mirror of
https://github.com/Z3Prover/z3
synced 2025-05-12 02:04:43 +00:00
add sr
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
deb48bffe1
commit
876aa01167
7 changed files with 1413 additions and 16 deletions
905
src/smt/theory_special_relations.cpp
Normal file
905
src/smt/theory_special_relations.cpp
Normal file
|
@ -0,0 +1,905 @@
|
|||
/*++
|
||||
Copyright (c) 2015 Microsoft Corporation
|
||||
|
||||
Module Name:
|
||||
|
||||
theory_special_relations.cpp
|
||||
|
||||
Abstract:
|
||||
|
||||
Special Relations theory plugin.
|
||||
|
||||
Author:
|
||||
|
||||
Nikolaj Bjorner (nbjorner) 2015-9-16
|
||||
Ashutosh Gupta 2016
|
||||
|
||||
Notes:
|
||||
|
||||
--*/
|
||||
|
||||
#include <fstream>
|
||||
|
||||
#include "smt/smt_context.h"
|
||||
#include "smt/theory_arith.h"
|
||||
#include "smt/theory_special_relations.h"
|
||||
#include "smt/smt_solver.h"
|
||||
#include "solver/solver.h"
|
||||
#include "ast/reg_decl_plugins.h"
|
||||
#include "ast/ast_pp.h"
|
||||
|
||||
static constexpr bool KVEC = false;
|
||||
static constexpr bool HYBRID_SEARCH = false;
|
||||
|
||||
namespace smt {
|
||||
|
||||
void theory_special_relations::relation::push() {
|
||||
m_scopes.push_back(scope());
|
||||
scope& s = m_scopes.back();
|
||||
s.m_asserted_atoms_lim = m_asserted_atoms.size();
|
||||
s.m_asserted_qhead_old = m_asserted_qhead;
|
||||
if (!KVEC) {
|
||||
m_graph.push();
|
||||
}
|
||||
m_ufctx.get_trail_stack().push_scope();
|
||||
}
|
||||
|
||||
void theory_special_relations::relation::pop(unsigned num_scopes) {
|
||||
unsigned new_lvl = m_scopes.size() - num_scopes;
|
||||
scope& s = m_scopes[new_lvl];
|
||||
m_asserted_atoms.shrink(s.m_asserted_atoms_lim);
|
||||
m_asserted_qhead = s.m_asserted_qhead_old;
|
||||
m_scopes.shrink(new_lvl);
|
||||
if (!KVEC) {
|
||||
m_graph.pop(num_scopes);
|
||||
}
|
||||
m_ufctx.get_trail_stack().pop_scope(num_scopes);
|
||||
}
|
||||
|
||||
void theory_special_relations::relation::ensure_var(theory_var v) {
|
||||
while ((unsigned)v > m_uf.mk_var());
|
||||
if ((unsigned)v >= m_graph.get_num_nodes()) {
|
||||
m_graph.init_var(v);
|
||||
}
|
||||
}
|
||||
|
||||
bool theory_special_relations::relation::new_eq_eh(literal l, theory_var v1, theory_var v2) {
|
||||
ensure_var(v1);
|
||||
ensure_var(v2);
|
||||
literal_vector ls;
|
||||
ls.push_back(l);
|
||||
return
|
||||
m_graph.enable_edge(m_graph.add_edge(v1, v2, s_integer(1), ls)) &&
|
||||
m_graph.enable_edge(m_graph.add_edge(v2, v1, s_integer(1), ls));
|
||||
}
|
||||
|
||||
theory_special_relations::theory_special_relations(ast_manager& m):
|
||||
theory(m.mk_family_id("special_relations")),
|
||||
m_util(m), m_autil(m) {
|
||||
params_ref params;
|
||||
params.set_bool("model", true);
|
||||
params.set_bool("unsat_core", true);
|
||||
m_nested_solver = mk_smt_solver(m, params, symbol("QF_LRA"));
|
||||
m_int_sort = m_autil.mk_real();
|
||||
}
|
||||
|
||||
theory_special_relations::~theory_special_relations() {
|
||||
reset_eh();
|
||||
m_nested_solver = nullptr;
|
||||
}
|
||||
|
||||
theory * theory_special_relations::mk_fresh(context * new_ctx) {
|
||||
return alloc(theory_special_relations, new_ctx->get_manager());
|
||||
}
|
||||
|
||||
static void populate_k_vars(int v, int k, u_map<ptr_vector<expr>>& map, int& curr_id, ast_manager& m, sort** int_sort) {
|
||||
int need = !map.contains(v) ? k : k - map[v].size();
|
||||
for (auto i = 0; i < need; ++i) {
|
||||
auto *fd = m.mk_func_decl(symbol(curr_id++), 0, int_sort, *int_sort);
|
||||
map[v].push_back(m.mk_app(fd, unsigned(0), nullptr));
|
||||
}
|
||||
}
|
||||
|
||||
bool theory_special_relations::internalize_atom(app * atm, bool gate_ctx) {
|
||||
TRACE("special_relations", tout << mk_pp(atm, get_manager()) << "\n";);
|
||||
SASSERT(m_util.is_special_relation(atm));
|
||||
relation* r = 0;
|
||||
if (!m_relations.find(atm->get_decl(), r)) {
|
||||
//todo: push pop may get misaligned if the following alloc happens after push
|
||||
r = alloc(relation, m_util.get_property(atm), atm->get_decl());
|
||||
m_relations.insert(atm->get_decl(), r);
|
||||
}
|
||||
context& ctx = get_context();
|
||||
expr* arg0 = atm->get_arg(0);
|
||||
expr* arg1 = atm->get_arg(1);
|
||||
theory_var v0 = mk_var(arg0);
|
||||
theory_var v1 = mk_var(arg1);
|
||||
bool_var v = ctx.mk_bool_var(atm);
|
||||
ctx.set_var_theory(v, get_id());
|
||||
atom* a = alloc(atom, v, *r, v0, v1);
|
||||
m_atoms.push_back(a);
|
||||
//std::cerr << "INTER : " << a->v1() << ' ' << a->v2() << ' ' << gate_ctx << "\n";
|
||||
m_bool_var2atom.insert(v, a);
|
||||
return true;
|
||||
}
|
||||
|
||||
theory_var theory_special_relations::mk_var(expr* e) {
|
||||
context& ctx = get_context();
|
||||
if (!ctx.e_internalized(e)) {
|
||||
ctx.internalize(e, false);
|
||||
}
|
||||
enode * n = ctx.get_enode(e);
|
||||
theory_var v = n->get_th_var(get_id());
|
||||
if (null_theory_var == v) {
|
||||
v = theory::mk_var(n);
|
||||
ctx.attach_th_var(n, this, v);
|
||||
}
|
||||
return v;
|
||||
}
|
||||
|
||||
void theory_special_relations::new_eq_eh(theory_var v1, theory_var v2) {
|
||||
context& ctx = get_context();
|
||||
app_ref eq(get_manager());
|
||||
app* t1 = get_enode(v1)->get_owner();
|
||||
app* t2 = get_enode(v2)->get_owner();
|
||||
eq = get_manager().mk_eq(t1, t2);
|
||||
VERIFY(internalize_atom(eq, false));
|
||||
literal l(ctx.get_literal(eq));
|
||||
obj_map<func_decl, relation*>::iterator it = m_relations.begin(), end = m_relations.end();
|
||||
for (; !ctx.inconsistent() && it != end; ++it) {
|
||||
relation& r = *it->m_value;
|
||||
if (!r.new_eq_eh(l, v1, v2)) {
|
||||
set_neg_cycle_conflict(r);
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
final_check_status theory_special_relations::final_check_eh() {
|
||||
TRACE("special_relations", tout << "\n";);
|
||||
obj_map<func_decl, relation*>::iterator it = m_relations.begin(), end = m_relations.end();
|
||||
lbool r = l_true;
|
||||
for (; it != end && r == l_true; ++it) {
|
||||
r = final_check(*it->m_value);
|
||||
}
|
||||
switch (r) {
|
||||
case l_undef:
|
||||
return FC_GIVEUP;
|
||||
case l_false:
|
||||
return FC_CONTINUE;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
it = m_relations.begin();
|
||||
bool new_equality = false;
|
||||
for (; it != end; ++it) {
|
||||
if (extract_equalities(*it->m_value)) {
|
||||
new_equality = true;
|
||||
}
|
||||
}
|
||||
if (new_equality) {
|
||||
return FC_CONTINUE;
|
||||
}
|
||||
else {
|
||||
return FC_DONE;
|
||||
}
|
||||
}
|
||||
|
||||
lbool theory_special_relations::final_check_lo(relation& r) {
|
||||
// all constraints are saturated by propagation.
|
||||
return l_true;
|
||||
}
|
||||
|
||||
enode* theory_special_relations::ensure_enode(expr* e) {
|
||||
context& ctx = get_context();
|
||||
if (!ctx.e_internalized(e)) {
|
||||
ctx.internalize(e, false);
|
||||
}
|
||||
enode* n = ctx.get_enode(e);
|
||||
ctx.mark_as_relevant(n);
|
||||
return n;
|
||||
}
|
||||
|
||||
literal theory_special_relations::mk_literal(expr* _e) {
|
||||
expr_ref e(_e, get_manager());
|
||||
context& ctx = get_context();
|
||||
ensure_enode(e);
|
||||
return ctx.get_literal(e);
|
||||
}
|
||||
|
||||
theory_var theory_special_relations::mk_var(enode* n) {
|
||||
if (is_attached_to_var(n)) {
|
||||
return n->get_th_var(get_id());
|
||||
}
|
||||
else {
|
||||
theory_var v = theory::mk_var(n);
|
||||
get_context().attach_th_var(n, this, v);
|
||||
get_context().mark_as_relevant(n);
|
||||
return v;
|
||||
}
|
||||
}
|
||||
|
||||
lbool theory_special_relations::final_check_plo(relation& r) {
|
||||
//
|
||||
// ensure that !Rxy -> Ryx between connected components
|
||||
// (where Rzx & Rzy or Rxz & Ryz for some z)
|
||||
//
|
||||
lbool res = l_true;
|
||||
for (unsigned i = 0; res == l_true && i < r.m_asserted_atoms.size(); ++i) {
|
||||
atom& a = *r.m_asserted_atoms[i];
|
||||
if (!a.phase() && r.m_uf.find(a.v1()) == r.m_uf.find(a.v2())) {
|
||||
res = enable(a);
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
lbool theory_special_relations::final_check_to(relation& r) {
|
||||
uint_set visited, target;
|
||||
lbool res = l_true;
|
||||
for (unsigned i = 0; res == l_true && i < r.m_asserted_atoms.size(); ++i) {
|
||||
atom& a = *r.m_asserted_atoms[i];
|
||||
if (!a.phase() && r.m_uf.find(a.v1()) == r.m_uf.find(a.v2())) {
|
||||
target.reset();
|
||||
theory_var w;
|
||||
// v2 !<= v1 is asserted
|
||||
target.insert(a.v2());
|
||||
if (r.m_graph.reachable(a.v1(), visited, target, w)) {
|
||||
// we already have v1 <= v2
|
||||
continue;
|
||||
}
|
||||
target.reset();
|
||||
if (r.m_graph.reachable(a.v2(), target, visited, w)) {
|
||||
// there is a common successor
|
||||
// v1 <= w
|
||||
// v2 <= w
|
||||
// v1 !<= v2
|
||||
// -> v1 <= w & v2 <= w & v1 !<= v2 -> v2 <= v1
|
||||
unsigned timestamp = r.m_graph.get_timestamp();
|
||||
r.m_explanation.reset();
|
||||
r.m_graph.find_shortest_reachable_path(a.v1(), w, timestamp, r);
|
||||
r.m_graph.find_shortest_reachable_path(a.v2(), w, timestamp, r);
|
||||
r.m_explanation.push_back(a.explanation());
|
||||
literal_vector const& lits = r.m_explanation;
|
||||
if (!r.m_graph.enable_edge(r.m_graph.add_edge(a.v2(), a.v1(), s_integer(0), lits))) {
|
||||
set_neg_cycle_conflict(r);
|
||||
res = l_false;
|
||||
}
|
||||
}
|
||||
// TODO: check if algorithm correctly produces all constraints.
|
||||
// e.g., if we add an edge, do we have to repeat the loop?
|
||||
//
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
lbool theory_special_relations::enable(atom& a) {
|
||||
if (!a.enable()) {
|
||||
relation& r = a.get_relation();
|
||||
set_neg_cycle_conflict(r);
|
||||
return l_false;
|
||||
}
|
||||
else {
|
||||
return l_true;
|
||||
}
|
||||
}
|
||||
|
||||
void theory_special_relations::set_neg_cycle_conflict(relation& r) {
|
||||
r.m_explanation.reset();
|
||||
r.m_graph.traverse_neg_cycle2(false, r);
|
||||
set_conflict(r);
|
||||
}
|
||||
|
||||
void theory_special_relations::set_conflict(relation& r) {
|
||||
literal_vector const& lits = r.m_explanation;
|
||||
context & ctx = get_context();
|
||||
vector<parameter> params;
|
||||
ctx.set_conflict(
|
||||
ctx.mk_justification(
|
||||
ext_theory_conflict_justification(
|
||||
get_id(), ctx.get_region(),
|
||||
lits.size(), lits.c_ptr(), 0, 0, params.size(), params.c_ptr())));
|
||||
}
|
||||
|
||||
lbool theory_special_relations::final_check(relation& r) {
|
||||
// timer m_timer_fc; //for debugging
|
||||
// static unsigned call_count = 0;
|
||||
// static double total_call_times = 0.0;
|
||||
// m_timer_fc.start();
|
||||
// call_count++;
|
||||
|
||||
lbool res = propagate(r);
|
||||
if (res != l_true) return res;
|
||||
switch (r.m_property) {
|
||||
case sr_lo:
|
||||
res = final_check_lo(r);
|
||||
break;
|
||||
case sr_po:
|
||||
res = final_check_po(r);
|
||||
break;
|
||||
case sr_plo:
|
||||
res = final_check_plo(r);
|
||||
break;
|
||||
case sr_to:
|
||||
res = final_check_to(r);
|
||||
break;
|
||||
default:
|
||||
UNREACHABLE();
|
||||
res = l_undef;
|
||||
}
|
||||
|
||||
return res;
|
||||
}
|
||||
|
||||
bool theory_special_relations::extract_equalities(relation& r) {
|
||||
bool new_eq = false;
|
||||
int_vector scc_id;
|
||||
u_map<unsigned> roots;
|
||||
context& ctx = get_context();
|
||||
r.m_graph.compute_zero_edge_scc(scc_id);
|
||||
for (unsigned i = 0, j = 0; i < scc_id.size(); ++i) {
|
||||
if (scc_id[i] == -1) {
|
||||
continue;
|
||||
}
|
||||
enode* n = get_enode(i);
|
||||
if (roots.find(scc_id[i], j)) {
|
||||
enode* m = get_enode(j);
|
||||
if (n->get_root() != m->get_root()) {
|
||||
new_eq = true;
|
||||
unsigned timestamp = r.m_graph.get_timestamp();
|
||||
r.m_explanation.reset();
|
||||
r.m_graph.find_shortest_zero_edge_path(i, j, timestamp, r);
|
||||
r.m_graph.find_shortest_zero_edge_path(j, i, timestamp, r);
|
||||
eq_justification js(ctx.mk_justification(theory_axiom_justification(get_id(), ctx.get_region(), r.m_explanation.size(), r.m_explanation.c_ptr())));
|
||||
ctx.assign_eq(n, m, js);
|
||||
}
|
||||
}
|
||||
else {
|
||||
roots.insert(scc_id[i], i);
|
||||
}
|
||||
}
|
||||
return new_eq;
|
||||
}
|
||||
|
||||
/*
|
||||
\brief Propagation for piecewise linear orders
|
||||
*/
|
||||
lbool theory_special_relations::propagate_plo(atom& a) {
|
||||
lbool res = l_true;
|
||||
relation& r = a.get_relation();
|
||||
if (a.phase()) {
|
||||
r.m_uf.merge(a.v1(), a.v2());
|
||||
res = enable(a);
|
||||
}
|
||||
else if (r.m_uf.find(a.v1()) == r.m_uf.find(a.v2())) {
|
||||
res = enable(a);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
lbool theory_special_relations::propagate_po(atom& a) {
|
||||
lbool res = l_true;
|
||||
relation& r = a.get_relation();
|
||||
if (a.phase()) {
|
||||
r.m_uf.merge(a.v1(), a.v2());
|
||||
res = enable(a);
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
lbool theory_special_relations::final_check_po(relation& r) {
|
||||
if (!KVEC) {
|
||||
lbool res = l_true;
|
||||
for (unsigned i = 0; res == l_true && i < r.m_asserted_atoms.size(); ++i) {
|
||||
atom& a = *r.m_asserted_atoms[i];
|
||||
if (!a.phase() && r.m_uf.find(a.v1()) == r.m_uf.find(a.v2())) {
|
||||
// v1 !-> v2
|
||||
// find v1 -> v3 -> v4 -> v2 path
|
||||
r.m_explanation.reset();
|
||||
unsigned timestamp = r.m_graph.get_timestamp();
|
||||
auto found_path = HYBRID_SEARCH ?
|
||||
r.m_graph.find_path(a.v1(), a.v2(), timestamp, r) :
|
||||
r.m_graph.find_shortest_reachable_path(a.v1(), a.v2(), timestamp, r);
|
||||
if (found_path) {
|
||||
r.m_explanation.push_back(a.explanation());
|
||||
set_conflict(r);
|
||||
res = l_false;
|
||||
}
|
||||
}
|
||||
}
|
||||
return res;
|
||||
}
|
||||
context& ctx = get_context();
|
||||
ast_manager& m = ctx.get_manager();
|
||||
|
||||
ptr_vector<expr> assumptions;
|
||||
ptr_vector<expr> literals;
|
||||
|
||||
int k = 1;
|
||||
static int curr_id = 100000;
|
||||
|
||||
u_map<ptr_vector<expr>> map;
|
||||
lbool res = l_true;
|
||||
for (atom * ap : r.m_asserted_atoms) {
|
||||
if (res != l_true) break;
|
||||
atom a = *ap;
|
||||
if (a.phase()) {
|
||||
continue;
|
||||
// assumptions.push_back(b);
|
||||
r.m_uf.merge(a.v1(), a.v2());
|
||||
}
|
||||
}
|
||||
for (atom * ap : r.m_asserted_atoms) {
|
||||
if (res != l_true) break;
|
||||
atom a = *ap;
|
||||
if (a.phase())
|
||||
continue;
|
||||
if (r.m_uf.find(a.v1()) != r.m_uf.find(a.v2())) {
|
||||
continue;
|
||||
}
|
||||
populate_k_vars(a.v1(), k, map, curr_id, m, &m_int_sort);
|
||||
populate_k_vars(a.v2(), k, map, curr_id, m, &m_int_sort);
|
||||
|
||||
literals.push_back(m_autil.mk_lt(map[a.v1()][0], map[a.v2()][0]));
|
||||
|
||||
auto bool_sort = m.mk_bool_sort();
|
||||
auto b_func = m.mk_func_decl(symbol(curr_id++), 0, &bool_sort, bool_sort);
|
||||
auto b = m.mk_app(b_func, unsigned(0), nullptr);
|
||||
|
||||
auto f = m.mk_implies( b, m.mk_not(literals.back()) );
|
||||
m_nested_solver->assert_expr(f);
|
||||
atom_cache.insert(b->get_id(), &a);
|
||||
assumptions.push_back(b);
|
||||
r.m_explanation.reset();
|
||||
if (m_nested_solver->check_sat(assumptions.size(), assumptions.c_ptr()) == l_false) {
|
||||
expr_ref_vector unsat_core(m);
|
||||
m_nested_solver->get_unsat_core(unsat_core);
|
||||
for (expr* e : unsat_core) {
|
||||
atom& a = *atom_cache[e->get_id()];
|
||||
r.m_explanation.push_back(a.explanation());
|
||||
}
|
||||
for (auto e : r.m_explanation) {
|
||||
std::cerr << "EX " << e.hash() << "\n";
|
||||
}
|
||||
set_conflict(r);
|
||||
res = l_false;
|
||||
}
|
||||
assumptions.pop_back();
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
lbool theory_special_relations::propagate(relation& r) {
|
||||
lbool res = l_true;
|
||||
while (res == l_true && r.m_asserted_qhead < r.m_asserted_atoms.size()) {
|
||||
atom& a = *r.m_asserted_atoms[r.m_asserted_qhead];
|
||||
switch (r.m_property) {
|
||||
case sr_lo:
|
||||
res = enable(a);
|
||||
break;
|
||||
case sr_plo:
|
||||
res = propagate_plo(a);
|
||||
break;
|
||||
case sr_po:
|
||||
res = propagate_po(a);
|
||||
break;
|
||||
default:
|
||||
if (a.phase()) {
|
||||
res = enable(a);
|
||||
}
|
||||
break;
|
||||
}
|
||||
++r.m_asserted_qhead;
|
||||
}
|
||||
return res;
|
||||
}
|
||||
|
||||
void theory_special_relations::reset_eh() {
|
||||
obj_map<func_decl, relation*>::iterator it = m_relations.begin(), end = m_relations.end();
|
||||
for (; it != end; ++it) {
|
||||
dealloc(it->m_value);
|
||||
}
|
||||
m_relations.reset();
|
||||
del_atoms(0);
|
||||
}
|
||||
|
||||
void theory_special_relations::assign_eh(bool_var v, bool is_true) {
|
||||
TRACE("special_relations", tout << "assign bv" << v << " " << (is_true?" <- true":" <- false") << "\n";);
|
||||
atom* a = 0;
|
||||
VERIFY(m_bool_var2atom.find(v, a));
|
||||
a->set_phase(is_true);
|
||||
a->get_relation().m_asserted_atoms.push_back(a);
|
||||
//std::cerr << "ASSIGN: " << a->v1() << ' ' << a->v2() << "\n";
|
||||
}
|
||||
|
||||
void theory_special_relations::push_scope_eh() {
|
||||
obj_map<func_decl, relation*>::iterator it = m_relations.begin(), end = m_relations.end();
|
||||
for (; it != end; ++it) {
|
||||
it->m_value->push();
|
||||
}
|
||||
m_atoms_lim.push_back(m_atoms.size());
|
||||
}
|
||||
|
||||
void theory_special_relations::pop_scope_eh(unsigned num_scopes) {
|
||||
obj_map<func_decl, relation*>::iterator it = m_relations.begin(), end = m_relations.end();
|
||||
for (; it != end; ++it) {
|
||||
it->m_value->pop(num_scopes);
|
||||
}
|
||||
unsigned new_lvl = m_atoms_lim.size() - num_scopes;
|
||||
del_atoms(m_atoms_lim[new_lvl]);
|
||||
}
|
||||
|
||||
void theory_special_relations::del_atoms(unsigned old_size) {
|
||||
atoms::iterator begin = m_atoms.begin() + old_size;
|
||||
atoms::iterator it = m_atoms.end();
|
||||
while (it != begin) {
|
||||
--it;
|
||||
atom * a = *it;
|
||||
m_bool_var2atom.erase(a->var());
|
||||
dealloc(a);
|
||||
}
|
||||
m_atoms.shrink(old_size);
|
||||
}
|
||||
|
||||
|
||||
void theory_special_relations::collect_statistics(::statistics & st) const {
|
||||
obj_map<func_decl, relation*>::iterator it = m_relations.begin(), end = m_relations.end();
|
||||
for (; it != end; ++it) {
|
||||
it->m_value->m_graph.collect_statistics(st);
|
||||
}
|
||||
}
|
||||
|
||||
model_value_proc * theory_special_relations::mk_value(enode * n, model_generator & mg) {
|
||||
UNREACHABLE();
|
||||
return 0;
|
||||
}
|
||||
|
||||
void theory_special_relations::ensure_strict(graph& g) {
|
||||
unsigned sz = g.get_num_edges();
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
if (!g.is_enabled(i)) continue;
|
||||
if (g.get_weight(i) != s_integer(0)) continue;
|
||||
dl_var src = g.get_source(i);
|
||||
dl_var dst = g.get_target(i);
|
||||
if (get_enode(src)->get_root() == get_enode(dst)->get_root()) continue;
|
||||
VERIFY(g.enable_edge(g.add_edge(src, dst, s_integer(-2), literal_vector())));
|
||||
}
|
||||
TRACE("special_relations", g.display(tout););
|
||||
}
|
||||
|
||||
void theory_special_relations::ensure_tree(graph& g) {
|
||||
unsigned sz = g.get_num_nodes();
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
int_vector const& edges = g.get_in_edges(i);
|
||||
for (unsigned j = 0; j < edges.size(); ++j) {
|
||||
edge_id e1 = edges[j];
|
||||
if (g.is_enabled(e1)) {
|
||||
SASSERT (i == g.get_target(e1));
|
||||
dl_var src1 = g.get_source(e1);
|
||||
for (unsigned k = j + 1; k < edges.size(); ++k) {
|
||||
edge_id e2 = edges[k];
|
||||
if (g.is_enabled(e2)) {
|
||||
dl_var src2 = g.get_source(e2);
|
||||
if (get_enode(src1)->get_root() == get_enode(src2)->get_root()) continue;
|
||||
if (!disconnected(g, src1, src2)) continue;
|
||||
VERIFY(g.enable_edge(g.add_edge(src1, src2, s_integer(-2), literal_vector())));
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
TRACE("special_relations", g.display(tout););
|
||||
}
|
||||
|
||||
bool theory_special_relations::disconnected(graph const& g, dl_var u, dl_var v) const {
|
||||
s_integer val_u = g.get_assignment(u);
|
||||
s_integer val_v = g.get_assignment(v);
|
||||
if (val_u == val_v) return u != v;
|
||||
if (val_u < val_v) {
|
||||
std::swap(u, v);
|
||||
std::swap(val_u, val_v);
|
||||
}
|
||||
SASSERT(val_u > val_v);
|
||||
svector<dl_var> todo;
|
||||
todo.push_back(u);
|
||||
while (!todo.empty()) {
|
||||
u = todo.back();
|
||||
todo.pop_back();
|
||||
if (u == v) {
|
||||
return false;
|
||||
}
|
||||
SASSERT(g.get_assignment(u) <= val_u);
|
||||
if (g.get_assignment(u) <= val_v) {
|
||||
continue;
|
||||
}
|
||||
int_vector const& edges = g.get_out_edges(u);
|
||||
for (unsigned i = 0; i < edges.size(); ++i) {
|
||||
edge_id e = edges[i];
|
||||
if (is_strict_neighbour_edge(g, e)) {
|
||||
todo.push_back(g.get_target(e));
|
||||
}
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
expr_ref theory_special_relations::mk_inj(relation& r, model_generator& mg) {
|
||||
// context& ctx = get_context();
|
||||
ast_manager& m = get_manager();
|
||||
r.push();
|
||||
ensure_strict(r.m_graph);
|
||||
func_decl_ref fn(m);
|
||||
expr_ref result(m);
|
||||
arith_util arith(m);
|
||||
sort* const* ty = r.decl()->get_domain();
|
||||
fn = m.mk_fresh_func_decl("inj", 1, ty, arith.mk_int());
|
||||
unsigned sz = r.m_graph.get_num_nodes();
|
||||
func_interp* fi = alloc(func_interp, m, 1);
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
s_integer val = r.m_graph.get_assignment(i);
|
||||
expr* arg = get_enode(i)->get_owner();
|
||||
fi->insert_new_entry(&arg, arith.mk_numeral(val.to_rational(), true));
|
||||
}
|
||||
TRACE("special_relations", r.m_graph.display(tout););
|
||||
r.pop(1);
|
||||
fi->set_else(arith.mk_numeral(rational(0), true));
|
||||
mg.get_model().register_decl(fn, fi);
|
||||
result = arith.mk_le(m.mk_app(fn,m.mk_var(0, *ty)), m.mk_app(fn, m.mk_var(1, *ty)));
|
||||
return result;
|
||||
}
|
||||
|
||||
expr_ref theory_special_relations::mk_class(relation& r, model_generator& mg) {
|
||||
//context& ctx = get_context();
|
||||
ast_manager& m = get_manager();
|
||||
expr_ref result(m);
|
||||
func_decl_ref fn(m);
|
||||
arith_util arith(m);
|
||||
func_interp* fi = alloc(func_interp, m, 1);
|
||||
sort* const* ty = r.decl()->get_domain();
|
||||
fn = m.mk_fresh_func_decl("class", 1, ty, arith.mk_int());
|
||||
unsigned sz = r.m_graph.get_num_nodes();
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
unsigned val = r.m_uf.find(i);
|
||||
expr* arg = get_enode(i)->get_owner();
|
||||
fi->insert_new_entry(&arg, arith.mk_numeral(rational(val), true));
|
||||
}
|
||||
fi->set_else(arith.mk_numeral(rational(0), true));
|
||||
mg.get_model().register_decl(fn, fi);
|
||||
result = m.mk_eq(m.mk_app(fn, m.mk_var(0, *ty)), m.mk_app(fn, m.mk_var(1, *ty)));
|
||||
return result;
|
||||
}
|
||||
|
||||
expr_ref theory_special_relations::mk_interval(relation& r, model_generator& mg, unsigned_vector & lo, unsigned_vector& hi) {
|
||||
graph const& g = r.m_graph;
|
||||
//context& ctx = get_context();
|
||||
ast_manager& m = get_manager();
|
||||
expr_ref result(m);
|
||||
func_decl_ref lofn(m), hifn(m);
|
||||
arith_util arith(m);
|
||||
func_interp* lofi = alloc(func_interp, m, 1);
|
||||
func_interp* hifi = alloc(func_interp, m, 1);
|
||||
sort* const* ty = r.decl()->get_domain();
|
||||
lofn = m.mk_fresh_func_decl("lo", 1, ty, arith.mk_int());
|
||||
hifn = m.mk_fresh_func_decl("hi", 1, ty, arith.mk_int());
|
||||
unsigned sz = g.get_num_nodes();
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
expr* arg = get_enode(i)->get_owner();
|
||||
lofi->insert_new_entry(&arg, arith.mk_numeral(rational(lo[i]), true));
|
||||
hifi->insert_new_entry(&arg, arith.mk_numeral(rational(hi[i]), true));
|
||||
}
|
||||
lofi->set_else(arith.mk_numeral(rational(0), true));
|
||||
hifi->set_else(arith.mk_numeral(rational(0), true));
|
||||
mg.get_model().register_decl(lofn, lofi);
|
||||
mg.get_model().register_decl(hifn, hifi);
|
||||
result = m.mk_and(arith.mk_le(m.mk_app(lofn, m.mk_var(0, *ty)), m.mk_app(lofn, m.mk_var(1, *ty))),
|
||||
arith.mk_le(m.mk_app(hifn, m.mk_var(1, *ty)), m.mk_app(hifn, m.mk_var(0, *ty))));
|
||||
return result;
|
||||
}
|
||||
|
||||
void theory_special_relations::init_model_lo(relation& r, model_generator& m) {
|
||||
expr_ref inj = mk_inj(r, m);
|
||||
func_interp* fi = alloc(func_interp, get_manager(), 2);
|
||||
fi->set_else(inj);
|
||||
m.get_model().register_decl(r.decl(), fi);
|
||||
}
|
||||
|
||||
void theory_special_relations::init_model_plo(relation& r, model_generator& m) {
|
||||
expr_ref inj = mk_inj(r, m);
|
||||
expr_ref cls = mk_class(r, m);
|
||||
func_interp* fi = alloc(func_interp, get_manager(), 2);
|
||||
fi->set_else(get_manager().mk_and(inj, cls));
|
||||
m.get_model().register_decl(r.decl(), fi);
|
||||
}
|
||||
|
||||
void theory_special_relations::init_model_po(relation& r, model_generator& mg) {
|
||||
// NOT_IMPLEMENTED_YET();
|
||||
}
|
||||
|
||||
/**
|
||||
\brief map each node to an interval of numbers, such that
|
||||
the children are proper sub-intervals.
|
||||
Then the <= relation becomes interval containment.
|
||||
|
||||
1. For each vertex, count the number of nodes below it in the transitive closure.
|
||||
Store the result in num_children.
|
||||
2. Identify each root.
|
||||
3. Process children, assigning unique (and disjoint) intervals.
|
||||
4. Extract interpretation.
|
||||
|
||||
|
||||
*/
|
||||
|
||||
void theory_special_relations::init_model_to(relation& r, model_generator& mg) {
|
||||
unsigned_vector num_children, lo, hi;
|
||||
graph const& g = r.m_graph;
|
||||
r.push();
|
||||
ensure_strict(r.m_graph);
|
||||
ensure_tree(r.m_graph);
|
||||
count_children(g, num_children);
|
||||
assign_interval(g, num_children, lo, hi);
|
||||
expr_ref iv = mk_interval(r, mg, lo, hi);
|
||||
r.pop(1);
|
||||
func_interp* fi = alloc(func_interp, get_manager(), 2);
|
||||
fi->set_else(iv);
|
||||
mg.get_model().register_decl(r.decl(), fi);
|
||||
}
|
||||
|
||||
bool theory_special_relations::is_neighbour_edge(graph const& g, edge_id edge) const {
|
||||
CTRACE("special_relations_verbose", g.is_enabled(edge),
|
||||
tout << edge << ": " << g.get_source(edge) << " " << g.get_target(edge) << " ";
|
||||
tout << (g.get_assignment(g.get_source(edge)) - g.get_assignment(g.get_target(edge))) << "\n";);
|
||||
|
||||
return
|
||||
g.is_enabled(edge) &&
|
||||
g.get_assignment(g.get_source(edge)) - g.get_assignment(g.get_target(edge)) == s_integer(1);
|
||||
}
|
||||
|
||||
bool theory_special_relations::is_strict_neighbour_edge(graph const& g, edge_id e) const {
|
||||
return is_neighbour_edge(g, e) && g.get_weight(e) != s_integer(0);
|
||||
}
|
||||
|
||||
void theory_special_relations::count_children(graph const& g, unsigned_vector& num_children) {
|
||||
unsigned sz = g.get_num_nodes();
|
||||
svector<dl_var> nodes;
|
||||
num_children.resize(sz, 0);
|
||||
svector<bool> processed(sz, false);
|
||||
for (unsigned i = 0; i < sz; ++i) nodes.push_back(i);
|
||||
while (!nodes.empty()) {
|
||||
dl_var v = nodes.back();
|
||||
if (processed[v]) {
|
||||
nodes.pop_back();
|
||||
continue;
|
||||
}
|
||||
unsigned nc = 1;
|
||||
bool all_p = true;
|
||||
int_vector const& edges = g.get_out_edges(v);
|
||||
for (unsigned i = 0; i < edges.size(); ++i) {
|
||||
edge_id e = edges[i];
|
||||
if (is_strict_neighbour_edge(g, e)) {
|
||||
dl_var dst = g.get_target(e);
|
||||
TRACE("special_relations", tout << v << " -> " << dst << "\n";);
|
||||
if (!processed[dst]) {
|
||||
all_p = false;
|
||||
nodes.push_back(dst);
|
||||
}
|
||||
nc += num_children[dst];
|
||||
}
|
||||
}
|
||||
if (all_p) {
|
||||
nodes.pop_back();
|
||||
num_children[v] = nc;
|
||||
processed[v] = true;
|
||||
}
|
||||
}
|
||||
TRACE("special_relations",
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
tout << i << ": " << num_children[i] << "\n";
|
||||
});
|
||||
}
|
||||
|
||||
void theory_special_relations::assign_interval(graph const& g, unsigned_vector const& num_children, unsigned_vector& lo, unsigned_vector& hi) {
|
||||
svector<dl_var> nodes;
|
||||
unsigned sz = g.get_num_nodes();
|
||||
lo.resize(sz, 0);
|
||||
hi.resize(sz, 0);
|
||||
unsigned offset = 0;
|
||||
for (unsigned i = 0; i < sz; ++i) {
|
||||
bool is_root = true;
|
||||
int_vector const& edges = g.get_in_edges(i);
|
||||
for (unsigned j = 0; is_root && j < edges.size(); ++j) {
|
||||
is_root = !g.is_enabled(edges[j]);
|
||||
}
|
||||
if (is_root) {
|
||||
lo[i] = offset;
|
||||
hi[i] = offset + num_children[i] - 1;
|
||||
offset = hi[i] + 1;
|
||||
nodes.push_back(i);
|
||||
}
|
||||
}
|
||||
while (!nodes.empty()) {
|
||||
dl_var v = nodes.back();
|
||||
int_vector const& edges = g.get_out_edges(v);
|
||||
unsigned l = lo[v];
|
||||
unsigned h = hi[v];
|
||||
(void)h;
|
||||
nodes.pop_back();
|
||||
for (unsigned i = 0; i < edges.size(); ++i) {
|
||||
SASSERT(l <= h);
|
||||
if (is_strict_neighbour_edge(g, edges[i])) {
|
||||
dl_var dst = g.get_target(edges[i]);
|
||||
lo[dst] = l;
|
||||
hi[dst] = l + num_children[dst] - 1;
|
||||
l = hi[dst] + 1;
|
||||
nodes.push_back(dst);
|
||||
}
|
||||
}
|
||||
SASSERT(l == h);
|
||||
}
|
||||
}
|
||||
|
||||
void theory_special_relations::init_model(model_generator & m) {
|
||||
obj_map<func_decl, relation*>::iterator it = m_relations.begin(), end = m_relations.end();
|
||||
for (; it != end; ++it) {
|
||||
switch (it->m_value->m_property) {
|
||||
case sr_lo:
|
||||
init_model_lo(*it->m_value, m);
|
||||
break;
|
||||
case sr_plo:
|
||||
init_model_plo(*it->m_value, m);
|
||||
break;
|
||||
case sr_to:
|
||||
init_model_to(*it->m_value, m);
|
||||
break;
|
||||
case sr_po:
|
||||
init_model_po(*it->m_value, m);
|
||||
break;
|
||||
default:
|
||||
UNREACHABLE(); //ASHU: added to remove warning! Should be supported!
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void theory_special_relations::display(std::ostream & out) const {
|
||||
if (m_relations.empty()) return;
|
||||
out << "Theory Special Relations\n";
|
||||
display_var2enode(out);
|
||||
obj_map<func_decl, relation*>::iterator it = m_relations.begin(), end = m_relations.end();
|
||||
for (; it != end; ++it) {
|
||||
out << mk_pp(it->m_value->decl(), get_manager()) << ":\n";
|
||||
it->m_value->m_graph.display(out);
|
||||
it->m_value->m_uf.display(out);
|
||||
for (unsigned i = 0; i < it->m_value->m_asserted_atoms.size(); ++i){
|
||||
atom& a = *it->m_value->m_asserted_atoms[i];
|
||||
display_atom( out, a );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void theory_special_relations::collect_asserted_po_atoms( vector< std::pair<bool_var,bool> >& atoms) const {
|
||||
obj_map<func_decl, relation*>::iterator it = m_relations.begin(), end = m_relations.end();
|
||||
for (; it != end; ++it) {
|
||||
relation& r = *(it->m_value );
|
||||
if( r.m_property != sr_po ) continue;
|
||||
// SASSERT( r.m_asserted_qhead == r.m_asserted_atoms.size() );
|
||||
for (unsigned i = 0; i < r.m_asserted_atoms.size(); ++i) {
|
||||
atom& a = *r.m_asserted_atoms[i];
|
||||
atoms.push_back( std::make_pair(a.var(),a.phase()) );
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void theory_special_relations::display_atom( std::ostream & out, atom& a ) const {
|
||||
context& ctx = get_context();
|
||||
expr* e = ctx.bool_var2expr( a.var() );
|
||||
if( !a.phase() ) out << "(not ";
|
||||
out << mk_pp( e, get_manager());
|
||||
if( !a.phase() ) out << ")";
|
||||
out << "\n";
|
||||
}
|
||||
|
||||
void theory_special_relations::display_atom( atom& a) const {
|
||||
display_atom( std::cerr, a);
|
||||
}
|
||||
|
||||
}
|
Loading…
Add table
Add a link
Reference in a new issue