3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-12 12:08:18 +00:00

updated sat_smt

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2020-08-29 19:21:39 -07:00
parent e9a4e486ae
commit 86310a1a27
15 changed files with 389 additions and 437 deletions

View file

@ -75,7 +75,6 @@ namespace sat {
virtual std::ostream& display_constraint(std::ostream& out, ext_constraint_idx idx) const = 0; virtual std::ostream& display_constraint(std::ostream& out, ext_constraint_idx idx) const = 0;
virtual void collect_statistics(statistics& st) const = 0; virtual void collect_statistics(statistics& st) const = 0;
virtual extension* copy(solver* s) = 0; virtual extension* copy(solver* s) = 0;
virtual extension* copy(lookahead* s, bool learned) = 0;
virtual void find_mutexes(literal_vector& lits, vector<literal_vector> & mutexes) = 0; virtual void find_mutexes(literal_vector& lits, vector<literal_vector> & mutexes) = 0;
virtual void gc() = 0; virtual void gc() = 0;
virtual void pop_reinit() = 0; virtual void pop_reinit() = 0;

View file

@ -22,7 +22,6 @@ Notes:
#include <cmath> #include <cmath>
#include "sat/sat_solver.h" #include "sat/sat_solver.h"
#include "sat/sat_extension.h"
#include "sat/sat_lookahead.h" #include "sat/sat_lookahead.h"
#include "sat/sat_scc.h" #include "sat/sat_scc.h"
#include "util/union_find.h" #include "util/union_find.h"
@ -1037,9 +1036,6 @@ namespace sat {
} }
} }
if (m_s.m_ext) {
// m_ext = m_s.m_ext->copy(this, learned);
}
propagate(); propagate();
m_qhead = m_trail.size(); m_qhead = m_trail.size();
m_init_freevars = m_freevars.size(); m_init_freevars = m_freevars.size();

View file

@ -126,7 +126,7 @@ public:
auto* ext = dynamic_cast<euf::solver*>(m_solver.get_extension()); auto* ext = dynamic_cast<euf::solver*>(m_solver.get_extension());
if (ext) { if (ext) {
auto& si = result->m_goal2sat.si(dst_m, m_params, result->m_solver, result->m_map, result->m_dep2asm, is_incremental()); auto& si = result->m_goal2sat.si(dst_m, m_params, result->m_solver, result->m_map, result->m_dep2asm, is_incremental());
euf::solver::scoped_set_translate st(*ext, tr, result->m_map, si); euf::solver::scoped_set_translate st(*ext, dst_m, result->m_map, si);
result->m_solver.copy(m_solver); result->m_solver.copy(m_solver);
} }
else { else {

View file

@ -3,7 +3,7 @@ Copyright (c) 2020 Microsoft Corporation
Module Name: Module Name:
ba_internalize.h ba_core.h
Abstract: Abstract:
@ -16,12 +16,13 @@ Author:
--*/ --*/
#include "sat/smt/ba_internalize.h" #include "sat/smt/ba_solver.h"
#include "ast/pb_decl_plugin.h"
namespace sat { namespace sat {
literal ba_internalize::internalize(expr* e, bool sign, bool root) { literal ba_solver::internalize(expr* e, bool sign, bool root) {
if (pb.is_pb(e)) if (m_pb.is_pb(e))
return internalize_pb(e, sign, root); return internalize_pb(e, sign, root);
if (m.is_xor(e)) if (m.is_xor(e))
return internalize_xor(e, sign, root); return internalize_xor(e, sign, root);
@ -29,13 +30,13 @@ namespace sat {
return null_literal; return null_literal;
} }
literal ba_internalize::internalize_xor(expr* e, bool sign, bool root) { literal ba_solver::internalize_xor(expr* e, bool sign, bool root) {
sat::literal_vector lits; sat::literal_vector lits;
sat::bool_var v = m_solver.add_var(true); sat::bool_var v = s().add_var(true);
lits.push_back(literal(v, true)); lits.push_back(literal(v, true));
auto add_expr = [&](expr* a) { auto add_expr = [&](expr* a) {
literal lit = si.internalize(a); literal lit = si.internalize(a);
m_solver.set_external(lit.var()); s().set_external(lit.var());
lits.push_back(lit); lits.push_back(lit);
}; };
expr* e1 = nullptr; expr* e1 = nullptr;
@ -46,34 +47,34 @@ namespace sat {
for (unsigned i = 1; i + 1 < lits.size(); ++i) { for (unsigned i = 1; i + 1 < lits.size(); ++i) {
lits[i].neg(); lits[i].neg();
} }
ba.add_xr(lits); add_xr(lits);
auto* aig = m_solver.get_cut_simplifier(); auto* aig = s().get_cut_simplifier();
if (aig) aig->add_xor(~lits.back(), lits.size() - 1, lits.c_ptr() + 1); if (aig) aig->add_xor(~lits.back(), lits.size() - 1, lits.c_ptr() + 1);
sat::literal lit(v, sign); sat::literal lit(v, sign);
return literal(v, sign); return literal(v, sign);
} }
literal ba_internalize::internalize_pb(expr* e, bool sign, bool root) { literal ba_solver::internalize_pb(expr* e, bool sign, bool root) {
SASSERT(pb.is_pb(e)); SASSERT(m_pb.is_pb(e));
app* t = to_app(e); app* t = to_app(e);
rational k = pb.get_k(t); rational k = m_pb.get_k(t);
switch (t->get_decl_kind()) { switch (t->get_decl_kind()) {
case OP_AT_MOST_K: case OP_AT_MOST_K:
return convert_at_most_k(t, k, root, sign); return convert_at_most_k(t, k, root, sign);
case OP_AT_LEAST_K: case OP_AT_LEAST_K:
return convert_at_least_k(t, k, root, sign); return convert_at_least_k(t, k, root, sign);
case OP_PB_LE: case OP_PB_LE:
if (pb.has_unit_coefficients(t)) if (m_pb.has_unit_coefficients(t))
return convert_at_most_k(t, k, root, sign); return convert_at_most_k(t, k, root, sign);
else else
return convert_pb_le(t, root, sign); return convert_pb_le(t, root, sign);
case OP_PB_GE: case OP_PB_GE:
if (pb.has_unit_coefficients(t)) if (m_pb.has_unit_coefficients(t))
return convert_at_least_k(t, k, root, sign); return convert_at_least_k(t, k, root, sign);
else else
return convert_pb_ge(t, root, sign); return convert_pb_ge(t, root, sign);
case OP_PB_EQ: case OP_PB_EQ:
if (pb.has_unit_coefficients(t)) if (m_pb.has_unit_coefficients(t))
return convert_eq_k(t, k, root, sign); return convert_eq_k(t, k, root, sign);
else else
return convert_pb_eq(t, root, sign); return convert_pb_eq(t, root, sign);
@ -83,35 +84,35 @@ namespace sat {
return null_literal; return null_literal;
} }
void ba_internalize::check_unsigned(rational const& c) { void ba_solver::check_unsigned(rational const& c) {
if (!c.is_unsigned()) { if (!c.is_unsigned()) {
throw default_exception("unsigned coefficient expected"); throw default_exception("unsigned coefficient expected");
} }
} }
void ba_internalize::convert_to_wlits(app* t, sat::literal_vector const& lits, svector<wliteral>& wlits) { void ba_solver::convert_to_wlits(app* t, sat::literal_vector const& lits, svector<wliteral>& wlits) {
for (unsigned i = 0; i < lits.size(); ++i) { for (unsigned i = 0; i < lits.size(); ++i) {
rational c = pb.get_coeff(t, i); rational c = m_pb.get_coeff(t, i);
check_unsigned(c); check_unsigned(c);
wlits.push_back(std::make_pair(c.get_unsigned(), lits[i])); wlits.push_back(std::make_pair(c.get_unsigned(), lits[i]));
} }
} }
void ba_internalize::convert_pb_args(app* t, literal_vector& lits) { void ba_solver::convert_pb_args(app* t, literal_vector& lits) {
for (expr* arg : *t) { for (expr* arg : *t) {
lits.push_back(si.internalize(arg)); lits.push_back(si.internalize(arg));
m_solver.set_external(lits.back().var()); s().set_external(lits.back().var());
} }
} }
void ba_internalize::convert_pb_args(app* t, svector<wliteral>& wlits) { void ba_solver::convert_pb_args(app* t, svector<wliteral>& wlits) {
sat::literal_vector lits; sat::literal_vector lits;
convert_pb_args(t, lits); convert_pb_args(t, lits);
convert_to_wlits(t, lits, wlits); convert_to_wlits(t, lits, wlits);
} }
literal ba_internalize::convert_pb_le(app* t, bool root, bool sign) { literal ba_solver::convert_pb_le(app* t, bool root, bool sign) {
rational k = pb.get_k(t); rational k = m_pb.get_k(t);
k.neg(); k.neg();
svector<wliteral> wlits; svector<wliteral> wlits;
convert_pb_args(t, wlits); convert_pb_args(t, wlits);
@ -120,7 +121,7 @@ namespace sat {
k += rational(wl.first); k += rational(wl.first);
} }
check_unsigned(k); check_unsigned(k);
if (root && m_solver.num_user_scopes() == 0) { if (root && s().num_user_scopes() == 0) {
unsigned k1 = k.get_unsigned(); unsigned k1 = k.get_unsigned();
if (sign) { if (sign) {
k1 = 1 - k1; k1 = 1 - k1;
@ -129,25 +130,25 @@ namespace sat {
k1 += wl.first; k1 += wl.first;
} }
} }
ba.add_pb_ge(null_bool_var, wlits, k1); add_pb_ge(null_bool_var, wlits, k1);
return null_literal; return null_literal;
} }
else { else {
bool_var v = m_solver.add_var(true); bool_var v = s().add_var(true);
literal lit(v, sign); literal lit(v, sign);
ba.add_pb_ge(v, wlits, k.get_unsigned()); add_pb_ge(v, wlits, k.get_unsigned());
TRACE("ba", tout << "root: " << root << " lit: " << lit << "\n";); TRACE("ba", tout << "root: " << root << " lit: " << lit << "\n";);
return lit; return lit;
} }
} }
literal ba_internalize::convert_pb_ge(app* t, bool root, bool sign) { literal ba_solver::convert_pb_ge(app* t, bool root, bool sign) {
rational k = pb.get_k(t); rational k = m_pb.get_k(t);
check_unsigned(k); check_unsigned(k);
svector<wliteral> wlits; svector<wliteral> wlits;
convert_pb_args(t, wlits); convert_pb_args(t, wlits);
if (root && m_solver.num_user_scopes() == 0) { if (root && s().num_user_scopes() == 0) {
unsigned k1 = k.get_unsigned(); unsigned k1 = k.get_unsigned();
if (sign) { if (sign) {
k1 = 1 - k1; k1 = 1 - k1;
@ -156,40 +157,40 @@ namespace sat {
k1 += wl.first; k1 += wl.first;
} }
} }
ba.add_pb_ge(sat::null_bool_var, wlits, k1); add_pb_ge(sat::null_bool_var, wlits, k1);
return null_literal; return null_literal;
} }
else { else {
sat::bool_var v = m_solver.add_var(true); sat::bool_var v = s().add_var(true);
sat::literal lit(v, sign); sat::literal lit(v, sign);
ba.add_pb_ge(v, wlits, k.get_unsigned()); add_pb_ge(v, wlits, k.get_unsigned());
TRACE("goal2sat", tout << "root: " << root << " lit: " << lit << "\n";); TRACE("goal2sat", tout << "root: " << root << " lit: " << lit << "\n";);
return lit; return lit;
} }
} }
literal ba_internalize::convert_pb_eq(app* t, bool root, bool sign) { literal ba_solver::convert_pb_eq(app* t, bool root, bool sign) {
rational k = pb.get_k(t); rational k = m_pb.get_k(t);
SASSERT(k.is_unsigned()); SASSERT(k.is_unsigned());
svector<wliteral> wlits; svector<wliteral> wlits;
convert_pb_args(t, wlits); convert_pb_args(t, wlits);
bool base_assert = (root && !sign && m_solver.num_user_scopes() == 0); bool base_assert = (root && !sign && s().num_user_scopes() == 0);
bool_var v1 = base_assert ? null_bool_var : m_solver.add_var(true); bool_var v1 = base_assert ? null_bool_var : s().add_var(true);
bool_var v2 = base_assert ? null_bool_var : m_solver.add_var(true); bool_var v2 = base_assert ? null_bool_var : s().add_var(true);
ba.add_pb_ge(v1, wlits, k.get_unsigned()); add_pb_ge(v1, wlits, k.get_unsigned());
k.neg(); k.neg();
for (wliteral& wl : wlits) { for (wliteral& wl : wlits) {
wl.second.neg(); wl.second.neg();
k += rational(wl.first); k += rational(wl.first);
} }
check_unsigned(k); check_unsigned(k);
ba.add_pb_ge(v2, wlits, k.get_unsigned()); add_pb_ge(v2, wlits, k.get_unsigned());
if (base_assert) { if (base_assert) {
return null_literal; return null_literal;
} }
else { else {
literal l1(v1, false), l2(v2, false); literal l1(v1, false), l2(v2, false);
bool_var v = m_solver.add_var(false); bool_var v = s().add_var(false);
literal l(v, false); literal l(v, false);
si.mk_clause(~l, l1); si.mk_clause(~l, l1);
si.mk_clause(~l, l2); si.mk_clause(~l, l2);
@ -200,23 +201,23 @@ namespace sat {
} }
} }
literal ba_internalize::convert_at_least_k(app* t, rational const& k, bool root, bool sign) { literal ba_solver::convert_at_least_k(app* t, rational const& k, bool root, bool sign) {
SASSERT(k.is_unsigned()); SASSERT(k.is_unsigned());
literal_vector lits; literal_vector lits;
convert_pb_args(t, lits); convert_pb_args(t, lits);
unsigned k2 = k.get_unsigned(); unsigned k2 = k.get_unsigned();
if (root && m_solver.num_user_scopes() == 0) { if (root && s().num_user_scopes() == 0) {
if (sign) { if (sign) {
for (literal& l : lits) l.neg(); for (literal& l : lits) l.neg();
k2 = lits.size() + 1 - k2; k2 = lits.size() + 1 - k2;
} }
ba.add_at_least(null_bool_var, lits, k2); add_at_least(null_bool_var, lits, k2);
return null_literal; return null_literal;
} }
else { else {
bool_var v = m_solver.add_var(true); bool_var v = s().add_var(true);
literal lit(v, false); literal lit(v, false);
ba.add_at_least(v, lits, k.get_unsigned()); add_at_least(v, lits, k.get_unsigned());
si.cache(t, lit); si.cache(t, lit);
if (sign) lit.neg(); if (sign) lit.neg();
TRACE("ba", tout << "root: " << root << " lit: " << lit << "\n";); TRACE("ba", tout << "root: " << root << " lit: " << lit << "\n";);
@ -224,7 +225,7 @@ namespace sat {
} }
} }
literal ba_internalize::convert_at_most_k(app* t, rational const& k, bool root, bool sign) { literal ba_solver::convert_at_most_k(app* t, rational const& k, bool root, bool sign) {
SASSERT(k.is_unsigned()); SASSERT(k.is_unsigned());
literal_vector lits; literal_vector lits;
convert_pb_args(t, lits); convert_pb_args(t, lits);
@ -232,39 +233,39 @@ namespace sat {
l.neg(); l.neg();
} }
unsigned k2 = lits.size() - k.get_unsigned(); unsigned k2 = lits.size() - k.get_unsigned();
if (root && m_solver.num_user_scopes() == 0) { if (root && s().num_user_scopes() == 0) {
if (sign) { if (sign) {
for (literal& l : lits) l.neg(); for (literal& l : lits) l.neg();
k2 = lits.size() + 1 - k2; k2 = lits.size() + 1 - k2;
} }
ba.add_at_least(null_bool_var, lits, k2); add_at_least(null_bool_var, lits, k2);
return null_literal; return null_literal;
} }
else { else {
bool_var v = m_solver.add_var(true); bool_var v = s().add_var(true);
literal lit(v, false); literal lit(v, false);
ba.add_at_least(v, lits, k2); add_at_least(v, lits, k2);
si.cache(t, lit); si.cache(t, lit);
if (sign) lit.neg(); if (sign) lit.neg();
return lit; return lit;
} }
} }
literal ba_internalize::convert_eq_k(app* t, rational const& k, bool root, bool sign) { literal ba_solver::convert_eq_k(app* t, rational const& k, bool root, bool sign) {
SASSERT(k.is_unsigned()); SASSERT(k.is_unsigned());
literal_vector lits; literal_vector lits;
convert_pb_args(t, lits); convert_pb_args(t, lits);
bool_var v1 = (root && !sign) ? null_bool_var : m_solver.add_var(true); bool_var v1 = (root && !sign) ? null_bool_var : s().add_var(true);
bool_var v2 = (root && !sign) ? null_bool_var : m_solver.add_var(true); bool_var v2 = (root && !sign) ? null_bool_var : s().add_var(true);
ba.add_at_least(v1, lits, k.get_unsigned()); add_at_least(v1, lits, k.get_unsigned());
for (literal& l : lits) { for (literal& l : lits) {
l.neg(); l.neg();
} }
ba.add_at_least(v2, lits, lits.size() - k.get_unsigned()); add_at_least(v2, lits, lits.size() - k.get_unsigned());
if (!root || sign) { if (!root || sign) {
literal l1(v1, false), l2(v2, false); literal l1(v1, false), l2(v2, false);
bool_var v = m_solver.add_var(false); bool_var v = s().add_var(false);
literal l(v, false); literal l(v, false);
si.mk_clause(~l, l1); si.mk_clause(~l, l1);
si.mk_clause(~l, l2); si.mk_clause(~l, l2);
@ -278,12 +279,12 @@ namespace sat {
} }
} }
expr_ref ba_decompile::get_card(std::function<expr_ref(sat::literal)>& lit2expr, ba_solver::card const& c) { expr_ref ba_solver::get_card(std::function<expr_ref(sat::literal)>& lit2expr, ba_solver::card const& c) {
ptr_buffer<expr> lits; ptr_buffer<expr> lits;
for (sat::literal l : c) { for (sat::literal l : c) {
lits.push_back(lit2expr(l)); lits.push_back(lit2expr(l));
} }
expr_ref fml(pb.mk_at_least_k(c.size(), lits.c_ptr(), c.k()), m); expr_ref fml(m_pb.mk_at_least_k(c.size(), lits.c_ptr(), c.k()), m);
if (c.lit() != sat::null_literal) { if (c.lit() != sat::null_literal) {
fml = m.mk_eq(lit2expr(c.lit()), fml); fml = m.mk_eq(lit2expr(c.lit()), fml);
@ -291,7 +292,7 @@ namespace sat {
return fml; return fml;
} }
expr_ref ba_decompile::get_pb(std::function<expr_ref(sat::literal)>& lit2expr, ba_solver::pb const& p) { expr_ref ba_solver::get_pb(std::function<expr_ref(sat::literal)>& lit2expr, ba_solver::pb const& p) {
ptr_buffer<expr> lits; ptr_buffer<expr> lits;
vector<rational> coeffs; vector<rational> coeffs;
for (auto const& wl : p) { for (auto const& wl : p) {
@ -299,7 +300,7 @@ namespace sat {
coeffs.push_back(rational(wl.first)); coeffs.push_back(rational(wl.first));
} }
rational k(p.k()); rational k(p.k());
expr_ref fml(pb.mk_ge(p.size(), coeffs.c_ptr(), lits.c_ptr(), k), m); expr_ref fml(m_pb.mk_ge(p.size(), coeffs.c_ptr(), lits.c_ptr(), k), m);
if (p.lit() != sat::null_literal) { if (p.lit() != sat::null_literal) {
fml = m.mk_eq(lit2expr(p.lit()), fml); fml = m.mk_eq(lit2expr(p.lit()), fml);
@ -307,7 +308,7 @@ namespace sat {
return fml; return fml;
} }
expr_ref ba_decompile::get_xor(std::function<expr_ref(sat::literal)>& lit2expr, ba_solver::xr const& x) { expr_ref ba_solver::get_xor(std::function<expr_ref(sat::literal)>& lit2expr, ba_solver::xr const& x) {
ptr_buffer<expr> lits; ptr_buffer<expr> lits;
for (sat::literal l : x) { for (sat::literal l : x) {
lits.push_back(lit2expr(l)); lits.push_back(lit2expr(l));
@ -320,16 +321,16 @@ namespace sat {
return fml; return fml;
} }
bool ba_decompile::to_formulas(std::function<expr_ref(sat::literal)>& l2e, expr_ref_vector& fmls) { bool ba_solver::to_formulas(std::function<expr_ref(sat::literal)>& l2e, expr_ref_vector& fmls) {
for (auto* c : ba.constraints()) { for (auto* c : constraints()) {
switch (c->tag()) { switch (c->tag()) {
case ba_solver::card_t: case ba_solver::card_t:
fmls.push_back(get_card(l2e, c->to_card())); fmls.push_back(get_card(l2e, c->to_card()));
break; break;
case sat::ba_solver::pb_t: case ba_solver::pb_t:
fmls.push_back(get_pb(l2e, c->to_pb())); fmls.push_back(get_pb(l2e, c->to_pb()));
break; break;
case sat::ba_solver::xr_t: case ba_solver::xr_t:
fmls.push_back(get_xor(l2e, c->to_xr())); fmls.push_back(get_xor(l2e, c->to_xr()));
break; break;
} }

View file

@ -1,73 +0,0 @@
/*++
Copyright (c) 2020 Microsoft Corporation
Module Name:
ba_internalize.h
Abstract:
INternalize methods for Boolean algebra operators.
Author:
Nikolaj Bjorner (nbjorner) 2020-08-25
--*/
#pragma once
#include "sat/smt/sat_th.h"
#include "sat/smt/ba_solver.h"
#include "ast/pb_decl_plugin.h"
namespace sat {
class ba_internalize : public th_internalizer {
typedef std::pair<unsigned, literal> wliteral;
ast_manager& m;
pb_util pb;
ba_solver& ba;
solver_core& m_solver;
sat_internalizer& si;
literal convert_eq_k(app* t, rational const& k, bool root, bool sign);
literal convert_at_most_k(app* t, rational const& k, bool root, bool sign);
literal convert_at_least_k(app* t, rational const& k, bool root, bool sign);
literal convert_pb_eq(app* t, bool root, bool sign);
literal convert_pb_le(app* t, bool root, bool sign);
literal convert_pb_ge(app* t, bool root, bool sign);
void check_unsigned(rational const& c);
void convert_to_wlits(app* t, sat::literal_vector const& lits, svector<wliteral>& wlits);
void convert_pb_args(app* t, svector<wliteral>& wlits);
void convert_pb_args(app* t, literal_vector& lits);
literal internalize_pb(expr* e, bool sign, bool root);
literal internalize_xor(expr* e, bool sign, bool root);
public:
ba_internalize(ba_solver& ba, solver_core& s, sat_internalizer& si, ast_manager& m) :
m(m), pb(m), ba(ba), m_solver(s), si(si) {}
~ba_internalize() override {}
literal internalize(expr* e, bool sign, bool root) override;
};
class ba_decompile : public sat::th_decompile {
ast_manager& m;
ba_solver& ba;
solver_core& m_solver;
pb_util pb;
expr_ref get_card(std::function<expr_ref(sat::literal)>& l2e, ba_solver::card const& c);
expr_ref get_pb(std::function<expr_ref(sat::literal)>& l2e, ba_solver::pb const& p);
expr_ref get_xor(std::function<expr_ref(sat::literal)>& l2e, ba_solver::xr const& x);
public:
ba_decompile(ba_solver& ba, solver_core& s, ast_manager& m) :
m(m), ba(ba), m_solver(s), pb(m) {}
~ba_decompile() override {}
bool to_formulas(std::function<expr_ref(sat::literal)>& l2e, expr_ref_vector& fmls) override;
};
}

View file

@ -3,7 +3,7 @@ Copyright (c) 2017 Microsoft Corporation
Module Name: Module Name:
ba_solver.cpp ba_core.cpp
Abstract: Abstract:
@ -119,8 +119,8 @@ namespace sat {
// ---------------------- // ----------------------
// card // card
ba_solver::card::card(extension* e, unsigned id, literal lit, literal_vector const& lits, unsigned k): ba_solver::card::card(unsigned id, literal lit, literal_vector const& lits, unsigned k):
pb_base(e, card_t, id, lit, lits.size(), get_obj_size(lits.size()), k) { pb_base(card_t, id, lit, lits.size(), get_obj_size(lits.size()), k) {
for (unsigned i = 0; i < size(); ++i) { for (unsigned i = 0; i < size(); ++i) {
m_lits[i] = lits[i]; m_lits[i] = lits[i];
} }
@ -146,8 +146,8 @@ namespace sat {
// ----------------------------------- // -----------------------------------
// pb // pb
ba_solver::pb::pb(extension* e, unsigned id, literal lit, svector<ba_solver::wliteral> const& wlits, unsigned k): ba_solver::pb::pb(unsigned id, literal lit, svector<ba_solver::wliteral> const& wlits, unsigned k):
pb_base(e, pb_t, id, lit, wlits.size(), get_obj_size(wlits.size()), k), pb_base(pb_t, id, lit, wlits.size(), get_obj_size(wlits.size()), k),
m_slack(0), m_slack(0),
m_num_watch(0), m_num_watch(0),
m_max_sum(0) { m_max_sum(0) {
@ -302,7 +302,7 @@ namespace sat {
SASSERT(validate_conflict(c)); SASSERT(validate_conflict(c));
if (c.is_xr() && value(lit) == l_true) lit.neg(); if (c.is_xr() && value(lit) == l_true) lit.neg();
SASSERT(value(lit) == l_false); SASSERT(value(lit) == l_false);
set_conflict(justification::mk_ext_justification(s().scope_lvl(), c.index()), ~lit); set_conflict(justification::mk_ext_justification(s().scope_lvl(), c.cindex()), ~lit);
SASSERT(inconsistent()); SASSERT(inconsistent());
} }
@ -327,7 +327,7 @@ namespace sat {
ps.push_back(drat::premise(drat::s_ext(), c.lit())); // null_literal case. ps.push_back(drat::premise(drat::s_ext(), c.lit())); // null_literal case.
drat_add(lits, ps); drat_add(lits, ps);
} }
assign(lit, justification::mk_ext_justification(s().scope_lvl(), c.index())); assign(lit, justification::mk_ext_justification(s().scope_lvl(), c.cindex()));
break; break;
} }
} }
@ -1730,21 +1730,21 @@ namespace sat {
return p; return p;
} }
ba_solver::ba_solver() ba_solver::ba_solver(ast_manager& m, sat_internalizer& si)
: m_solver(nullptr), m_lookahead(nullptr), : m(m), si(si), m_pb(m),
m_solver(nullptr), m_lookahead(nullptr),
m_constraint_id(0), m_ba(*this), m_sort(m_ba) { m_constraint_id(0), m_ba(*this), m_sort(m_ba) {
TRACE("ba", tout << this << "\n";); TRACE("ba", tout << this << "\n";);
std::cout << "mk " << this << "\n";
m_num_propagations_since_pop = 0; m_num_propagations_since_pop = 0;
} }
ba_solver::~ba_solver() { ba_solver::~ba_solver() {
m_stats.reset(); m_stats.reset();
for (constraint* c : m_constraints) { for (constraint* c : m_constraints) {
m_allocator.deallocate(c->obj_size(), c); c->deallocate(m_allocator);
} }
for (constraint* c : m_learned) { for (constraint* c : m_learned) {
m_allocator.deallocate(c->obj_size(), c); c->deallocate(m_allocator);
} }
} }
@ -1763,7 +1763,8 @@ namespace sat {
return nullptr; return nullptr;
} }
void * mem = m_allocator.allocate(card::get_obj_size(lits.size())); void * mem = m_allocator.allocate(card::get_obj_size(lits.size()));
card* c = new (mem) card(this, next_id(), lit, lits, k); constraint_base::initialize(mem, this);
card* c = new (constraint_base::ptr2mem(mem)) card(next_id(), lit, lits, k);
c->set_learned(learned); c->set_learned(learned);
add_constraint(c); add_constraint(c);
return c; return c;
@ -1832,7 +1833,8 @@ namespace sat {
return add_at_least(lit, lits, k, learned); return add_at_least(lit, lits, k, learned);
} }
void * mem = m_allocator.allocate(pb::get_obj_size(wlits.size())); void * mem = m_allocator.allocate(pb::get_obj_size(wlits.size()));
pb* p = new (mem) pb(this, next_id(), lit, wlits, k); constraint_base::initialize(mem, this);
pb* p = new (constraint_base::ptr2mem(mem)) pb(next_id(), lit, wlits, k);
p->set_learned(learned); p->set_learned(learned);
add_constraint(p); add_constraint(p);
return p; return p;
@ -2108,11 +2110,11 @@ namespace sat {
} }
bool ba_solver::is_watched(literal lit, constraint const& c) const { bool ba_solver::is_watched(literal lit, constraint const& c) const {
return get_wlist(~lit).contains(watched(c.index())); return get_wlist(~lit).contains(watched(c.cindex()));
} }
void ba_solver::unwatch_literal(literal lit, constraint& c) { void ba_solver::unwatch_literal(literal lit, constraint& c) {
watched w(c.index()); watched w(c.cindex());
get_wlist(~lit).erase(w); get_wlist(~lit).erase(w);
SASSERT(!is_watched(lit, c)); SASSERT(!is_watched(lit, c));
} }
@ -2120,7 +2122,7 @@ namespace sat {
void ba_solver::watch_literal(literal lit, constraint& c) { void ba_solver::watch_literal(literal lit, constraint& c) {
if (c.is_pure() && lit == ~c.lit()) return; if (c.is_pure() && lit == ~c.lit()) return;
SASSERT(!is_watched(lit, c)); SASSERT(!is_watched(lit, c));
watched w(c.index()); watched w(c.cindex());
get_wlist(~lit).push_back(w); get_wlist(~lit).push_back(w);
} }
@ -2425,7 +2427,7 @@ namespace sat {
constraint* c = m_learned[i]; constraint* c = m_learned[i];
if (!m_constraint_to_reinit.contains(c)) { if (!m_constraint_to_reinit.contains(c)) {
remove_constraint(*c, "gc"); remove_constraint(*c, "gc");
m_allocator.deallocate(c->obj_size(), c); c->deallocate(m_allocator);
++removed; ++removed;
} }
else { else {
@ -2639,7 +2641,7 @@ namespace sat {
get_wlist(lit).size() == 1 && get_wlist(lit).size() == 1 &&
m_clause_use_list.get(~lit).empty()) { m_clause_use_list.get(~lit).empty()) {
cp->set_pure(); cp->set_pure();
get_wlist(~lit).erase(watched(cp->index())); // just ignore assignments to false get_wlist(~lit).erase(watched(cp->cindex())); // just ignore assignments to false
} }
} }
} }
@ -3403,7 +3405,7 @@ namespace sat {
if (c.was_removed()) { if (c.was_removed()) {
clear_watch(c); clear_watch(c);
nullify_tracking_literal(c); nullify_tracking_literal(c);
m_allocator.deallocate(c.obj_size(), &c); c.deallocate(m_allocator);
} }
else if (learned && !c.learned()) { else if (learned && !c.learned()) {
m_constraints.push_back(&c); m_constraints.push_back(&c);
@ -3537,10 +3539,10 @@ namespace sat {
} }
card& c2 = c->to_card(); card& c2 = c->to_card();
SASSERT(c1.index() != c2.index()); SASSERT(&c1 != &c2);
if (subsumes(c1, c2, slit)) { if (subsumes(c1, c2, slit)) {
if (slit.empty()) { if (slit.empty()) {
TRACE("ba", tout << "subsume cardinality\n" << c1 << "\n" << c2.index() << ":" << c2 << "\n";); TRACE("ba", tout << "subsume cardinality\n" << c1 << "\n" << c2 << "\n";);
remove_constraint(c2, "subsumed"); remove_constraint(c2, "subsumed");
++m_stats.m_num_pb_subsumes; ++m_stats.m_num_pb_subsumes;
set_non_learned(c1); set_non_learned(c1);
@ -3713,22 +3715,14 @@ namespace sat {
} }
extension* ba_solver::copy(solver* s) { extension* ba_solver::copy(solver* s) {
ba_solver* result = alloc(ba_solver); return fresh(s, m, si);
}
th_solver* ba_solver::fresh(solver* s, ast_manager& m, sat_internalizer& si) {
ba_solver* result = alloc(ba_solver, m, si);
result->set_solver(s); result->set_solver(s);
copy_core(result, false);
return result;
}
extension* ba_solver::copy(lookahead* s, bool learned) {
ba_solver* result = alloc(ba_solver);
result->set_lookahead(s);
copy_core(result, learned);
return result;
}
void ba_solver::copy_core(ba_solver* result, bool learned) {
copy_constraints(result, m_constraints); copy_constraints(result, m_constraints);
if (learned) copy_constraints(result, m_learned); return result;
} }
void ba_solver::copy_constraints(ba_solver* result, ptr_vector<constraint> const& constraints) { void ba_solver::copy_constraints(ba_solver* result, ptr_vector<constraint> const& constraints) {
@ -3768,7 +3762,7 @@ namespace sat {
void ba_solver::init_use_list(ext_use_list& ul) { void ba_solver::init_use_list(ext_use_list& ul) {
ul.init(s().num_vars()); ul.init(s().num_vars());
for (constraint const* cp : m_constraints) { for (constraint const* cp : m_constraints) {
ext_constraint_idx idx = cp->index(); ext_constraint_idx idx = cp->cindex();
if (cp->lit() != null_literal) { if (cp->lit() != null_literal) {
ul.insert(cp->lit(), idx); ul.insert(cp->lit(), idx);
ul.insert(~cp->lit(), idx); ul.insert(~cp->lit(), idx);

View file

@ -25,15 +25,17 @@ Revision History:
#include "sat/sat_lookahead.h" #include "sat/sat_lookahead.h"
#include "sat/sat_big.h" #include "sat/sat_big.h"
#include "sat/smt/sat_smt.h" #include "sat/smt/sat_smt.h"
#include "sat/smt/sat_th.h"
#include "util/small_object_allocator.h" #include "util/small_object_allocator.h"
#include "util/scoped_ptr_vector.h" #include "util/scoped_ptr_vector.h"
#include "util/sorting_network.h" #include "util/sorting_network.h"
#include "ast/pb_decl_plugin.h"
namespace sat { namespace sat {
class xor_finder; class xor_finder;
class ba_solver : public extension { class ba_solver : public th_solver {
friend class local_search; friend class local_search;
@ -65,7 +67,7 @@ namespace sat {
class xr; class xr;
class pb_base; class pb_base;
class constraint : public index_base { class constraint {
protected: protected:
tag_t m_tag; tag_t m_tag;
bool m_removed; bool m_removed;
@ -79,19 +81,11 @@ namespace sat {
unsigned m_id; unsigned m_id;
bool m_pure; // is the constraint pure (only positive occurrences) bool m_pure; // is the constraint pure (only positive occurrences)
public: public:
constraint(extension* e, tag_t t, unsigned id, literal l, unsigned sz, size_t osz): constraint(tag_t t, unsigned id, literal l, unsigned sz, size_t osz):
index_base(e),
m_tag(t), m_removed(false), m_lit(l), m_watch(null_literal), m_glue(0), m_psm(0), m_size(sz), m_obj_size(osz), m_learned(false), m_id(id), m_pure(false) { m_tag(t), m_removed(false), m_lit(l), m_watch(null_literal), m_glue(0), m_psm(0), m_size(sz), m_obj_size(osz), m_learned(false), m_id(id), m_pure(false) {
std::cout << "constraint ext: " << t << " " << e << "\n";
size_t idx = reinterpret_cast<ext_constraint_idx>(this);
std::cout << "index " << idx << "\n";
std::cout << this << " " << index_base::from_index(idx) << "\n";
std::cout << e << " " << index_base::to_extension(idx) << "\n";
std::cout.flush();
}
ext_constraint_idx index() const {
return reinterpret_cast<ext_constraint_idx>(this);
} }
ext_constraint_idx cindex() const { return constraint_base::mem2base(this); }
void deallocate(small_object_allocator& a) { a.deallocate(obj_size(), constraint_base::mem2base_ptr(this)); }
unsigned id() const { return m_id; } unsigned id() const { return m_id; }
tag_t tag() const { return m_tag; } tag_t tag() const { return m_tag; }
literal lit() const { return m_lit; } literal lit() const { return m_lit; }
@ -143,8 +137,8 @@ namespace sat {
protected: protected:
unsigned m_k; unsigned m_k;
public: public:
pb_base(extension* e, tag_t t, unsigned id, literal l, unsigned sz, size_t osz, unsigned k): pb_base(tag_t t, unsigned id, literal l, unsigned sz, size_t osz, unsigned k):
constraint(e, t, id, l, sz, osz), m_k(k) { VERIFY(k < 4000000000); } constraint(t, id, l, sz, osz), m_k(k) { VERIFY(k < 4000000000); }
virtual void set_k(unsigned k) { VERIFY(k < 4000000000); m_k = k; } virtual void set_k(unsigned k) { VERIFY(k < 4000000000); m_k = k; }
virtual unsigned get_coeff(unsigned i) const { UNREACHABLE(); return 0; } virtual unsigned get_coeff(unsigned i) const { UNREACHABLE(); return 0; }
unsigned k() const { return m_k; } unsigned k() const { return m_k; }
@ -154,8 +148,8 @@ namespace sat {
class card : public pb_base { class card : public pb_base {
literal m_lits[0]; literal m_lits[0];
public: public:
static size_t get_obj_size(unsigned num_lits) { return sizeof(card) + num_lits * sizeof(literal); } static size_t get_obj_size(unsigned num_lits) { return constraint_base::obj_size(sizeof(card) + num_lits * sizeof(literal)); }
card(extension* e, unsigned id, literal lit, literal_vector const& lits, unsigned k); card(unsigned id, literal lit, literal_vector const& lits, unsigned k);
literal operator[](unsigned i) const { return m_lits[i]; } literal operator[](unsigned i) const { return m_lits[i]; }
literal& operator[](unsigned i) { return m_lits[i]; } literal& operator[](unsigned i) { return m_lits[i]; }
literal const* begin() const { return m_lits; } literal const* begin() const { return m_lits; }
@ -178,8 +172,8 @@ namespace sat {
unsigned m_max_sum; unsigned m_max_sum;
wliteral m_wlits[0]; wliteral m_wlits[0];
public: public:
static size_t get_obj_size(unsigned num_lits) { return sizeof(pb) + num_lits * sizeof(wliteral); } static size_t get_obj_size(unsigned num_lits) { return constraint_base::obj_size(sizeof(pb) + num_lits * sizeof(wliteral)); }
pb(extension* e, unsigned id, literal lit, svector<wliteral> const& wlits, unsigned k); pb(unsigned id, literal lit, svector<wliteral> const& wlits, unsigned k);
literal lit() const { return m_lit; } literal lit() const { return m_lit; }
wliteral operator[](unsigned i) const { return m_wlits[i]; } wliteral operator[](unsigned i) const { return m_wlits[i]; }
wliteral& operator[](unsigned i) { return m_wlits[i]; } wliteral& operator[](unsigned i) { return m_wlits[i]; }
@ -206,8 +200,8 @@ namespace sat {
class xr : public constraint { class xr : public constraint {
literal m_lits[0]; literal m_lits[0];
public: public:
static size_t get_obj_size(unsigned num_lits) { return sizeof(xr) + num_lits * sizeof(literal); } static size_t get_obj_size(unsigned num_lits) { return constraint_base::obj_size(sizeof(xr) + num_lits * sizeof(literal)); }
xr(extension* e, unsigned id, literal_vector const& lits); xr(unsigned id, literal_vector const& lits);
literal operator[](unsigned i) const { return m_lits[i]; } literal operator[](unsigned i) const { return m_lits[i]; }
literal const* begin() const { return m_lits; } literal const* begin() const { return m_lits; }
literal const* end() const { return begin() + m_size; } literal const* end() const { return begin() + m_size; }
@ -238,6 +232,10 @@ namespace sat {
bool contains(literal l) const { for (auto wl : m_wlits) if (wl.second == l) return true; return false; } bool contains(literal l) const { for (auto wl : m_wlits) if (wl.second == l) return true; return false; }
}; };
ast_manager& m;
sat_internalizer& si;
pb_util m_pb;
solver* m_solver; solver* m_solver;
lookahead* m_lookahead; lookahead* m_lookahead;
stats m_stats; stats m_stats;
@ -343,7 +341,7 @@ namespace sat {
void remove_constraint(constraint& c, char const* reason); void remove_constraint(constraint& c, char const* reason);
// constraints // constraints
constraint& index2constraint(size_t idx) const { return *reinterpret_cast<constraint*>(idx); } constraint& index2constraint(size_t idx) const { return *reinterpret_cast<constraint*>(constraint_base::from_index(idx)->mem()); }
void pop_constraint(); void pop_constraint();
void unwatch_literal(literal w, constraint& c); void unwatch_literal(literal w, constraint& c);
void watch_literal(literal w, constraint& c); void watch_literal(literal w, constraint& c);
@ -545,8 +543,27 @@ namespace sat {
void copy_core(ba_solver* result, bool learned); void copy_core(ba_solver* result, bool learned);
void copy_constraints(ba_solver* result, ptr_vector<constraint> const& constraints); void copy_constraints(ba_solver* result, ptr_vector<constraint> const& constraints);
// Internalize
literal convert_eq_k(app* t, rational const& k, bool root, bool sign);
literal convert_at_most_k(app* t, rational const& k, bool root, bool sign);
literal convert_at_least_k(app* t, rational const& k, bool root, bool sign);
literal convert_pb_eq(app* t, bool root, bool sign);
literal convert_pb_le(app* t, bool root, bool sign);
literal convert_pb_ge(app* t, bool root, bool sign);
void check_unsigned(rational const& c);
void convert_to_wlits(app* t, sat::literal_vector const& lits, svector<wliteral>& wlits);
void convert_pb_args(app* t, svector<wliteral>& wlits);
void convert_pb_args(app* t, literal_vector& lits);
literal internalize_pb(expr* e, bool sign, bool root);
literal internalize_xor(expr* e, bool sign, bool root);
// Decompile
expr_ref get_card(std::function<expr_ref(sat::literal)>& l2e, ba_solver::card const& c);
expr_ref get_pb(std::function<expr_ref(sat::literal)>& l2e, ba_solver::pb const& p);
expr_ref get_xor(std::function<expr_ref(sat::literal)>& l2e, ba_solver::xr const& x);
public: public:
ba_solver(); ba_solver(ast_manager& m, sat_internalizer& si);
~ba_solver() override; ~ba_solver() override;
void set_solver(solver* s) override { m_solver = s; } void set_solver(solver* s) override { m_solver = s; }
void set_lookahead(lookahead* l) override { m_lookahead = l; } void set_lookahead(lookahead* l) override { m_lookahead = l; }
@ -572,7 +589,6 @@ namespace sat {
std::ostream& display_constraint(std::ostream& out, ext_constraint_idx idx) const override; std::ostream& display_constraint(std::ostream& out, ext_constraint_idx idx) const override;
void collect_statistics(statistics& st) const override; void collect_statistics(statistics& st) const override;
extension* copy(solver* s) override; extension* copy(solver* s) override;
extension* copy(lookahead* s, bool learned) override;
void find_mutexes(literal_vector& lits, vector<literal_vector> & mutexes) override; void find_mutexes(literal_vector& lits, vector<literal_vector> & mutexes) override;
void pop_reinit() override; void pop_reinit() override;
void gc() override; void gc() override;
@ -583,6 +599,10 @@ namespace sat {
bool is_blocked(literal l, ext_constraint_idx idx) override; bool is_blocked(literal l, ext_constraint_idx idx) override;
bool check_model(model const& m) const override; bool check_model(model const& m) const override;
literal internalize(expr* e, bool sign, bool root) override;
bool to_formulas(std::function<expr_ref(sat::literal)>& l2e, expr_ref_vector& fmls) override;
th_solver* fresh(solver* s, ast_manager& m, sat_internalizer& si) override;
ptr_vector<constraint> const & constraints() const { return m_constraints; } ptr_vector<constraint> const & constraints() const { return m_constraints; }
std::ostream& display(std::ostream& out, constraint const& c, bool values) const; std::ostream& display(std::ostream& out, constraint const& c, bool values) const;

View file

@ -30,20 +30,10 @@ namespace euf {
values2model(deps, values, mdl); values2model(deps, values, mdl);
} }
sat::th_model_builder* solver::get_model_builder(expr* e) const { bool solver::include_func_interp(func_decl* f) {
if (is_app(e))
return get_model_builder(to_app(e)->get_decl());
return nullptr;
}
sat::th_model_builder* solver::get_model_builder(func_decl* f) const {
return m_id2model_builder.get(f->get_family_id(), nullptr);
}
bool solver::include_func_interp(func_decl* f) const {
if (f->get_family_id() == null_family_id) if (f->get_family_id() == null_family_id)
return true; return true;
sat::th_model_builder* mb = get_model_builder(f); sat::th_model_builder* mb = get_solver(f);
return mb && mb->include_func_interp(f); return mb && mb->include_func_interp(f);
} }
@ -53,7 +43,7 @@ namespace euf {
deps.insert(n, nullptr); deps.insert(n, nullptr);
continue; continue;
} }
auto* mb = get_model_builder(n->get_owner()); auto* mb = get_solver(n->get_owner());
if (mb) if (mb)
mb->add_dep(n, deps); mb->add_dep(n, deps);
else else
@ -87,7 +77,7 @@ namespace euf {
} }
continue; continue;
} }
auto* mb = get_model_builder(e); auto* mb = get_solver(e);
if (mb) if (mb)
mb->add_value(n, values); mb->add_value(n, values);
else if (m.is_uninterp(m.get_sort(e))) { else if (m.is_uninterp(m.get_sort(e))) {

View file

@ -20,7 +20,6 @@ Author:
#include "sat/sat_solver.h" #include "sat/sat_solver.h"
#include "sat/smt/sat_smt.h" #include "sat/smt/sat_smt.h"
#include "sat/smt/ba_solver.h" #include "sat/smt/ba_solver.h"
#include "sat/smt/ba_internalize.h"
#include "sat/smt/euf_solver.h" #include "sat/smt/euf_solver.h"
namespace euf { namespace euf {
@ -32,54 +31,52 @@ namespace euf {
/** /**
* retrieve extension that is associated with Boolean variable. * retrieve extension that is associated with Boolean variable.
*/ */
sat::extension* solver::get_extension(sat::bool_var v) { sat::th_solver* solver::get_solver(sat::bool_var v) {
if (v >= m_var2node.size()) if (v >= m_var2node.size())
return nullptr; return nullptr;
euf::enode* n = m_var2node[v].first; euf::enode* n = m_var2node[v].first;
if (!n) if (!n)
return nullptr; return nullptr;
return get_extension(n->get_owner()); return get_solver(n->get_owner());
} }
void solver::add_extension(family_id fid, sat::extension* e) { sat::th_solver* solver::get_solver(expr* e) {
m_extensions.push_back(e); if (is_app(e))
m_id2extension.setx(fid, e, nullptr); return fid2solver(to_app(e)->get_family_id());
}
sat::extension* solver::get_extension(expr* e) {
if (is_app(e)) {
auto fid = to_app(e)->get_family_id();
if (fid == null_family_id)
return nullptr;
auto* ext = m_id2extension.get(fid, nullptr);
if (ext)
return ext;
pb_util pb(m);
if (pb.is_pb(e)) {
auto* ba = alloc(sat::ba_solver);
ba->set_solver(m_solver);
add_extension(pb.get_family_id(), ba);
auto* bai = alloc(sat::ba_internalize, *ba, s(), si, m);
m_id2internalize.setx(pb.get_family_id(), bai, nullptr);
m_internalizers.push_back(bai);
m_decompilers.push_back(alloc(sat::ba_decompile, *ba, s(), m));
ba->push_scopes(s().num_scopes());
std::cout << "extension ba " << ba << "\n";
return ba;
}
}
return nullptr; return nullptr;
} }
sat::th_solver* solver::fid2solver(family_id fid) {
if (fid == null_family_id)
return nullptr;
auto* ext = m_id2solver.get(fid, nullptr);
if (ext)
return ext;
pb_util pb(m);
if (pb.get_family_id() == fid) {
sat::ba_solver* ba = alloc(sat::ba_solver, m, si);
ba->set_solver(m_solver);
add_solver(pb.get_family_id(), ba);
ba->push_scopes(s().num_scopes());
return ba;
}
return nullptr;
}
void solver::add_solver(family_id fid, sat::th_solver* th) {
m_solvers.push_back(th);
m_id2solver.setx(fid, th, nullptr);
}
bool solver::propagate(literal l, ext_constraint_idx idx) { bool solver::propagate(literal l, ext_constraint_idx idx) {
auto* ext = sat::index_base::to_extension(idx); auto* ext = sat::constraint_base::to_extension(idx);
std::cout << "extension " << ext << " " << idx << "\n";
SASSERT(ext != this); SASSERT(ext != this);
return ext->propagate(l, idx); return ext->propagate(l, idx);
} }
void solver::get_antecedents(literal l, ext_justification_idx idx, literal_vector& r) { void solver::get_antecedents(literal l, ext_justification_idx idx, literal_vector& r) {
auto* ext = sat::index_base::to_extension(idx); auto* ext = sat::constraint_base::to_extension(idx);
if (ext == this) if (ext == this)
get_antecedents(l, *constraint::from_idx(idx), r); get_antecedents(l, *constraint::from_idx(idx), r);
else else
@ -110,7 +107,7 @@ namespace euf {
break; break;
case 2: case 2:
SASSERT(m.is_bool(n->get_owner())); SASSERT(m.is_bool(n->get_owner()));
m_egraph.explain_eq<unsigned>(m_explain, n, (sign ? m_false : m_true), false); m_egraph.explain_eq<unsigned>(m_explain, n, (sign ? mk_false() : mk_true()), false);
break; break;
default: default:
UNREACHABLE(); UNREACHABLE();
@ -120,7 +117,7 @@ namespace euf {
} }
void solver::asserted(literal l) { void solver::asserted(literal l) {
auto* ext = get_extension(l.var()); auto* ext = get_solver(l.var());
if (ext) { if (ext) {
ext->asserted(l); ext->asserted(l);
return; return;
@ -138,7 +135,7 @@ namespace euf {
m_egraph.merge(na, nb, base_ptr() + l.index()); m_egraph.merge(na, nb, base_ptr() + l.index());
} }
else { else {
euf::enode* nb = sign ? m_false : m_true; euf::enode* nb = sign ? mk_false() : mk_true();
m_egraph.merge(n, nb, base_ptr() + l.index()); m_egraph.merge(n, nb, base_ptr() + l.index());
} }
// TBD: delay propagation? // TBD: delay propagation?
@ -148,7 +145,7 @@ namespace euf {
void solver::propagate() { void solver::propagate() {
m_egraph.propagate(); m_egraph.propagate();
if (m_egraph.inconsistent()) { if (m_egraph.inconsistent()) {
s().set_conflict(sat::justification::mk_ext_justification(s().scope_lvl(), m_conflict_idx.to_index())); s().set_conflict(sat::justification::mk_ext_justification(s().scope_lvl(), conflict_constraint().to_index()));
return; return;
} }
for (euf::enode* eq : m_egraph.new_eqs()) { for (euf::enode* eq : m_egraph.new_eqs()) {
@ -156,7 +153,7 @@ namespace euf {
expr* a = nullptr, *b = nullptr; expr* a = nullptr, *b = nullptr;
if (s().value(v) == l_false && m_ackerman && m.is_eq(eq->get_owner(), a, b)) if (s().value(v) == l_false && m_ackerman && m.is_eq(eq->get_owner(), a, b))
m_ackerman->cg_conflict_eh(a, b); m_ackerman->cg_conflict_eh(a, b);
s().assign(literal(v, false), sat::justification::mk_ext_justification(s().scope_lvl(), m_eq_idx.to_index())); s().assign(literal(v, false), sat::justification::mk_ext_justification(s().scope_lvl(), eq_constraint().to_index()));
} }
for (euf::enode* p : m_egraph.new_lits()) { for (euf::enode* p : m_egraph.new_lits()) {
expr* e = p->get_owner(); expr* e = p->get_owner();
@ -167,14 +164,31 @@ namespace euf {
literal lit(v, sign); literal lit(v, sign);
if (s().value(lit) == l_false && m_ackerman) if (s().value(lit) == l_false && m_ackerman)
m_ackerman->cg_conflict_eh(p->get_owner(), p->get_root()->get_owner()); m_ackerman->cg_conflict_eh(p->get_owner(), p->get_root()->get_owner());
s().assign(lit, sat::justification::mk_ext_justification(s().scope_lvl(), m_lit_idx.to_index())); s().assign(lit, sat::justification::mk_ext_justification(s().scope_lvl(), lit_constraint().to_index()));
} }
} }
constraint& solver::mk_constraint(constraint*& c, unsigned id) {
if (!c) {
void* mem = memory::allocate(sat::constraint_base::obj_size(sizeof(constraint)));
c = new (sat::constraint_base::ptr2mem(mem)) constraint(id);
sat::constraint_base::initialize(mem, this);
}
return *c;
}
enode* solver::mk_true() {
return visit(m.mk_true());
}
enode* solver::mk_false() {
return visit(m.mk_false());
}
sat::check_result solver::check() { sat::check_result solver::check() {
bool give_up = false; bool give_up = false;
bool cont = false; bool cont = false;
for (auto* e : m_extensions) for (auto* e : m_solvers)
switch (e->check()) { switch (e->check()) {
case sat::CR_CONTINUE: cont = true; break; case sat::CR_CONTINUE: cont = true; break;
case sat::CR_GIVEUP: give_up = true; break; case sat::CR_GIVEUP: give_up = true; break;
@ -188,7 +202,7 @@ namespace euf {
} }
void solver::push() { void solver::push() {
for (auto* e : m_extensions) for (auto* e : m_solvers)
e->push(); e->push();
m_egraph.push(); m_egraph.push();
++m_num_scopes; ++m_num_scopes;
@ -196,7 +210,7 @@ namespace euf {
void solver::pop(unsigned n) { void solver::pop(unsigned n) {
m_egraph.pop(n); m_egraph.pop(n);
for (auto* e : m_extensions) for (auto* e : m_solvers)
e->pop(n); e->pop(n);
if (n <= m_num_scopes) { if (n <= m_num_scopes) {
m_num_scopes -= n; m_num_scopes -= n;
@ -212,24 +226,24 @@ namespace euf {
} }
void solver::pre_simplify() { void solver::pre_simplify() {
for (auto* e : m_extensions) for (auto* e : m_solvers)
e->pre_simplify(); e->pre_simplify();
} }
void solver::simplify() { void solver::simplify() {
for (auto* e : m_extensions) for (auto* e : m_solvers)
e->simplify(); e->simplify();
if (m_ackerman) if (m_ackerman)
m_ackerman->propagate(); m_ackerman->propagate();
} }
void solver::clauses_modifed() { void solver::clauses_modifed() {
for (auto* e : m_extensions) for (auto* e : m_solvers)
e->clauses_modifed(); e->clauses_modifed();
} }
lbool solver::get_phase(bool_var v) { lbool solver::get_phase(bool_var v) {
auto* ext = get_extension(v); auto* ext = get_solver(v);
if (ext) if (ext)
return ext->get_phase(v); return ext->get_phase(v);
return l_undef; return l_undef;
@ -237,20 +251,20 @@ namespace euf {
std::ostream& solver::display(std::ostream& out) const { std::ostream& solver::display(std::ostream& out) const {
m_egraph.display(out); m_egraph.display(out);
for (auto* e : m_extensions) for (auto* e : m_solvers)
e->display(out); e->display(out);
return out; return out;
} }
std::ostream& solver::display_justification(std::ostream& out, ext_justification_idx idx) const { std::ostream& solver::display_justification(std::ostream& out, ext_justification_idx idx) const {
auto* ext = sat::index_base::to_extension(idx); auto* ext = sat::constraint_base::to_extension(idx);
if (ext != this) if (ext != this)
return ext->display_justification(out, idx); return ext->display_justification(out, idx);
return out; return out;
} }
std::ostream& solver::display_constraint(std::ostream& out, ext_constraint_idx idx) const { std::ostream& solver::display_constraint(std::ostream& out, ext_constraint_idx idx) const {
auto* ext = sat::index_base::to_extension(idx); auto* ext = sat::constraint_base::to_extension(idx);
if (ext != this) if (ext != this)
return ext->display_constraint(out, idx); return ext->display_constraint(out, idx);
return out; return out;
@ -258,89 +272,68 @@ namespace euf {
void solver::collect_statistics(statistics& st) const { void solver::collect_statistics(statistics& st) const {
m_egraph.collect_statistics(st); m_egraph.collect_statistics(st);
for (auto* e : m_extensions) for (auto* e : m_solvers)
e->collect_statistics(st); e->collect_statistics(st);
st.update("euf dynack", m_stats.m_num_dynack); st.update("euf dynack", m_stats.m_num_dynack);
} }
solver* solver::copy_core() {
ast_manager& to = m_translate ? m_translate->to() : m;
atom2bool_var& a2b = m_translate_expr2var ? *m_translate_expr2var : m_expr2var;
sat::sat_internalizer& to_si = m_translate_si ? *m_translate_si : si;
auto* r = alloc(solver, to, a2b, to_si);
r->m_config = m_config;
std::function<void*(void*)> copy_justification = [&](void* x) { return (void*)(r->base_ptr() + ((unsigned*)x - base_ptr())); };
r->m_egraph.copy_from(m_egraph, copy_justification);
return r;
}
sat::extension* solver::copy(sat::solver* s) { sat::extension* solver::copy(sat::solver* s) {
auto* r = copy_core(); auto* r = alloc(solver, *m_to_m, *m_to_expr2var, *m_to_si);
r->set_solver(s); r->m_config = m_config;
for (unsigned i = 0; i < m_id2extension.size(); ++i) { std::function<void* (void*)> copy_justification = [&](void* x) { return (void*)(r->base_ptr() + ((unsigned*)x - base_ptr())); };
auto* e = m_id2extension[i]; r->m_egraph.copy_from(m_egraph, copy_justification);
if (e) r->set_solver(s);
r->add_extension(i, e->copy(s)); for (unsigned i = 0; i < m_id2solver.size(); ++i) {
} auto* e = m_id2solver[i];
if (e)
return r; r->add_solver(i, e->fresh(s, *m_to_m, *m_to_si));
} }
sat::extension* solver::copy(sat::lookahead* s, bool learned) {
(void) learned;
auto* r = copy_core();
r->set_lookahead(s);
for (unsigned i = 0; i < m_id2extension.size(); ++i) {
auto* e = m_id2extension[i];
if (e)
r->add_extension(i, e->copy(s, learned));
}
return r; return r;
} }
void solver::find_mutexes(literal_vector& lits, vector<literal_vector> & mutexes) { void solver::find_mutexes(literal_vector& lits, vector<literal_vector> & mutexes) {
for (auto* e : m_extensions) for (auto* e : m_solvers)
e->find_mutexes(lits, mutexes); e->find_mutexes(lits, mutexes);
} }
void solver::gc() { void solver::gc() {
for (auto* e : m_extensions) for (auto* e : m_solvers)
e->gc(); e->gc();
} }
void solver::pop_reinit() { void solver::pop_reinit() {
for (auto* e : m_extensions) for (auto* e : m_solvers)
e->pop_reinit(); e->pop_reinit();
} }
bool solver::validate() { bool solver::validate() {
for (auto* e : m_extensions) for (auto* e : m_solvers)
if (!e->validate()) if (!e->validate())
return false; return false;
return true; return true;
} }
void solver::init_use_list(sat::ext_use_list& ul) { void solver::init_use_list(sat::ext_use_list& ul) {
for (auto* e : m_extensions) for (auto* e : m_solvers)
e->init_use_list(ul); e->init_use_list(ul);
} }
bool solver::is_blocked(literal l, ext_constraint_idx idx) { bool solver::is_blocked(literal l, ext_constraint_idx idx) {
auto* ext = sat::index_base::to_extension(idx); auto* ext = sat::constraint_base::to_extension(idx);
if (ext != this) if (ext != this)
return is_blocked(l, idx); return is_blocked(l, idx);
return false; return false;
} }
bool solver::check_model(sat::model const& m) const { bool solver::check_model(sat::model const& m) const {
for (auto* e : m_extensions) for (auto* e : m_solvers)
if (!e->check_model(m)) if (!e->check_model(m))
return false; return false;
return true; return true;
} }
unsigned solver::max_var(unsigned w) const { unsigned solver::max_var(unsigned w) const {
for (auto* e : m_extensions) for (auto* e : m_solvers)
w = e->max_var(w); w = e->max_var(w);
for (unsigned sz = m_var2node.size(); sz-- > 0; ) { for (unsigned sz = m_var2node.size(); sz-- > 0; ) {
euf::enode* n = m_var2node[sz].first; euf::enode* n = m_var2node[sz].first;
@ -368,25 +361,10 @@ namespace euf {
m_egraph.set_used_cc(used_cc); m_egraph.set_used_cc(used_cc);
} }
sat::th_internalizer* solver::get_internalizer(expr* e) {
if (is_app(e))
return m_id2internalize.get(to_app(e)->get_family_id(), nullptr);
if (m.is_iff(e)) {
pb_util pb(m);
return m_id2internalize.get(pb.get_family_id(), nullptr);
}
return nullptr;
}
sat::literal solver::internalize(expr* e, bool sign, bool root) { sat::literal solver::internalize(expr* e, bool sign, bool root) {
auto* ext = get_internalizer(e); auto* ext = get_solver(e);
if (ext) if (ext)
return ext->internalize(e, sign, root); return ext->internalize(e, sign, root);
if (!m_true) {
m_true = visit(m.mk_true());
m_false = visit(m.mk_false());
}
std::cout << mk_pp(e, m) << "\n"; std::cout << mk_pp(e, m) << "\n";
SASSERT(!si.is_bool_op(e)); SASSERT(!si.is_bool_op(e));
sat::scoped_stack _sc(m_stack); sat::scoped_stack _sc(m_stack);
@ -466,7 +444,7 @@ namespace euf {
} }
bool solver::to_formulas(std::function<expr_ref(sat::literal)>& l2e, expr_ref_vector& fmls) { bool solver::to_formulas(std::function<expr_ref(sat::literal)>& l2e, expr_ref_vector& fmls) {
for (auto* th : m_decompilers) { for (auto* th : m_solvers) {
if (!th->to_formulas(l2e, fmls)) if (!th->to_formulas(l2e, fmls))
return false; return false;
} }
@ -479,9 +457,7 @@ namespace euf {
bool solver::extract_pb(std::function<void(unsigned sz, literal const* c, unsigned k)>& card, bool solver::extract_pb(std::function<void(unsigned sz, literal const* c, unsigned k)>& card,
std::function<void(unsigned sz, literal const* c, unsigned const* coeffs, unsigned k)>& pb) { std::function<void(unsigned sz, literal const* c, unsigned const* coeffs, unsigned k)>& pb) {
if (m_true) for (auto* e : m_solvers)
return false;
for (auto* e : m_extensions)
if (!e->extract_pb(card, pb)) if (!e->extract_pb(card, pb))
return false; return false;
return true; return true;

View file

@ -33,14 +33,15 @@ namespace euf {
typedef sat::literal_vector literal_vector; typedef sat::literal_vector literal_vector;
typedef sat::bool_var bool_var; typedef sat::bool_var bool_var;
class constraint : public sat::index_base { class constraint {
unsigned m_id; unsigned m_id;
public: public:
constraint(sat::extension* e, unsigned id) : constraint(unsigned id) :
index_base(e), m_id(id) m_id(id)
{} {}
unsigned id() const { return m_id; } unsigned id() const { return m_id; }
static constraint* from_idx(size_t z) { return reinterpret_cast<constraint*>(z); } static constraint* from_idx(size_t z) { return reinterpret_cast<constraint*>(z); }
size_t to_index() const { return sat::constraint_base::mem2base(this); }
}; };
class solver : public sat::extension, public sat::th_internalizer, public sat::th_decompile { class solver : public sat::extension, public sat::th_internalizer, public sat::th_decompile {
@ -60,13 +61,11 @@ namespace euf {
stats m_stats; stats m_stats;
sat::solver* m_solver { nullptr }; sat::solver* m_solver { nullptr };
sat::lookahead* m_lookahead { nullptr }; sat::lookahead* m_lookahead { nullptr };
ast_translation* m_translate { nullptr }; ast_manager* m_to_m { nullptr };
atom2bool_var* m_translate_expr2var { nullptr }; atom2bool_var* m_to_expr2var { nullptr };
sat::sat_internalizer* m_translate_si{ nullptr }; sat::sat_internalizer* m_to_si{ nullptr };
scoped_ptr<ackerman> m_ackerman; scoped_ptr<ackerman> m_ackerman;
euf::enode* m_true { nullptr };
euf::enode* m_false { nullptr };
svector<euf::enode_bool_pair> m_var2node; svector<euf::enode_bool_pair> m_var2node;
ptr_vector<unsigned> m_explain; ptr_vector<unsigned> m_explain;
euf::enode_vector m_args; euf::enode_vector m_args;
@ -74,35 +73,33 @@ namespace euf {
unsigned m_num_scopes { 0 }; unsigned m_num_scopes { 0 };
unsigned_vector m_bool_var_trail; unsigned_vector m_bool_var_trail;
unsigned_vector m_bool_var_lim; unsigned_vector m_bool_var_lim;
scoped_ptr_vector<sat::extension> m_extensions; scoped_ptr_vector<sat::th_solver> m_solvers;
ptr_vector<sat::extension> m_id2extension; ptr_vector<sat::th_solver> m_id2solver;
ptr_vector<sat::th_internalizer> m_id2internalize;
scoped_ptr_vector<sat::th_internalizer> m_internalizers; constraint* m_conflict { nullptr };
scoped_ptr_vector<sat::th_model_builder> m_model_builders; constraint* m_eq { nullptr };
ptr_vector<sat::th_model_builder> m_id2model_builder; constraint* m_lit { nullptr };
scoped_ptr_vector<sat::th_decompile> m_decompilers;
constraint m_conflict_idx, m_eq_idx, m_lit_idx;
sat::solver& s() { return *m_solver; } sat::solver& s() { return *m_solver; }
unsigned * base_ptr() { return reinterpret_cast<unsigned*>(this); } unsigned * base_ptr() { return reinterpret_cast<unsigned*>(this); }
// internalization // internalization
sat::th_internalizer* get_internalizer(expr* e);
euf::enode* visit(expr* e); euf::enode* visit(expr* e);
void attach_bool_var(euf::enode* n); void attach_bool_var(euf::enode* n);
void attach_bool_var(sat::bool_var v, bool sign, euf::enode* n); void attach_bool_var(sat::bool_var v, bool sign, euf::enode* n);
solver* copy_core(); euf::enode* mk_true();
euf::enode* mk_false();
// extensions // extensions
sat::extension* get_extension(sat::bool_var v); sat::th_solver* get_solver(func_decl* f) { return fid2solver(f->get_family_id()); }
sat::extension* get_extension(expr* e); sat::th_solver* get_solver(expr* e);
void add_extension(family_id fid, sat::extension* e); sat::th_solver* get_solver(sat::bool_var v);
sat::th_solver* fid2solver(family_id fid);
void add_solver(family_id fid, sat::th_solver* th);
void init_ackerman(); void init_ackerman();
// model building // model building
bool include_func_interp(func_decl* f) const; bool include_func_interp(func_decl* f);
sat::th_model_builder* get_model_builder(expr* e) const;
sat::th_model_builder* get_model_builder(func_decl* f) const;
void register_macros(model& mdl); void register_macros(model& mdl);
void dependencies2values(deps_t& deps, expr_ref_vector& values, model_ref const& mdl); void dependencies2values(deps_t& deps, expr_ref_vector& values, model_ref const& mdl);
void collect_dependencies(deps_t& deps); void collect_dependencies(deps_t& deps);
@ -112,6 +109,11 @@ namespace euf {
void propagate(); void propagate();
void get_antecedents(literal l, constraint& j, literal_vector& r); void get_antecedents(literal l, constraint& j, literal_vector& r);
constraint& mk_constraint(constraint*& c, unsigned id);
constraint& conflict_constraint() { return mk_constraint(m_conflict, 0); }
constraint& eq_constraint() { return mk_constraint(m_eq, 1); }
constraint& lit_constraint() { return mk_constraint(m_lit, 2); }
public: public:
solver(ast_manager& m, atom2bool_var& expr2var, sat::sat_internalizer& si, params_ref const& p = params_ref()): solver(ast_manager& m, atom2bool_var& expr2var, sat::sat_internalizer& si, params_ref const& p = params_ref()):
m(m), m(m),
@ -120,31 +122,31 @@ namespace euf {
m_egraph(m), m_egraph(m),
m_solver(nullptr), m_solver(nullptr),
m_lookahead(nullptr), m_lookahead(nullptr),
m_translate(nullptr), m_to_m(&m),
m_translate_expr2var(nullptr), m_to_expr2var(&expr2var),
m_true(nullptr), m_to_si(&si)
m_false(nullptr),
m_conflict_idx(this, 0),
m_eq_idx(this, 1),
m_lit_idx(this, 2)
{ {
updt_params(p); updt_params(p);
} }
~solver() override {} ~solver() override {
if (m_conflict) dealloc(sat::constraint_base::mem2base_ptr(m_conflict));
if (m_eq) dealloc(sat::constraint_base::mem2base_ptr(m_eq));
if (m_lit) dealloc(sat::constraint_base::mem2base_ptr(m_lit));
}
void updt_params(params_ref const& p); void updt_params(params_ref const& p);
void set_solver(sat::solver* s) override { m_solver = s; } void set_solver(sat::solver* s) override { m_solver = s; }
void set_lookahead(sat::lookahead* s) override { m_lookahead = s; } void set_lookahead(sat::lookahead* s) override { m_lookahead = s; }
struct scoped_set_translate { struct scoped_set_translate {
solver& s; solver& s;
scoped_set_translate(solver& s, ast_translation& t, atom2bool_var& a2b, sat::sat_internalizer& si) : scoped_set_translate(solver& s, ast_manager& m, atom2bool_var& a2b, sat::sat_internalizer& si) :
s(s) { s(s) {
s.m_translate = &t; s.m_to_m = &m;
s.m_translate_expr2var = &a2b; s.m_to_expr2var = &a2b;
s.m_translate_si = &si; s.m_to_si = &si;
} }
~scoped_set_translate() { s.m_translate = nullptr; s.m_translate_expr2var = nullptr; s.m_translate_si = nullptr; } ~scoped_set_translate() { s.m_to_m = &s.m; s.m_to_expr2var = &s.m_expr2var; s.m_to_si = &s.si; }
}; };
double get_reward(literal l, ext_constraint_idx idx, sat::literal_occs_fun& occs) const override { return 0; } double get_reward(literal l, ext_constraint_idx idx, sat::literal_occs_fun& occs) const override { return 0; }
bool is_extended_binary(ext_justification_idx idx, literal_vector & r) override { return false; } bool is_extended_binary(ext_justification_idx idx, literal_vector & r) override { return false; }
@ -165,7 +167,6 @@ namespace euf {
std::ostream& display_constraint(std::ostream& out, ext_constraint_idx idx) const override; std::ostream& display_constraint(std::ostream& out, ext_constraint_idx idx) const override;
void collect_statistics(statistics& st) const override; void collect_statistics(statistics& st) const override;
extension* copy(sat::solver* s) override; extension* copy(sat::solver* s) override;
extension* copy(sat::lookahead* s, bool learned) override;
void find_mutexes(literal_vector& lits, vector<literal_vector> & mutexes) override; void find_mutexes(literal_vector& lits, vector<literal_vector> & mutexes) override;
void gc() override; void gc() override;
void pop_reinit() override; void pop_reinit() override;

View file

@ -14,9 +14,6 @@ Author:
Nikolaj Bjorner (nbjorner) 2020-08-25 Nikolaj Bjorner (nbjorner) 2020-08-25
--*/ --*/
#pragma once
#pragma once #pragma once
#include "ast/ast.h" #include "ast/ast.h"
#include "ast/ast_pp.h" #include "ast/ast_pp.h"
@ -41,19 +38,59 @@ namespace sat {
public: public:
virtual ~sat_internalizer() {} virtual ~sat_internalizer() {}
virtual bool is_bool_op(expr* e) const = 0; virtual bool is_bool_op(expr* e) const = 0;
virtual sat::literal internalize(expr* e) = 0; virtual literal internalize(expr* e) = 0;
virtual sat::bool_var add_bool_var(expr* e) = 0; virtual bool_var add_bool_var(expr* e) = 0;
virtual void mk_clause(literal a, literal b) = 0; virtual void mk_clause(literal a, literal b) = 0;
virtual void mk_clause(literal l1, literal l2, literal l3, bool is_lemma = false) = 0; virtual void mk_clause(literal l1, literal l2, literal l3, bool is_lemma = false) = 0;
virtual void cache(app* t, literal l) = 0; virtual void cache(app* t, literal l) = 0;
}; };
class index_base { class constraint_base {
extension* ex; extension* m_ex;
unsigned m_mem[0];
static size_t ext_size() {
return sizeof(((constraint_base*)nullptr)->m_ex);
}
public: public:
index_base(extension* e) : ex(e) { to_index(); } constraint_base(): m_ex(nullptr) {}
static extension* to_extension(size_t s) { std::cout << "to_extension: " << from_index(s) << " " << from_index(s)->ex << " " << s << "\n"; return from_index(s)->ex; } void* mem() { return m_mem; }
static index_base* from_index(size_t s) { return reinterpret_cast<index_base*>(s); }
size_t to_index() const { std::cout << "to_index " << this << " " << ex << " " << reinterpret_cast<size_t>(this) << "\n"; return reinterpret_cast<size_t>(this); } static size_t obj_size(size_t sz) {
return ext_size() + sz;
}
static extension* to_extension(size_t s) {
return from_index(s)->m_ex;
}
static constraint_base* from_index(size_t s) {
return reinterpret_cast<constraint_base*>(s);
}
size_t to_index() const {
return reinterpret_cast<size_t>(this);
}
static constraint_base const* mem2base_ptr(void const* mem) {
return reinterpret_cast<constraint_base const*>((unsigned char const*)(mem) - ext_size());
}
static constraint_base* mem2base_ptr(void* mem) {
return reinterpret_cast<constraint_base*>((unsigned char*)(mem) - ext_size());
}
static size_t mem2base(void const* mem) {
return reinterpret_cast<size_t>(mem2base_ptr(mem));
}
static void initialize(void* ptr, extension* ext) {
reinterpret_cast<constraint_base*>(ptr)->m_ex = ext;
}
static void* ptr2mem(void* ptr) {
return reinterpret_cast<void*>(((unsigned char*) ptr) + ext_size());
}
}; };
} }

View file

@ -47,12 +47,12 @@ namespace sat {
\brief compute the value for enode \c n and store the value in \c values \brief compute the value for enode \c n and store the value in \c values
for the root of the class of \c n. for the root of the class of \c n.
*/ */
virtual void add_value(euf::enode* n, expr_ref_vector& values) = 0; virtual void add_value(euf::enode* n, expr_ref_vector& values) {}
/** /**
\brief compute dependencies for node n \brief compute dependencies for node n
*/ */
virtual void add_dep(euf::enode* n, top_sort<euf::enode>& dep) = 0; virtual void add_dep(euf::enode* n, top_sort<euf::enode>& dep) {}
/** /**
\brief should function be included in model. \brief should function be included in model.
@ -61,24 +61,10 @@ namespace sat {
}; };
class th_solver : public extension, public th_model_builder, public th_decompile, public th_internalizer { class th_solver : public extension, public th_model_builder, public th_decompile, public th_internalizer {
public:
virtual ~th_solver() {} virtual ~th_solver() {}
/** virtual th_solver* fresh(solver* s, ast_manager& m, sat_internalizer& si) = 0;
\brief compute the value for enode \c n and store the value in \c values
for the root of the class of \c n.
*/
virtual void add_value(euf::enode* n, expr_ref_vector& values) = 0;
/**
\brief compute dependencies for node n
*/
virtual void add_dep(euf::enode* n, top_sort<euf::enode>& dep) = 0;
/**
\brief should function be included in model.
*/
virtual bool include_func_interp(func_decl* f) const { return false; }
}; };

View file

@ -33,8 +33,8 @@ namespace sat {
return static_cast<xr const&>(*this); return static_cast<xr const&>(*this);
} }
ba_solver::xr::xr(extension* e, unsigned id, literal_vector const& lits): ba_solver::xr::xr(unsigned id, literal_vector const& lits):
constraint(e, xr_t, id, null_literal, lits.size(), get_obj_size(lits.size())) { constraint(xr_t, id, null_literal, lits.size(), get_obj_size(lits.size())) {
for (unsigned i = 0; i < size(); ++i) { for (unsigned i = 0; i < size(); ++i) {
m_lits[i] = lits[i]; m_lits[i] = lits[i];
} }
@ -264,7 +264,8 @@ namespace sat {
break; break;
} }
void * mem = m_allocator.allocate(xr::get_obj_size(lits.size())); void * mem = m_allocator.allocate(xr::get_obj_size(lits.size()));
xr* x = new (mem) xr(this, next_id(), lits); constraint_base::initialize(mem, this);
xr* x = new (constraint_base::ptr2mem(mem)) xr(next_id(), lits);
x->set_learned(learned); x->set_learned(learned);
add_constraint(x); add_constraint(x);
return x; return x;

View file

@ -35,7 +35,6 @@ Notes:
#include "ast/for_each_expr.h" #include "ast/for_each_expr.h"
#include "sat/tactic/goal2sat.h" #include "sat/tactic/goal2sat.h"
#include "sat/sat_cut_simplifier.h" #include "sat/sat_cut_simplifier.h"
#include "sat/smt/ba_internalize.h"
#include "sat/smt/ba_solver.h" #include "sat/smt/ba_solver.h"
#include "sat/smt/euf_solver.h" #include "sat/smt/euf_solver.h"
#include "model/model_evaluator.h" #include "model/model_evaluator.h"
@ -95,7 +94,6 @@ struct goal2sat::imp : public sat::sat_internalizer {
m_max_memory = megabytes_to_bytes(p.get_uint("max_memory", UINT_MAX)); m_max_memory = megabytes_to_bytes(p.get_uint("max_memory", UINT_MAX));
m_xor_solver = p.get_bool("xor_solver", false); m_xor_solver = p.get_bool("xor_solver", false);
m_euf = false; m_euf = false;
m_euf = true;
} }
void throw_op_not_handled(std::string const& s) { void throw_op_not_handled(std::string const& s) {
@ -220,6 +218,7 @@ struct goal2sat::imp : public sat::sat_internalizer {
} }
bool visit(expr * t, bool root, bool sign) { bool visit(expr * t, bool root, bool sign) {
SASSERT(m.is_bool(t));
if (!is_app(t)) { if (!is_app(t)) {
convert_atom(t, root, sign); convert_atom(t, root, sign);
return true; return true;
@ -232,10 +231,12 @@ struct goal2sat::imp : public sat::sat_internalizer {
case OP_NOT: case OP_NOT:
case OP_OR: case OP_OR:
case OP_AND: case OP_AND:
case OP_ITE:
case OP_XOR:
case OP_IMPLIES:
m_frame_stack.push_back(frame(to_app(t), root, sign, 0)); m_frame_stack.push_back(frame(to_app(t), root, sign, 0));
return false; return false;
case OP_ITE: case OP_EQ:
case OP_EQ:
if (m.is_bool(to_app(t)->get_arg(1))) { if (m.is_bool(to_app(t)->get_arg(1))) {
m_frame_stack.push_back(frame(to_app(t), root, sign, 0)); m_frame_stack.push_back(frame(to_app(t), root, sign, 0));
return false; return false;
@ -244,8 +245,6 @@ struct goal2sat::imp : public sat::sat_internalizer {
convert_atom(t, root, sign); convert_atom(t, root, sign);
return true; return true;
} }
case OP_XOR:
case OP_IMPLIES:
case OP_DISTINCT: { case OP_DISTINCT: {
TRACE("goal2sat_not_handled", tout << mk_ismt2_pp(t, m) << "\n";); TRACE("goal2sat_not_handled", tout << mk_ismt2_pp(t, m) << "\n";);
std::ostringstream strm; std::ostringstream strm;
@ -397,7 +396,40 @@ struct goal2sat::imp : public sat::sat_internalizer {
} }
} }
void convert_implies(app* t, bool root, bool sign) {
SASSERT(t->get_num_args() == 2);
unsigned sz = m_result_stack.size();
SASSERT(sz >= 2);
sat::literal l1 = m_result_stack[sz - 1];
sat::literal l2 = m_result_stack[sz - 2];
if (root) {
SASSERT(sz == 2);
if (sign) {
mk_clause(l1);
mk_clause(~l2);
}
else {
mk_clause(~l1, l2);
}
m_result_stack.reset();
}
else {
sat::bool_var k = m_solver.add_var(false);
sat::literal l(k, false);
m_cache.insert(t, l);
// l <=> (l1 => l2)
mk_clause(~l, ~l1, l2);
mk_clause(l1, l);
mk_clause(~l2, l);
if (sign)
l.neg();
m_result_stack.shrink(sz - 2);
m_result_stack.push_back(l);
}
}
void convert_iff2(app * t, bool root, bool sign) { void convert_iff2(app * t, bool root, bool sign) {
SASSERT(t->get_num_args() == 2);
TRACE("goal2sat", tout << "convert_iff " << root << " " << sign << "\n" << mk_bounded_pp(t, m, 2) << "\n";); TRACE("goal2sat", tout << "convert_iff " << root << " " << sign << "\n" << mk_bounded_pp(t, m, 2) << "\n";);
unsigned sz = m_result_stack.size(); unsigned sz = m_result_stack.size();
SASSERT(sz >= 2); SASSERT(sz >= 2);
@ -467,11 +499,10 @@ struct goal2sat::imp : public sat::sat_internalizer {
void convert_ba(app* t, bool root, bool sign) { void convert_ba(app* t, bool root, bool sign) {
SASSERT(!m_euf); SASSERT(!m_euf);
std::cout << "convert ba\n";
sat::extension* ext = m_solver.get_extension(); sat::extension* ext = m_solver.get_extension();
sat::ba_solver* ba = nullptr; sat::ba_solver* ba = nullptr;
if (!ext) { if (!ext) {
ba = alloc(sat::ba_solver); ba = alloc(sat::ba_solver, m, *this);
m_solver.set_extension(ba); m_solver.set_extension(ba);
ba->push_scopes(m_solver.num_scopes()); ba->push_scopes(m_solver.num_scopes());
} }
@ -480,8 +511,7 @@ struct goal2sat::imp : public sat::sat_internalizer {
} }
if (!ba) if (!ba)
throw default_exception("cannot convert to pb"); throw default_exception("cannot convert to pb");
sat::ba_internalize internalize(*ba, m_solver, *this, m); sat::literal lit = ba->internalize(t, sign, root);
sat::literal lit = internalize.internalize(t, sign, root);
if (root) if (root)
m_result_stack.reset(); m_result_stack.reset();
else else
@ -509,6 +539,12 @@ struct goal2sat::imp : public sat::sat_internalizer {
case OP_EQ: case OP_EQ:
convert_iff(t, root, sign); convert_iff(t, root, sign);
break; break;
case OP_XOR:
convert_iff(t, root, !sign);
break;
case OP_IMPLIES:
convert_implies(t, root, sign);
break;
default: default:
UNREACHABLE(); UNREACHABLE();
} }
@ -614,6 +650,8 @@ struct goal2sat::imp : public sat::sat_internalizer {
case OP_TRUE: case OP_TRUE:
case OP_FALSE: case OP_FALSE:
case OP_NOT: case OP_NOT:
case OP_IMPLIES:
case OP_XOR:
return true; return true;
case OP_ITE: case OP_ITE:
case OP_EQ: case OP_EQ:
@ -657,6 +695,15 @@ struct goal2sat::imp : public sat::sat_internalizer {
} }
void operator()(goal const & g) { void operator()(goal const & g) {
struct scoped_reset {
imp& i;
scoped_reset(imp& i) :i(i) {}
~scoped_reset() {
i.m_interface_vars.reset();
i.m_cache.reset();
}
};
scoped_reset _reset(*this);
collect_boolean_interface(g, m_interface_vars); collect_boolean_interface(g, m_interface_vars);
unsigned size = g.size(); unsigned size = g.size();
expr_ref f(m), d_new(m); expr_ref f(m), d_new(m);
@ -696,16 +743,6 @@ struct goal2sat::imp : public sat::sat_internalizer {
} }
} }
#if 0
void operator()(unsigned sz, expr * const * fs) {
m_interface_vars.reset();
collect_boolean_interface(m, sz, fs, m_interface_vars);
for (unsigned i = 0; i < sz; i++)
process(fs[i]);
}
#endif
}; };
struct unsupported_bool_proc { struct unsupported_bool_proc {
@ -717,8 +754,6 @@ struct unsupported_bool_proc {
void operator()(app * n) { void operator()(app * n) {
if (n->get_family_id() == m.get_basic_family_id()) { if (n->get_family_id() == m.get_basic_family_id()) {
switch (n->get_decl_kind()) { switch (n->get_decl_kind()) {
case OP_XOR:
case OP_IMPLIES:
case OP_DISTINCT: case OP_DISTINCT:
throw found(); throw found();
default: default:
@ -758,19 +793,8 @@ void goal2sat::operator()(goal const & g, params_ref const & p, sat::solver_core
if (!m_imp) if (!m_imp)
m_imp = alloc(imp, g.m(), p, t, m, dep2asm, default_external); m_imp = alloc(imp, g.m(), p, t, m, dep2asm, default_external);
struct scoped_reset { (*m_imp)(g);
goal2sat& g;
scoped_reset(goal2sat& g):g(g) {}
~scoped_reset() {
g.m_imp->m_interface_vars.reset();
g.m_imp->m_cache.reset();
}
};
{
scoped_reset _reset(*this);
(*m_imp)(g);
}
m_interpreted_atoms = alloc(expr_ref_vector, g.m()); m_interpreted_atoms = alloc(expr_ref_vector, g.m());
m_interpreted_atoms->append(m_imp->m_interpreted_atoms); m_interpreted_atoms->append(m_imp->m_interpreted_atoms);
if (!t.get_extension()) { if (!t.get_extension()) {
@ -1021,8 +1045,7 @@ struct sat2goal::imp {
expr_ref_vector fmls(m); expr_ref_vector fmls(m);
sat::ba_solver* ba = dynamic_cast<sat::ba_solver*>(ext); sat::ba_solver* ba = dynamic_cast<sat::ba_solver*>(ext);
if (ba) { if (ba) {
sat::ba_decompile decompile(*ba, s, m); ba->to_formulas(l2e, fmls);
decompile.to_formulas(l2e, fmls);
} }
else else
dynamic_cast<euf::solver*>(ext)->to_formulas(l2e, fmls); dynamic_cast<euf::solver*>(ext)->to_formulas(l2e, fmls);

View file

@ -490,6 +490,7 @@ namespace smt {
expr_ref is_nullable = is_nullable_wrapper(r); expr_ref is_nullable = is_nullable_wrapper(r);
if (m.is_true(is_nullable)) if (m.is_true(is_nullable))
return; return;
literal null_lit = th.mk_literal(is_nullable); literal null_lit = th.mk_literal(is_nullable);
expr_ref hd = mk_first(r, n); expr_ref hd = mk_first(r, n);
expr_ref d(m); expr_ref d(m);