]) {
|
||||
clause_info const& ci = m_clauses[j];
|
||||
|
@ -559,7 +577,7 @@ namespace sat {
|
|||
}
|
||||
}
|
||||
IF_VERBOSE(0, if (v_reward != reward(v)) verbose_stream() << v << " " << v_reward << " " << reward(v) << "\n");
|
||||
SASSERT(reward(v) == v_reward);
|
||||
// SASSERT(reward(v) == v_reward);
|
||||
}
|
||||
DEBUG_CODE(
|
||||
for (auto const& ci : m_clauses) {
|
||||
|
|
|
@ -34,10 +34,10 @@ namespace sat {
|
|||
class ddfw : public i_local_search {
|
||||
|
||||
struct clause_info {
|
||||
clause_info(clause* cl, unsigned init_weight): m_weight(init_weight), m_trues(0), m_num_trues(0), m_clause(cl) {}
|
||||
unsigned m_weight; // weight of clause
|
||||
unsigned m_trues; // set of literals that are true
|
||||
unsigned m_num_trues; // size of true set
|
||||
clause_info(clause* cl, double init_weight): m_weight(init_weight), m_clause(cl) {}
|
||||
double m_weight; // weight of clause
|
||||
unsigned m_trues = 0; // set of literals that are true
|
||||
unsigned m_num_trues = 0; // size of true set
|
||||
clause* m_clause;
|
||||
bool is_true() const { return m_num_trues > 0; }
|
||||
void add(literal lit) { ++m_num_trues; m_trues += lit.index(); }
|
||||
|
@ -65,23 +65,24 @@ namespace sat {
|
|||
};
|
||||
|
||||
struct var_info {
|
||||
var_info(): m_value(false), m_reward(0), m_make_count(0), m_bias(0), m_reward_avg(1e-5) {}
|
||||
bool m_value;
|
||||
int m_reward;
|
||||
unsigned m_make_count;
|
||||
int m_bias;
|
||||
ema m_reward_avg;
|
||||
var_info() {}
|
||||
bool m_value = false;
|
||||
double m_reward = 0;
|
||||
unsigned m_make_count = 0;
|
||||
int m_bias = 0;
|
||||
ema m_reward_avg = 1e-5;
|
||||
};
|
||||
|
||||
config m_config;
|
||||
reslimit m_limit;
|
||||
clause_allocator m_alloc;
|
||||
config m_config;
|
||||
reslimit m_limit;
|
||||
clause_allocator m_alloc;
|
||||
svector<clause_info> m_clauses;
|
||||
literal_vector m_assumptions;
|
||||
svector<var_info> m_vars; // var -> info
|
||||
svector<double> m_probs; // var -> probability of flipping
|
||||
svector<double> m_scores; // reward -> score
|
||||
model m_model; // var -> best assignment
|
||||
unsigned m_init_weight = 2;
|
||||
|
||||
vector<unsigned_vector> m_use_list;
|
||||
unsigned_vector m_flat_use_list;
|
||||
|
@ -90,11 +91,11 @@ namespace sat {
|
|||
indexed_uint_set m_unsat;
|
||||
indexed_uint_set m_unsat_vars; // set of variables that are in unsat clauses
|
||||
random_gen m_rand;
|
||||
unsigned m_num_non_binary_clauses{ 0 };
|
||||
unsigned m_restart_count{ 0 }, m_reinit_count{ 0 }, m_parsync_count{ 0 };
|
||||
uint64_t m_restart_next{ 0 }, m_reinit_next{ 0 }, m_parsync_next{ 0 };
|
||||
uint64_t m_flips{ 0 }, m_last_flips{ 0 }, m_shifts{ 0 };
|
||||
unsigned m_min_sz{ 0 };
|
||||
unsigned m_num_non_binary_clauses = 0;
|
||||
unsigned m_restart_count = 0, m_reinit_count = 0, m_parsync_count = 0;
|
||||
uint64_t m_restart_next = 0, m_reinit_next = 0, m_parsync_next = 0;
|
||||
uint64_t m_flips = 0, m_last_flips = 0, m_shifts = 0;
|
||||
unsigned m_min_sz = 0;
|
||||
hashtable<unsigned, unsigned_hash, default_eq<unsigned>> m_models;
|
||||
stopwatch m_stopwatch;
|
||||
|
||||
|
@ -112,9 +113,9 @@ namespace sat {
|
|||
|
||||
void flatten_use_list();
|
||||
|
||||
double mk_score(unsigned r);
|
||||
double mk_score(double r);
|
||||
|
||||
inline double score(unsigned r) { return r; } // TBD: { for (unsigned sz = m_scores.size(); sz <= r; ++sz) m_scores.push_back(mk_score(sz)); return m_scores[r]; }
|
||||
inline double score(double r) { return r; } // TBD: { for (unsigned sz = m_scores.size(); sz <= r; ++sz) m_scores.push_back(mk_score(sz)); return m_scores[r]; }
|
||||
|
||||
inline unsigned num_vars() const { return m_vars.size(); }
|
||||
|
||||
|
@ -124,9 +125,9 @@ namespace sat {
|
|||
|
||||
inline bool value(bool_var v) const { return m_vars[v].m_value; }
|
||||
|
||||
inline int& reward(bool_var v) { return m_vars[v].m_reward; }
|
||||
inline double& reward(bool_var v) { return m_vars[v].m_reward; }
|
||||
|
||||
inline int reward(bool_var v) const { return m_vars[v].m_reward; }
|
||||
inline double reward(bool_var v) const { return m_vars[v].m_reward; }
|
||||
|
||||
inline int& bias(bool_var v) { return m_vars[v].m_bias; }
|
||||
|
||||
|
@ -136,7 +137,7 @@ namespace sat {
|
|||
|
||||
inline clause const& get_clause(unsigned idx) const { return *m_clauses[idx].m_clause; }
|
||||
|
||||
inline unsigned get_weight(unsigned idx) const { return m_clauses[idx].m_weight; }
|
||||
inline double get_weight(unsigned idx) const { return m_clauses[idx].m_weight; }
|
||||
|
||||
inline bool is_true(unsigned idx) const { return m_clauses[idx].is_true(); }
|
||||
|
||||
|
@ -154,9 +155,9 @@ namespace sat {
|
|||
if (--make_count(v) == 0) m_unsat_vars.remove(v);
|
||||
}
|
||||
|
||||
inline void inc_reward(literal lit, int inc) { reward(lit.var()) += inc; }
|
||||
inline void inc_reward(literal lit, double w) { reward(lit.var()) += w; }
|
||||
|
||||
inline void dec_reward(literal lit, int inc) { reward(lit.var()) -= inc; }
|
||||
inline void dec_reward(literal lit, double w) { reward(lit.var()) -= w; }
|
||||
|
||||
// flip activity
|
||||
bool do_flip();
|
||||
|
@ -166,17 +167,20 @@ namespace sat {
|
|||
|
||||
// shift activity
|
||||
void shift_weights();
|
||||
inline double calculate_transfer_weight(double w);
|
||||
|
||||
// reinitialize weights activity
|
||||
bool should_reinit_weights();
|
||||
void do_reinit_weights();
|
||||
inline bool select_clause(unsigned max_weight, unsigned max_trues, clause_info const& cn, unsigned& n);
|
||||
inline bool select_clause(double max_weight, clause_info const& cn, unsigned& n);
|
||||
|
||||
// restart activity
|
||||
bool should_restart();
|
||||
void do_restart();
|
||||
void reinit_values();
|
||||
|
||||
unsigned select_random_true_clause();
|
||||
|
||||
// parallel integration
|
||||
bool should_parallel_sync();
|
||||
void do_parallel_sync();
|
||||
|
@ -193,6 +197,10 @@ namespace sat {
|
|||
|
||||
void add_assumptions();
|
||||
|
||||
inline void transfer_weight(unsigned from, unsigned to, double w);
|
||||
|
||||
inline bool disregard_neighbor();
|
||||
|
||||
public:
|
||||
|
||||
ddfw(): m_par(nullptr) {}
|
||||
|
@ -210,6 +218,8 @@ namespace sat {
|
|||
void set_seed(unsigned n) override { m_rand.set_seed(n); }
|
||||
|
||||
void add(solver const& s) override;
|
||||
|
||||
bool get_value(bool_var v) const override { return value(v); }
|
||||
|
||||
std::ostream& display(std::ostream& out) const;
|
||||
|
||||
|
|
|
@ -1331,17 +1331,37 @@ namespace sat {
|
|||
ERROR_EX
|
||||
};
|
||||
|
||||
struct solver::scoped_ls {
|
||||
solver& s;
|
||||
scoped_ls(solver& s): s(s) {}
|
||||
~scoped_ls() {
|
||||
dealloc(s.m_local_search);
|
||||
s.m_local_search = nullptr;
|
||||
}
|
||||
};
|
||||
|
||||
void solver::bounded_local_search() {
|
||||
literal_vector _lits;
|
||||
scoped_limits scoped_rl(rlimit());
|
||||
m_local_search = alloc(ddfw);
|
||||
scoped_ls _ls(*this);
|
||||
SASSERT(m_local_search);
|
||||
m_local_search->add(*this);
|
||||
m_local_search->updt_params(m_params);
|
||||
m_local_search->set_seed(m_rand());
|
||||
scoped_rl.push_child(&(m_local_search->rlimit()));
|
||||
m_local_search->rlimit().push(500000);
|
||||
m_local_search->reinit(*this);
|
||||
m_local_search->check(_lits.size(), _lits.data(), nullptr);
|
||||
for (unsigned i = 0; i < m_phase.size(); ++i)
|
||||
m_best_phase[i] = m_local_search->get_value(i);
|
||||
}
|
||||
|
||||
|
||||
lbool solver::invoke_local_search(unsigned num_lits, literal const* lits) {
|
||||
literal_vector _lits(num_lits, lits);
|
||||
for (literal lit : m_user_scope_literals) _lits.push_back(~lit);
|
||||
struct scoped_ls {
|
||||
solver& s;
|
||||
scoped_ls(solver& s): s(s) {}
|
||||
~scoped_ls() {
|
||||
dealloc(s.m_local_search);
|
||||
s.m_local_search = nullptr;
|
||||
}
|
||||
};
|
||||
for (literal lit : m_user_scope_literals)
|
||||
_lits.push_back(~lit);
|
||||
scoped_ls _ls(*this);
|
||||
if (inconsistent())
|
||||
return l_false;
|
||||
|
@ -1611,27 +1631,28 @@ namespace sat {
|
|||
|
||||
bool solver::guess(bool_var next) {
|
||||
lbool lphase = m_ext ? m_ext->get_phase(next) : l_undef;
|
||||
|
||||
|
||||
if (lphase != l_undef)
|
||||
return lphase == l_true;
|
||||
switch (m_config.m_phase) {
|
||||
case PS_ALWAYS_TRUE:
|
||||
return true;
|
||||
case PS_ALWAYS_FALSE:
|
||||
return false;
|
||||
case PS_BASIC_CACHING:
|
||||
case PS_ALWAYS_TRUE:
|
||||
return true;
|
||||
case PS_ALWAYS_FALSE:
|
||||
return false;
|
||||
case PS_BASIC_CACHING:
|
||||
return m_phase[next];
|
||||
case PS_FROZEN:
|
||||
return m_best_phase[next];
|
||||
case PS_SAT_CACHING:
|
||||
case PS_LOCAL_SEARCH:
|
||||
if (m_search_state == s_unsat)
|
||||
return m_phase[next];
|
||||
case PS_FROZEN:
|
||||
return m_best_phase[next];
|
||||
case PS_SAT_CACHING:
|
||||
if (m_search_state == s_unsat)
|
||||
return m_phase[next];
|
||||
return m_best_phase[next];
|
||||
case PS_RANDOM:
|
||||
return (m_rand() % 2) == 0;
|
||||
default:
|
||||
UNREACHABLE();
|
||||
return false;
|
||||
return m_best_phase[next];
|
||||
case PS_RANDOM:
|
||||
return (m_rand() % 2) == 0;
|
||||
default:
|
||||
UNREACHABLE();
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -2823,7 +2844,7 @@ namespace sat {
|
|||
}
|
||||
|
||||
bool solver::is_two_phase() const {
|
||||
return m_config.m_phase == PS_SAT_CACHING;
|
||||
return m_config.m_phase == PS_SAT_CACHING || m_config.m_phase == PS_LOCAL_SEARCH;
|
||||
}
|
||||
|
||||
bool solver::is_sat_phase() const {
|
||||
|
@ -2923,6 +2944,10 @@ namespace sat {
|
|||
case PS_RANDOM:
|
||||
for (auto& p : m_phase) p = (m_rand() % 2) == 0;
|
||||
break;
|
||||
case PS_LOCAL_SEARCH:
|
||||
if (m_search_state == s_sat)
|
||||
bounded_local_search();
|
||||
break;
|
||||
default:
|
||||
UNREACHABLE();
|
||||
break;
|
||||
|
|
|
@ -589,7 +589,9 @@ namespace sat {
|
|||
lbool do_ddfw_search(unsigned num_lits, literal const* lits);
|
||||
lbool do_prob_search(unsigned num_lits, literal const* lits);
|
||||
lbool invoke_local_search(unsigned num_lits, literal const* lits);
|
||||
void bounded_local_search();
|
||||
lbool do_unit_walk();
|
||||
struct scoped_ls;
|
||||
|
||||
// -----------------------
|
||||
//
|
||||
|
|
|
@ -91,7 +91,7 @@ namespace sat {
|
|||
virtual model const& get_model() const = 0;
|
||||
virtual void collect_statistics(statistics& st) const = 0;
|
||||
virtual double get_priority(bool_var v) const { return 0; }
|
||||
|
||||
virtual bool get_value(bool_var v) const { return true; }
|
||||
};
|
||||
|
||||
class proof_hint {
|
||||
|
|
|
@ -80,7 +80,7 @@ void run_solver(smt_params_helper & params, char const * mps_file_name) {
|
|||
solver->settings().set_message_ostream(&std::cout);
|
||||
solver->settings().report_frequency = params.arith_rep_freq();
|
||||
solver->settings().print_statistics = params.arith_print_stats();
|
||||
solver->settings().simplex_strategy() = lp:: simplex_strategy_enum::lu;
|
||||
solver->settings().set_simplex_strategy(lp:: simplex_strategy_enum::lu);
|
||||
|
||||
solver->find_maximal_solution();
|
||||
|
||||
|
|
|
@ -671,7 +671,6 @@ namespace smt {
|
|||
|
||||
out << "equivalence classes:\n";
|
||||
for (enode * n : ctx.enodes()) {
|
||||
expr * e = n->get_expr();
|
||||
expr * r = n->get_root()->get_expr();
|
||||
out << r->get_id() << " --> " << enode_pp(n, ctx) << "\n";
|
||||
}
|
||||
|
|
|
@ -95,18 +95,30 @@ class simplifier_solver : public solver {
|
|||
expr_ref_vector m_assumptions;
|
||||
model_converter_ref m_mc;
|
||||
bool m_inconsistent = false;
|
||||
expr_safe_replace m_core_replace;
|
||||
|
||||
void replace(expr_ref_vector& r) {
|
||||
expr_ref tmp(m);
|
||||
for (unsigned i = 0; i < r.size(); ++i) {
|
||||
m_core_replace(r.get(i), tmp);
|
||||
r[i] = tmp;
|
||||
}
|
||||
}
|
||||
|
||||
void flush(expr_ref_vector& assumptions) {
|
||||
unsigned qhead = m_preprocess_state.qhead();
|
||||
if (qhead < m_fmls.size()) {
|
||||
for (expr* a : assumptions)
|
||||
m_preprocess_state.freeze(a);
|
||||
expr_ref_vector orig_assumptions(assumptions);
|
||||
m_core_replace.reset();
|
||||
if (qhead < m_fmls.size() || !assumptions.empty()) {
|
||||
TRACE("solver", tout << "qhead " << qhead << "\n");
|
||||
m_preprocess_state.replay(qhead, assumptions);
|
||||
m_preprocess_state.replay(qhead, assumptions);
|
||||
m_preprocess_state.freeze(assumptions);
|
||||
m_preprocess.reduce();
|
||||
if (!m.inc())
|
||||
return;
|
||||
m_preprocess_state.advance_qhead();
|
||||
for (unsigned i = 0; i < assumptions.size(); ++i)
|
||||
m_core_replace.insert(assumptions.get(i), orig_assumptions.get(i));
|
||||
}
|
||||
m_mc = m_preprocess_state.model_trail().get_model_converter();
|
||||
m_cached_mc = nullptr;
|
||||
|
@ -148,6 +160,7 @@ public:
|
|||
m_preprocess_state(*this),
|
||||
m_preprocess(m, s->get_params(), m_preprocess_state),
|
||||
m_assumptions(m),
|
||||
m_core_replace(m),
|
||||
m_proof(m)
|
||||
{
|
||||
if (fac)
|
||||
|
@ -189,7 +202,7 @@ public:
|
|||
lbool check_sat_core(unsigned num_assumptions, expr* const* assumptions) override {
|
||||
expr_ref_vector _assumptions(m, num_assumptions, assumptions);
|
||||
flush(_assumptions);
|
||||
return s->check_sat_core(num_assumptions, assumptions);
|
||||
return s->check_sat_core(num_assumptions, _assumptions.data());
|
||||
}
|
||||
|
||||
void collect_statistics(statistics& st) const override {
|
||||
|
@ -211,7 +224,7 @@ public:
|
|||
}
|
||||
|
||||
proof_ref m_proof;
|
||||
proof* get_proof_core() {
|
||||
proof* get_proof_core() override {
|
||||
proof* p = s->get_proof();
|
||||
m_proof = p;
|
||||
if (p) {
|
||||
|
@ -258,7 +271,7 @@ public:
|
|||
std::string reason_unknown() const override { return s->reason_unknown(); }
|
||||
void set_reason_unknown(char const* msg) override { s->set_reason_unknown(msg); }
|
||||
void get_labels(svector<symbol>& r) override { s->get_labels(r); }
|
||||
void get_unsat_core(expr_ref_vector& r) { s->get_unsat_core(r); }
|
||||
void get_unsat_core(expr_ref_vector& r) override { s->get_unsat_core(r); replace(r); }
|
||||
ast_manager& get_manager() const override { return s->get_manager(); }
|
||||
void reset_params(params_ref const& p) override { s->reset_params(p); }
|
||||
params_ref const& get_params() const override { return s->get_params(); }
|
||||
|
@ -273,15 +286,59 @@ public:
|
|||
unsigned get_num_assumptions() const override { return s->get_num_assumptions(); }
|
||||
expr* get_assumption(unsigned idx) const override { return s->get_assumption(idx); }
|
||||
unsigned get_scope_level() const override { return s->get_scope_level(); }
|
||||
lbool check_sat_cc(expr_ref_vector const& cube, vector<expr_ref_vector> const& clauses) override { return check_sat_cc(cube, clauses); }
|
||||
void set_progress_callback(progress_callback* callback) override { s->set_progress_callback(callback); }
|
||||
|
||||
lbool get_consequences(expr_ref_vector const& asms, expr_ref_vector const& vars, expr_ref_vector& consequences) override {
|
||||
return s->get_consequences(asms, vars, consequences);
|
||||
expr_ref_vector es(m);
|
||||
es.append(asms);
|
||||
es.append(vars);
|
||||
flush(es);
|
||||
expr_ref_vector asms1(m, asms.size(), es.data());
|
||||
expr_ref_vector vars1(m, vars.size(), es.data() + asms.size());
|
||||
lbool r = s->get_consequences(asms1, vars1, consequences);
|
||||
replace(consequences);
|
||||
return r;
|
||||
}
|
||||
|
||||
lbool check_sat_cc(expr_ref_vector const& cube, vector<expr_ref_vector> const& clauses) override {
|
||||
expr_ref_vector es(m);
|
||||
es.append(cube);
|
||||
for (auto const& c : clauses)
|
||||
es.append(c);
|
||||
flush(es);
|
||||
expr_ref_vector cube1(m, cube.size(), es.data());
|
||||
vector<expr_ref_vector> clauses1;
|
||||
unsigned offset = cube.size();
|
||||
for (auto const& c : clauses) {
|
||||
clauses1.push_back(expr_ref_vector(m, c.size(), es.data() + offset));
|
||||
offset += c.size();
|
||||
}
|
||||
return s->check_sat_cc(cube1, clauses1);
|
||||
}
|
||||
|
||||
lbool find_mutexes(expr_ref_vector const& vars, vector<expr_ref_vector>& mutexes) override {
|
||||
expr_ref_vector vars1(vars);
|
||||
flush(vars1);
|
||||
lbool r = s->find_mutexes(vars1, mutexes);
|
||||
for (auto& mux : mutexes)
|
||||
replace(mux);
|
||||
return r;
|
||||
}
|
||||
|
||||
lbool preferred_sat(expr_ref_vector const& asms, vector<expr_ref_vector>& cores) override {
|
||||
expr_ref_vector asms1(asms);
|
||||
flush(asms1);
|
||||
lbool r = s->preferred_sat(asms1, cores);
|
||||
for (auto& c : cores)
|
||||
replace(c);
|
||||
return r;
|
||||
}
|
||||
lbool find_mutexes(expr_ref_vector const& vars, vector<expr_ref_vector>& mutexes) override { return s->find_mutexes(vars, mutexes); }
|
||||
lbool preferred_sat(expr_ref_vector const& asms, vector<expr_ref_vector>& cores) override { return s->preferred_sat(asms, cores); }
|
||||
|
||||
expr_ref_vector cube(expr_ref_vector& vars, unsigned backtrack_level) override { return s->cube(vars, backtrack_level); }
|
||||
// todo flush?
|
||||
expr_ref_vector cube(expr_ref_vector& vars, unsigned backtrack_level) override {
|
||||
return s->cube(vars, backtrack_level);
|
||||
}
|
||||
|
||||
expr* congruence_root(expr* e) override { return s->congruence_root(e); }
|
||||
expr* congruence_next(expr* e) override { return s->congruence_next(e); }
|
||||
std::ostream& display(std::ostream& out, unsigned n, expr* const* assumptions) const override {
|
||||
|
|
|
@ -1391,7 +1391,7 @@ void update_settings(argument_parser & args_parser, lp_settings& settings) {
|
|||
settings.set_random_seed(n);
|
||||
}
|
||||
if (get_int_from_args_parser("--simplex_strategy", args_parser, n)) {
|
||||
settings.simplex_strategy() = static_cast<simplex_strategy_enum>(n);
|
||||
settings.set_simplex_strategy(static_cast<simplex_strategy_enum>(n));
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -30,7 +30,7 @@ enum tbit {
|
|||
BIT_z = 0x0, // unknown
|
||||
BIT_0 = 0x1, // for sure 0
|
||||
BIT_1 = 0x2, // for sure 1
|
||||
BIT_x = 0x3 // don't care
|
||||
BIT_x = 0x3 // don't care
|
||||
};
|
||||
|
||||
inline tbit neg(tbit t) {
|
||||
|
@ -43,7 +43,7 @@ class tbv_manager {
|
|||
ptr_vector<tbv> allocated_tbvs;
|
||||
public:
|
||||
tbv_manager(unsigned n): m(2*n) {}
|
||||
tbv_manager(const tbv_manager& m) = delete;
|
||||
tbv_manager(tbv_manager const& m) = delete;
|
||||
~tbv_manager();
|
||||
void reset();
|
||||
tbv* allocate();
|
||||
|
@ -154,11 +154,9 @@ public:
|
|||
};
|
||||
|
||||
inline std::ostream& operator<<(std::ostream& out, tbv_ref const& c) {
|
||||
const char* names[] = { "z", "0", "1", "x" };
|
||||
for (unsigned i = c.num_tbits(); i > 0; i--) {
|
||||
out << names[(unsigned)c[i - 1]];
|
||||
char const* names[] = { "z", "0", "1", "x" };
|
||||
for (unsigned i = c.num_tbits(); i-- > 0; ) {
|
||||
out << names[static_cast<unsigned>(c[i])];
|
||||
}
|
||||
return out;
|
||||
}
|
||||
|
||||
|
||||
|
|
|
@ -413,22 +413,6 @@ inline size_t megabytes_to_bytes(unsigned mb) {
|
|||
return r;
|
||||
}
|
||||
|
||||
/** Compact version of std::all_of */
|
||||
template <typename Container, typename Predicate>
|
||||
bool all_of(Container const& c, Predicate p)
|
||||
{
|
||||
using std::begin, std::end; // allows begin(c) to also find c.begin()
|
||||
return std::all_of(begin(c), end(c), std::forward<Predicate>(p));
|
||||
}
|
||||
|
||||
/** Compact version of std::any_of */
|
||||
template <typename Container, typename Predicate>
|
||||
bool any_of(Container const& c, Predicate p)
|
||||
{
|
||||
using std::begin, std::end; // allows begin(c) to also find c.begin()
|
||||
return std::any_of(begin(c), end(c), std::forward<Predicate>(p));
|
||||
}
|
||||
|
||||
/** Compact version of std::count */
|
||||
template <typename Container, typename Item>
|
||||
std::size_t count(Container const& c, Item x)
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue