mirror of
https://github.com/Z3Prover/z3
synced 2025-04-14 21:08:46 +00:00
progress in gomory cut
Signed-off-by: Lev Nachmanson <levnach@microsoft.com>
This commit is contained in:
parent
2056404ed4
commit
8750da1da7
|
@ -105,6 +105,7 @@ namespace lp_api {
|
|||
unsigned m_bound_propagations1;
|
||||
unsigned m_bound_propagations2;
|
||||
unsigned m_assert_diseq;
|
||||
unsigned m_gomory_cuts;
|
||||
stats() { reset(); }
|
||||
void reset() {
|
||||
memset(this, 0, sizeof(*this));
|
||||
|
@ -1253,6 +1254,7 @@ namespace smt {
|
|||
return l_false;
|
||||
}
|
||||
case lp::lia_move::cut: {
|
||||
++m_stats.m_gomory_cuts;
|
||||
// m_explanation implies term <= k
|
||||
app_ref b = mk_bound(term, k);
|
||||
m_eqs.reset();
|
||||
|
|
|
@ -5,6 +5,7 @@
|
|||
|
||||
#include "util/lp/int_solver.h"
|
||||
#include "util/lp/lar_solver.h"
|
||||
#include "util/lp/antecedents.h"
|
||||
namespace lp {
|
||||
|
||||
void int_solver::fix_non_base_columns() {
|
||||
|
@ -128,108 +129,107 @@ bool int_solver::is_gomory_cut_target() {
|
|||
return true;
|
||||
}
|
||||
|
||||
|
||||
void int_solver::is_real_case_in_gomory_cut(const mpq & a, unsigned x_j, mpq & k, buffer<row_entry> & pol) {
|
||||
mpq f_0 = fractional_part(get_value(m_gomory_cut_inf_column));
|
||||
mpq new_a;
|
||||
if (at_lower(x_j)) {
|
||||
if (a.is_pos()) {
|
||||
new_a = a / (mpq(1) - f_0);
|
||||
}
|
||||
else {
|
||||
new_a = a / f_0;
|
||||
new_a.neg();
|
||||
}
|
||||
k += lower_bound(x_j).x * k; // k.addmul(new_a, lower_bound(x_j).x); // is it a faster operation
|
||||
// lower(x_j)->push_justification(ante, new_a, coeffs_enabled());*/
|
||||
}
|
||||
else {
|
||||
lp_assert(at_upper(x_j));
|
||||
if (a.is_pos()) {
|
||||
new_a = a / f_0;
|
||||
new_a.neg(); // the upper terms are inverted.
|
||||
}
|
||||
else {
|
||||
new_a = a / (mpq(1) - f_0);
|
||||
}
|
||||
k += upper_bound(x_j).x * k; // k.addmul(new_a, upper_bound(x_j).get_rational());
|
||||
// upper(x_j)->push_justification(ante, new_a, coeffs_enabled());*/
|
||||
}
|
||||
TRACE("gomory_cut_detail", tout << a << "*v" << x_j << " k: " << k << "\n";);
|
||||
pol.push_back(row_entry(new_a, x_j));
|
||||
}
|
||||
void int_solver::int_case_in_gomory_cut(const mpq & a, unsigned x_j, mpq & k, buffer<row_entry> & pol) {
|
||||
/*
|
||||
++num_ints;
|
||||
SASSERT(is_int(x_j));
|
||||
mpq f_j = Ext::fractional_part(a);
|
||||
TRACE("gomory_cut_detail",
|
||||
tout << a << "*v" << x_j << "\n";
|
||||
tout << "fractional_part: " << Ext::fractional_part(a) << "\n";
|
||||
tout << "f_j: " << f_j << "\n";
|
||||
tout << "f_0: " << f_0 << "\n";
|
||||
tout << "one_minus_f_0: " << one_minus_f_0 << "\n";);
|
||||
if (!f_j.is_zero()) {
|
||||
mpq new_a;
|
||||
if (at_lower(x_j)) {
|
||||
if (f_j <= one_minus_f_0) {
|
||||
new_a = f_j / one_minus_f_0;
|
||||
}
|
||||
else {
|
||||
new_a = (mpq(1) - f_j) / f_0;
|
||||
}
|
||||
k.addmul(new_a, lower_bound(x_j).get_rational());
|
||||
lower(x_j)->push_justification(ante, new_a, coeffs_enabled());
|
||||
}
|
||||
else {
|
||||
SASSERT(at_upper(x_j));
|
||||
if (f_j <= f_0) {
|
||||
new_a = f_j / f_0;
|
||||
}
|
||||
else {
|
||||
new_a = (mpq(1) - f_j) / one_minus_f_0;
|
||||
}
|
||||
new_a.neg(); // the upper terms are inverted
|
||||
k.addmul(new_a, upper_bound(x_j).get_rational());
|
||||
upper(x_j)->push_justification(ante, new_a, coeffs_enabled());
|
||||
}
|
||||
TRACE("gomory_cut_detail", tout << "new_a: " << new_a << " k: " << k << "\n";);
|
||||
pol.push_back(row_entry(new_a, x_j));
|
||||
lcm_den = lcm(lcm_den, denominator(new_a));
|
||||
}*/
|
||||
}
|
||||
|
||||
lia_move int_solver::mk_gomory_cut(explanation & ex) {
|
||||
|
||||
lp_assert(column_is_int_inf(m_gomory_cut_inf_column));
|
||||
|
||||
return lia_move::give_up;
|
||||
|
||||
/*
|
||||
TRACE("gomory_cut", tout << "applying cut at:\n"; display_row_info(tout, r););
|
||||
TRACE("gomory_cut", tout << "applying cut at:\n"; m_lar_solver->print_linear_iterator(m_iter_on_gomory_row, tout); tout << "\n";);
|
||||
|
||||
antecedents ante(*this);
|
||||
|
||||
m_stats.m_gomory_cuts++;
|
||||
|
||||
antecedents ante();
|
||||
// gomory will be pol >= k
|
||||
numeral k(1);
|
||||
mpq k(1);
|
||||
buffer<row_entry> pol;
|
||||
|
||||
numeral f_0 = Ext::fractional_part(m_value[x_i]);
|
||||
numeral one_minus_f_0 = numeral(1) - f_0;
|
||||
SASSERT(!f_0.is_zero());
|
||||
SASSERT(!one_minus_f_0.is_zero());
|
||||
|
||||
numeral lcm_den(1);
|
||||
|
||||
mpq f_0 = fractional_part(get_value(m_gomory_cut_inf_column));
|
||||
mpq one_minus_f_0 = mpq(1) - f_0;
|
||||
lp_assert(!is_zero(f_0) && !is_zero(one_minus_f_0));
|
||||
mpq lcm_den(1);
|
||||
unsigned num_ints = 0;
|
||||
unsigned x_j;
|
||||
mpq a;
|
||||
|
||||
typename vector<row_entry>::const_iterator it = r.begin_entries();
|
||||
typename vector<row_entry>::const_iterator end = r.end_entries();
|
||||
for (; it != end; ++it) {
|
||||
if (!it->is_dead() && it->m_var != x_i) {
|
||||
theory_var x_j = it->m_var;
|
||||
numeral a_ij = it->m_coeff;
|
||||
a_ij.neg(); // make the used format compatible with the format used in: Integrating Simplex with DPLL(T)
|
||||
if (is_real(x_j)) {
|
||||
numeral new_a_ij;
|
||||
if (at_lower(x_j)) {
|
||||
if (a_ij.is_pos()) {
|
||||
new_a_ij = a_ij / one_minus_f_0;
|
||||
}
|
||||
else {
|
||||
new_a_ij = a_ij / f_0;
|
||||
new_a_ij.neg();
|
||||
}
|
||||
k.addmul(new_a_ij, lower_bound(x_j).get_rational());
|
||||
lower(x_j)->push_justification(ante, new_a_ij, coeffs_enabled());
|
||||
}
|
||||
else {
|
||||
SASSERT(at_upper(x_j));
|
||||
if (a_ij.is_pos()) {
|
||||
new_a_ij = a_ij / f_0;
|
||||
new_a_ij.neg(); // the upper terms are inverted.
|
||||
}
|
||||
else {
|
||||
new_a_ij = a_ij / one_minus_f_0;
|
||||
}
|
||||
k.addmul(new_a_ij, upper_bound(x_j).get_rational());
|
||||
upper(x_j)->push_justification(ante, new_a_ij, coeffs_enabled());
|
||||
}
|
||||
TRACE("gomory_cut_detail", tout << a_ij << "*v" << x_j << " k: " << k << "\n";);
|
||||
pol.push_back(row_entry(new_a_ij, x_j));
|
||||
}
|
||||
else {
|
||||
++num_ints;
|
||||
SASSERT(is_int(x_j));
|
||||
numeral f_j = Ext::fractional_part(a_ij);
|
||||
TRACE("gomory_cut_detail",
|
||||
tout << a_ij << "*v" << x_j << "\n";
|
||||
tout << "fractional_part: " << Ext::fractional_part(a_ij) << "\n";
|
||||
tout << "f_j: " << f_j << "\n";
|
||||
tout << "f_0: " << f_0 << "\n";
|
||||
tout << "one_minus_f_0: " << one_minus_f_0 << "\n";);
|
||||
if (!f_j.is_zero()) {
|
||||
numeral new_a_ij;
|
||||
if (at_lower(x_j)) {
|
||||
if (f_j <= one_minus_f_0) {
|
||||
new_a_ij = f_j / one_minus_f_0;
|
||||
}
|
||||
else {
|
||||
new_a_ij = (numeral(1) - f_j) / f_0;
|
||||
}
|
||||
k.addmul(new_a_ij, lower_bound(x_j).get_rational());
|
||||
lower(x_j)->push_justification(ante, new_a_ij, coeffs_enabled());
|
||||
}
|
||||
else {
|
||||
SASSERT(at_upper(x_j));
|
||||
if (f_j <= f_0) {
|
||||
new_a_ij = f_j / f_0;
|
||||
}
|
||||
else {
|
||||
new_a_ij = (numeral(1) - f_j) / one_minus_f_0;
|
||||
}
|
||||
new_a_ij.neg(); // the upper terms are inverted
|
||||
k.addmul(new_a_ij, upper_bound(x_j).get_rational());
|
||||
upper(x_j)->push_justification(ante, new_a_ij, coeffs_enabled());
|
||||
}
|
||||
TRACE("gomory_cut_detail", tout << "new_a_ij: " << new_a_ij << " k: " << k << "\n";);
|
||||
pol.push_back(row_entry(new_a_ij, x_j));
|
||||
lcm_den = lcm(lcm_den, denominator(new_a_ij));
|
||||
}
|
||||
}
|
||||
}
|
||||
while (m_iter_on_gomory_row->next(a, x_j)) {
|
||||
if (x_j == m_gomory_cut_inf_column)
|
||||
continue;
|
||||
// make the format compatible with the format used in: Integrating Simplex with DPLL(T)
|
||||
a.neg();
|
||||
if (is_real(x_j))
|
||||
is_real_case_in_gomory_cut(a, x_j, k, pol);
|
||||
else
|
||||
int_case_in_gomory_cut(a, x_j, k, pol);
|
||||
}
|
||||
|
||||
/*
|
||||
CTRACE("empty_pol", pol.empty(), display_row_info(tout, r););
|
||||
|
||||
expr_ref bound(get_manager());
|
||||
|
@ -276,8 +276,8 @@ lia_move int_solver::mk_gomory_cut(explanation & ex) {
|
|||
}
|
||||
tout << "k: " << k << "\n";);
|
||||
}
|
||||
mk_polynomial_ge(pol.size(), pol.c_ptr(), k.to_rational(), bound);
|
||||
}
|
||||
mk_polynomial_ge(pol.size(), pol.c_ptr(), k.to_rational(), bound); */
|
||||
/*
|
||||
TRACE("gomory_cut", tout << "new cut:\n" << bound << "\n"; ante.display(tout););
|
||||
literal l = null_literal;
|
||||
context & ctx = get_context();
|
||||
|
@ -292,6 +292,7 @@ lia_move int_solver::mk_gomory_cut(explanation & ex) {
|
|||
ante.eqs().size(), ante.eqs().c_ptr(), ante, l)));
|
||||
return true;
|
||||
*/
|
||||
return lia_move::give_up;
|
||||
}
|
||||
|
||||
void int_solver::init_check_data() {
|
||||
|
@ -327,9 +328,10 @@ lia_move int_solver::proceed_with_gomory_cut(lar_term& t, mpq& k, explanation& e
|
|||
return lia_move::continue_with_check;
|
||||
}
|
||||
|
||||
lia_move ret = mk_gomory_cut(ex);
|
||||
delete m_iter_on_gomory_row;
|
||||
m_iter_on_gomory_row = nullptr;
|
||||
return mk_gomory_cut(ex);
|
||||
return ret;
|
||||
}
|
||||
|
||||
|
||||
|
@ -792,6 +794,10 @@ bool int_solver::is_int(unsigned j) const {
|
|||
return m_lar_solver->column_is_int(j);
|
||||
}
|
||||
|
||||
bool int_solver::is_real(unsigned j) const {
|
||||
return !is_int(j);
|
||||
}
|
||||
|
||||
bool int_solver::value_is_int(unsigned j) const {
|
||||
return m_lar_solver->m_mpq_lar_core_solver.m_r_x[j].is_int();
|
||||
}
|
||||
|
@ -856,6 +862,7 @@ bool int_solver::is_free(unsigned j) const {
|
|||
bool int_solver::at_bound(unsigned j) const {
|
||||
auto & mpq_solver = m_lar_solver->m_mpq_lar_core_solver.m_r_solver;
|
||||
switch (mpq_solver.m_column_types[j] ) {
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
return
|
||||
mpq_solver.m_low_bounds[j] == get_value(j) ||
|
||||
|
@ -869,6 +876,30 @@ bool int_solver::at_bound(unsigned j) const {
|
|||
}
|
||||
}
|
||||
|
||||
bool int_solver::at_lower(unsigned j) const {
|
||||
auto & mpq_solver = m_lar_solver->m_mpq_lar_core_solver.m_r_solver;
|
||||
switch (mpq_solver.m_column_types[j] ) {
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
case column_type::low_bound:
|
||||
return mpq_solver.m_low_bounds[j] == get_value(j);
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
bool int_solver::at_upper(unsigned j) const {
|
||||
auto & mpq_solver = m_lar_solver->m_mpq_lar_core_solver.m_r_solver;
|
||||
switch (mpq_solver.m_column_types[j] ) {
|
||||
case column_type::fixed:
|
||||
case column_type::boxed:
|
||||
case column_type::upper_bound:
|
||||
return mpq_solver.m_upper_bounds[j] == get_value(j);
|
||||
default:
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
|
||||
lp_settings& int_solver::settings() {
|
||||
|
|
|
@ -27,6 +27,11 @@ struct explanation {
|
|||
};
|
||||
|
||||
class int_solver {
|
||||
struct row_entry {
|
||||
mpq m_coeff;
|
||||
unsigned m_var;
|
||||
row_entry(const mpq & coeff, unsigned var) : m_coeff(coeff), m_var(var) {}
|
||||
};
|
||||
public:
|
||||
// fields
|
||||
lar_solver *m_lar_solver;
|
||||
|
@ -82,6 +87,7 @@ private:
|
|||
const impq & lower_bound(unsigned j) const;
|
||||
const impq & upper_bound(unsigned j) const;
|
||||
bool is_int(unsigned j) const;
|
||||
bool is_real(unsigned j) const;
|
||||
bool is_base(unsigned j) const;
|
||||
bool is_boxed(unsigned j) const;
|
||||
bool is_free(unsigned j) const;
|
||||
|
@ -109,5 +115,19 @@ private:
|
|||
int find_next_free_var_in_gomory_row();
|
||||
bool is_gomory_cut_target();
|
||||
bool at_bound(unsigned j) const;
|
||||
bool at_lower(unsigned j) const;
|
||||
bool at_upper(unsigned j) const;
|
||||
|
||||
inline static bool is_rational(const impq & n) {
|
||||
return is_zero(n.y);
|
||||
}
|
||||
|
||||
inline static
|
||||
mpq fractional_part(const impq & n) {
|
||||
lp_assert(is_rational);
|
||||
return n.x - floor(n.x);
|
||||
}
|
||||
void is_real_case_in_gomory_cut(const mpq & a, unsigned x_j, mpq & k, buffer<row_entry> & pol);
|
||||
void int_case_in_gomory_cut(const mpq & a, unsigned x_j, mpq & k, buffer<row_entry> & pol);
|
||||
};
|
||||
}
|
||||
|
|
|
@ -414,9 +414,7 @@ public:
|
|||
return v.is_int();
|
||||
}
|
||||
|
||||
|
||||
|
||||
bool column_is_real(unsigned j) const {
|
||||
bool column_is_real(unsigned j) const {
|
||||
return !column_is_int(j);
|
||||
}
|
||||
|
||||
|
|
Loading…
Reference in a new issue