3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-24 09:35:32 +00:00

merge with opt

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2018-04-30 08:27:54 -07:00
commit 859c68c2ac
58 changed files with 1329 additions and 526 deletions

View file

@ -144,9 +144,6 @@ struct bit_blaster_model_converter : public model_converter {
}
new_val = util.mk_numeral(val, bv_sz);
new_model->register_decl(m_vars.get(i), new_val);
continue;
bail:
new_model->register_decl(m_vars.get(i), mk_bv(bs, *old_model));
}
}

View file

@ -804,19 +804,17 @@ class elim_uncnstr_tactic : public tactic {
ast_manager & m() { return m_manager; }
void init_mc(bool produce_models) {
if (!produce_models) {
m_mc = nullptr;
return;
m_mc = nullptr;
if (produce_models) {
m_mc = alloc(mc, m(), "elim_uncstr");
}
m_mc = alloc(mc, m(), "elim_uncstr");
}
void init_rw(bool produce_proofs) {
m_rw = alloc(rw, m(), produce_proofs, m_vars, m_mc.get(), m_max_memory, m_max_steps);
}
void operator()(goal_ref const & g, goal_ref_buffer& result) {
bool produce_models = g->models_enabled();
void operator()(goal_ref const & g, goal_ref_buffer & result) {
bool produce_proofs = g->proofs_enabled();
TRACE("elim_uncnstr_bug", g->display(tout););
@ -831,11 +829,9 @@ class elim_uncnstr_tactic : public tactic {
}
bool modified = true;
TRACE("elim_uncnstr", tout << "unconstrained variables...\n";
for (expr * v : m_vars) {
tout << mk_ismt2_pp(v, m()) << " ";
}
for (expr * v : m_vars) tout << mk_ismt2_pp(v, m()) << " ";
tout << "\n";);
init_mc(produce_models);
init_mc(g->models_enabled());
init_rw(produce_proofs);
expr_ref new_f(m());
@ -862,14 +858,9 @@ class elim_uncnstr_tactic : public tactic {
else {
app_ref_vector & fresh_vars = m_rw->cfg().m_fresh_vars;
m_num_elim_apps = fresh_vars.size();
if (produce_models && !fresh_vars.empty()) {
generic_model_converter * fmc = alloc(generic_model_converter, m(), "elim_uncnstr");
for (app * f : fresh_vars)
fmc->hide(f);
g->add(concat(fmc, m_mc.get()));
}
else {
g->set((model_converter*)nullptr);
if (m_mc.get()) {
for (app * f : fresh_vars) m_mc->hide(f);
g->add(m_mc.get());
}
}
m_mc = nullptr;

View file

@ -85,7 +85,9 @@ goal::goal(goal const & src, bool):
m_core_enabled(src.unsat_core_enabled()),
m_inconsistent(false),
m_precision(src.m_precision) {
add(src.mc());
m_mc = src.m_mc.get();
m_pc = src.m_pc.get();
m_dc = src.m_dc.get();
}
goal::~goal() {

View file

@ -4,7 +4,6 @@ z3_add_component(portfolio
default_tactic.cpp
enum2bv_solver.cpp
fd_solver.cpp
parallel_tactic.cpp
pb2bv_solver.cpp
smt_strategic_solver.cpp
solver2lookahead.cpp
@ -21,5 +20,4 @@ z3_add_component(portfolio
TACTIC_HEADERS
default_tactic.h
fd_solver.h
parallel_tactic.h
)

View file

@ -24,6 +24,8 @@ Notes:
#include "tactic/portfolio/pb2bv_solver.h"
#include "tactic/portfolio/bounded_int2bv_solver.h"
#include "solver/solver2tactic.h"
#include "solver/parallel_tactic.h"
#include "solver/parallel_params.hpp"
solver * mk_fd_solver(ast_manager & m, params_ref const & p, bool incremental_mode) {
solver* s = mk_inc_sat_solver(m, p, incremental_mode);
@ -36,3 +38,8 @@ solver * mk_fd_solver(ast_manager & m, params_ref const & p, bool incremental_mo
tactic * mk_fd_tactic(ast_manager & m, params_ref const& p) {
return mk_solver2tactic(mk_fd_solver(m, p, false));
}
tactic * mk_parallel_qffd_tactic(ast_manager& m, params_ref const& p) {
solver* s = mk_fd_solver(m, p);
return mk_parallel_tactic(s, p);
}

View file

@ -27,9 +27,11 @@ class tactic;
solver * mk_fd_solver(ast_manager & m, params_ref const & p, bool incremental_mode = true);
tactic * mk_fd_tactic(ast_manager & m, params_ref const & p);
tactic * mk_parallel_qffd_tactic(ast_manager& m, params_ref const& p);
/*
ADD_TACTIC("qffd", "builtin strategy for solving QF_FD problems.", "mk_fd_tactic(m, p)")
ADD_TACTIC("pqffd", "builtin strategy for solving QF_FD problems in parallel.", "mk_parallel_qffd_tactic(m, p)")
*/
#endif

View file

@ -1,624 +0,0 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
parallel_tactic.cpp
Abstract:
Parallel tactic based on cubing.
Author:
Nikolaj Bjorner (nbjorner) 2017-10-9
Miguel Neves
Notes:
A task comprises of a non-empty sequence of cubes, a type and parameters
If in the cube state, the solver performs the following:
1. Clone the state with the remaining cubes if there is more than one cube. Re-enqueue the remaining cubes.
2. Apply simplifications and pre-processing according to configuration.
3. Cube using the parameter settings prescribed in m_params.
4. Create a conquer state with the produced cubes.
If in the conquer state, the solver performs the following
1. Pass the cubes as assumptions and solve each sub-cube with a prescribed resource bound.
2. Assemble cubes that could not be solved and create a cube state.
--*/
#include <thread>
#include <mutex>
#include <condition_variable>
#include "util/scoped_ptr_vector.h"
#include "ast/ast_util.h"
#include "ast/ast_translation.h"
#include "solver/solver.h"
#include "solver/solver2tactic.h"
#include "tactic/tactic.h"
#include "tactic/portfolio/fd_solver.h"
class parallel_tactic : public tactic {
enum task_type { cube_task, conquer_task };
class solver_state;
class task_queue {
std::mutex m_mutex;
std::condition_variable m_cond;
ptr_vector<solver_state> m_tasks;
ptr_vector<solver_state> m_active;
unsigned m_num_waiters;
volatile bool m_shutdown;
void inc_wait() {
std::lock_guard<std::mutex> lock(m_mutex);
++m_num_waiters;
}
void dec_wait() {
std::lock_guard<std::mutex> lock(m_mutex);
--m_num_waiters;
}
solver_state* try_get_task() {
solver_state* st = nullptr;
std::lock_guard<std::mutex> lock(m_mutex);
if (!m_tasks.empty()) {
st = m_tasks.back();
m_tasks.pop_back();
m_active.push_back(st);
}
return st;
}
public:
task_queue():
m_num_waiters(0),
m_shutdown(false) {}
~task_queue() { reset(); }
void shutdown() {
if (!m_shutdown) {
m_shutdown = true;
m_cond.notify_all();
std::lock_guard<std::mutex> lock(m_mutex);
for (solver_state* st : m_active) {
st->m().limit().cancel();
}
}
}
void add_task(solver_state* task) {
std::lock_guard<std::mutex> lock(m_mutex);
m_tasks.push_back(task);
if (m_num_waiters > 0) {
m_cond.notify_one();
}
}
solver_state* get_task() {
while (!m_shutdown) {
inc_wait();
solver_state* st = try_get_task();
if (st) {
dec_wait();
return st;
}
{
std::unique_lock<std::mutex> lock(m_mutex);
m_cond.wait(lock);
}
dec_wait();
}
return nullptr;
}
void task_done(solver_state* st) {
std::lock_guard<std::mutex> lock(m_mutex);
m_active.erase(st);
if (m_tasks.empty() && m_active.empty()) {
m_shutdown = true;
m_cond.notify_all();
}
}
void reset() {
for (auto* t : m_tasks) dealloc(t);
for (auto* t : m_active) dealloc(t);
m_tasks.reset();
m_active.reset();
}
std::ostream& display(std::ostream& out) {
std::lock_guard<std::mutex> lock(m_mutex);
out << "num_tasks " << m_tasks.size() << " active: " << m_active.size() << "\n";
for (solver_state* st : m_tasks) {
st->display(out);
}
return out;
}
};
class solver_state {
task_type m_type; // current work role of the task
scoped_ptr<ast_manager> m_manager; // ownership handle to ast_manager
expr_ref_vector m_cubes; // set of cubes to process by task
expr_ref_vector m_asserted_cubes; // set of cubes asserted on the current solver
params_ref m_params; // configuration parameters
ref<solver> m_solver; // solver state
unsigned m_depth; // number of nested calls to cubing
double m_width; // estimate of fraction of problem handled by state
unsigned m_cube_cutoff; // saved configuration value
double m_cube_fraction; // saved configuration value
unsigned m_restart_max; // saved configuration value
expr_ref_vector cube_literals(expr* cube) {
expr_ref_vector literals(m());
if (m().is_and(cube)) {
literals.append(to_app(cube)->get_num_args(), to_app(cube)->get_args());
}
else {
literals.push_back(cube);
}
return literals;
}
public:
solver_state(ast_manager* m, solver* s, params_ref const& p, task_type t):
m_type(t),
m_manager(m),
m_cubes(s->get_manager()),
m_asserted_cubes(s->get_manager()),
m_params(p),
m_solver(s),
m_depth(0),
m_width(1.0)
{
m_cube_cutoff = p.get_uint("sat.lookahead.cube.cutoff", 8);
m_cube_fraction = p.get_double("sat.lookahead.cube.fraction", 0.4);
m_restart_max = p.get_uint("sat.restart.max", 10);
}
ast_manager& m() { return m_solver->get_manager(); }
solver& get_solver() { return *m_solver; }
solver const& get_solver() const { return *m_solver; }
solver_state* clone() {
SASSERT(!m_cubes.empty());
ast_manager& m = m_solver->get_manager();
ast_manager* new_m = alloc(ast_manager, m, !m.proof_mode());
ast_translation tr(m, *new_m);
solver* s = m_solver->translate(*new_m, m_params);
solver_state* st = alloc(solver_state, new_m, s, m_params, m_type);
for (expr* c : m_cubes) st->m_cubes.push_back(tr(c));
for (expr* c : m_asserted_cubes) st->m_asserted_cubes.push_back(tr(c));
st->m_depth = m_depth;
st->m_width = m_width;
return st;
}
task_type type() const { return m_type; }
void set_type(task_type t) { m_type = t; }
expr_ref_vector const& cubes() const { SASSERT(m_type == conquer_task); return m_cubes; }
// remove up to n cubes from list of cubes.
expr_ref_vector split_cubes(unsigned n) {
expr_ref_vector result(m());
while (n-- > 0 && !m_cubes.empty()) {
result.push_back(m_cubes.back());
m_cubes.pop_back();
}
return result;
}
void set_cubes(expr_ref_vector const& c) {
m_cubes.reset();
m_cubes.append(c);
}
void inc_depth(unsigned inc) { m_depth += inc; }
void inc_width(unsigned w) { m_width *= w; }
double get_width() const { return m_width; }
unsigned get_depth() const { return m_depth; }
lbool simplify() {
lbool r = l_undef;
if (m_depth == 1) {
IF_VERBOSE(2, verbose_stream() << "(parallel.tactic simplify-1)\n";);
set_simplify_params(true, true); // retain PB, retain blocked
r = get_solver().check_sat(0,0);
if (r != l_undef) return r;
// copy over the resulting clauses with a configuration that blasts PB constraints
set_simplify_params(false, true);
expr_ref_vector fmls(m());
get_solver().get_assertions(fmls);
model_converter_ref mc = get_solver().get_model_converter();
m_solver = mk_fd_solver(m(), m_params);
m_solver->set_model_converter(mc.get());
m_solver->assert_expr(fmls);
}
IF_VERBOSE(2, verbose_stream() << "(parallel.tactic simplify-2)\n";);
set_simplify_params(false, true); // remove PB, retain blocked
r = get_solver().check_sat(0,0);
if (r != l_undef) return r;
IF_VERBOSE(2, verbose_stream() << "(parallel.tactic simplify-3)\n";);
set_simplify_params(false, false); // remove any PB, remove blocked
r = get_solver().check_sat(0,0);
return r;
}
void assert_cube(expr* cube) {
get_solver().assert_expr(cube);
m_asserted_cubes.append(cube_literals(cube));
}
lbool solve(expr* cube) {
set_conquer_params();
expr_ref_vector literals = cube_literals(cube);
return get_solver().check_sat(literals);
}
void set_cube_params() {
unsigned cutoff = m_cube_cutoff;
double fraction = m_cube_fraction;
if (m_depth == 1 && cutoff > 0) {
fraction = 0; // use fixed cubing at depth 1.
}
else {
cutoff = 0; // use dynamic cubing beyond depth 1
}
m_params.set_uint ("lookahead.cube.cutoff", cutoff);
m_params.set_double("lookahead.cube.fraction", fraction);
get_solver().updt_params(m_params);
}
void set_conquer_params() {
m_params.set_bool("lookahead_simplify", false);
m_params.set_uint("restart.max", m_restart_max);
get_solver().updt_params(m_params);
}
void set_simplify_params(bool pb_simp, bool retain_blocked) {
m_params.set_bool("cardinality.solver", pb_simp);
m_params.set_sym ("pb.solver", pb_simp ? symbol("solver") : symbol("circuit"));
if (m_params.get_uint("inprocess.max", UINT_MAX) == UINT_MAX)
m_params.set_uint("inprocess.max", 2);
m_params.set_bool("lookahead_simplify", true);
m_params.set_uint("restart.max", UINT_MAX);
m_params.set_bool("retain_blocked_clauses", retain_blocked);
get_solver().updt_params(m_params);
}
bool canceled() {
return m().canceled();
}
std::ostream& display(std::ostream& out) {
out << ":depth " << m_depth << " :width " << m_width << "\n";
out << ":asserted " << m_asserted_cubes.size() << "\n";
return out;
}
};
private:
ast_manager& m_manager;
params_ref m_params;
sref_vector<model> m_models;
unsigned m_num_threads;
statistics m_stats;
task_queue m_queue;
std::mutex m_mutex;
double m_progress;
bool m_has_undef;
bool m_allsat;
unsigned m_num_unsat;
int m_exn_code;
std::string m_exn_msg;
void init() {
m_num_threads = omp_get_num_procs(); // TBD adjust by possible threads used inside each solver.
m_progress = 0;
m_has_undef = false;
m_allsat = false;
m_num_unsat = 0;
m_exn_code = 0;
m_params.set_bool("override_incremental", true);
}
void close_branch(solver_state& s, lbool status) {
double f = 100.0 / s.get_width();
{
std::lock_guard<std::mutex> lock(m_mutex);
m_progress += f;
}
IF_VERBOSE(1, verbose_stream() << "(tactic.parallel :progress " << m_progress << "% ";
if (status == l_true) verbose_stream() << ":status sat ";
if (status == l_undef) verbose_stream() << ":status unknown ";
verbose_stream() << ":unsat " << m_num_unsat << ")\n";);
}
void report_sat(solver_state& s) {
close_branch(s, l_true);
model_ref mdl;
s.get_solver().get_model(mdl);
if (mdl) {
std::lock_guard<std::mutex> lock(m_mutex);
if (&s.m() != &m_manager) {
ast_translation tr(s.m(), m_manager);
mdl = mdl->translate(tr);
}
m_models.push_back(mdl.get());
}
if (!m_allsat) {
m_queue.shutdown();
}
}
void report_unsat(solver_state& s) {
close_branch(s, l_false);
std::lock_guard<std::mutex> lock(m_mutex);
++m_num_unsat;
}
void report_undef(solver_state& s) {
m_has_undef = true;
close_branch(s, l_undef);
}
void cube_and_conquer(solver_state& s) {
ast_manager& m = s.m();
expr_ref_vector cubes(m), cube(m), hard_cubes(m);
switch (s.type()) {
case cube_task: goto cube;
case conquer_task: goto conquer;
}
cube:
SASSERT(s.type() == cube_task);
// extract up to one cube and add it.
cube.reset();
cube.append(s.split_cubes(1));
SASSERT(cube.size() <= 1);
IF_VERBOSE(2, verbose_stream() << "(sat.parallel :split-cube " << cube.size() << ")\n";);
if (!s.cubes().empty()) m_queue.add_task(s.clone());
if (!cube.empty()) s.assert_cube(cube.get(0));
s.inc_depth(1);
// simplify
switch (s.simplify()) {
case l_undef: break;
case l_true: report_sat(s); return;
case l_false: report_unsat(s); return;
}
if (canceled(s)) return;
// extract cubes.
cubes.reset();
s.set_cube_params();
while (true) {
expr_ref_vector vars(m);
expr_ref_vector c = s.get_solver().cube(vars, UINT_MAX); // TBD tune this
if (c.empty()) {
report_undef(s);
return;
}
if (m.is_false(c.back())) {
break;
}
cubes.push_back(mk_and(c));
}
IF_VERBOSE(1, verbose_stream() << "(parallel_tactic :cubes " << cubes.size() << ")\n";);
IF_VERBOSE(10, verbose_stream() << "(parallel_tactic :cubes " << cubes << ")\n";);
if (cubes.empty()) {
report_unsat(s);
return;
}
else {
s.inc_width(cubes.size());
s.set_cubes(cubes);
s.set_type(conquer_task);
goto conquer;
}
conquer:
SASSERT(s.type() == conquer_task);
// extract a batch of cubes
cubes.reset();
cubes.append(s.split_cubes(conquer_batch_size()));
if (!s.cubes().empty()) m_queue.add_task(s.clone());
s.set_conquer_params();
hard_cubes.reset();
for (expr * c : cubes) {
switch (s.solve(c)) {
case l_undef: hard_cubes.push_back(c); break;
case l_true: report_sat(s); break;
case l_false: report_unsat(s); break;
}
if (canceled(s)) return;
}
IF_VERBOSE(1, verbose_stream() << "(parallel_tactic :cubes " << cubes.size() << " :hard-cubes " << hard_cubes.size() << ")\n";);
if (hard_cubes.empty()) return;
s.set_cubes(hard_cubes);
s.set_type(cube_task);
goto cube;
}
bool canceled(solver_state& s) {
if (s.canceled()) {
m_has_undef = true;
return true;
}
else {
return false;
}
}
void run_solver() {
try {
while (solver_state* st = m_queue.get_task()) {
cube_and_conquer(*st);
collect_statistics(*st);
m_queue.task_done(st);
if (st->m().canceled()) m_queue.shutdown();
IF_VERBOSE(1, display(verbose_stream()););
dealloc(st);
}
}
catch (z3_exception& ex) {
IF_VERBOSE(1, verbose_stream() << ex.msg() << "\n";);
m_queue.shutdown();
std::lock_guard<std::mutex> lock(m_mutex);
if (ex.has_error_code()) {
m_exn_code = ex.error_code();
}
else {
m_exn_msg = ex.msg();
m_exn_code = -1;
}
}
}
void collect_statistics(solver_state& s) {
std::lock_guard<std::mutex> lock(m_mutex);
s.get_solver().collect_statistics(m_stats);
}
lbool solve(model_ref& mdl) {
vector<std::thread> threads;
for (unsigned i = 0; i < m_num_threads; ++i)
threads.push_back(std::thread([this]() { run_solver(); }));
for (std::thread& t : threads)
t.join();
m_manager.limit().reset_cancel();
if (m_exn_code == -1)
throw default_exception(m_exn_msg);
if (m_exn_code != 0)
throw z3_error(m_exn_code);
if (!m_models.empty()) {
mdl = m_models.back();
return l_true;
}
if (m_has_undef)
return l_undef;
return l_false;
}
std::ostream& display(std::ostream& out) {
m_stats.display(out);
m_queue.display(out);
std::lock_guard<std::mutex> lock(m_mutex);
out << "(parallel_tactic :unsat " << m_num_unsat << " :progress " << m_progress << "% :models " << m_models.size() << ")\n";
return out;
}
public:
parallel_tactic(ast_manager& m, params_ref const& p) :
m_manager(m),
m_params(p) {
init();
}
void operator ()(const goal_ref & g,goal_ref_buffer & result) {
ast_manager& m = g->m();
solver* s = mk_fd_solver(m, m_params);
solver_state* st = alloc(solver_state, 0, s, m_params, cube_task);
m_queue.add_task(st);
expr_ref_vector clauses(m);
ptr_vector<expr> assumptions;
obj_map<expr, expr*> bool2dep;
ref<generic_model_converter> fmc;
extract_clauses_and_dependencies(g, clauses, assumptions, bool2dep, fmc);
for (expr * clause : clauses) {
s->assert_expr(clause);
}
SASSERT(assumptions.empty());
model_ref mdl;
lbool is_sat = solve(mdl);
switch (is_sat) {
case l_true:
if (g->models_enabled()) {
g->add(concat(fmc.get(), model2model_converter(mdl.get())));
}
g->reset();
break;
case l_false:
SASSERT(!g->proofs_enabled());
SASSERT(!g->unsat_core_enabled());
g->assert_expr(m.mk_false(), nullptr, nullptr);
break;
case l_undef:
if (m.canceled()) {
throw tactic_exception(Z3_CANCELED_MSG);
}
break;
}
result.push_back(g.get());
}
void cleanup() {
m_queue.reset();
init();
}
tactic* translate(ast_manager& m) {
return alloc(parallel_tactic, m, m_params);
}
virtual void updt_params(params_ref const & p) {
m_params.copy(p);
}
virtual void collect_param_descrs(param_descrs & r) {
r.insert("conquer_batch_size", CPK_UINT, "(default: 1000) batch size of cubes to conquer");
}
unsigned conquer_batch_size() const {
return m_params.get_uint("conquer_batch_size", 1000);
}
virtual void collect_statistics(statistics & st) const {
st.copy(m_stats);
st.update("par unsat", m_num_unsat);
st.update("par models", m_models.size());
st.update("par progress", m_progress);
}
virtual void reset_statistics() {
m_stats.reset();
}
};
tactic * mk_parallel_tactic(ast_manager& m, params_ref const& p) {
return alloc(parallel_tactic, m, p);
}

View file

@ -1,31 +0,0 @@
/*++
Copyright (c) 2017 Microsoft Corporation
Module Name:
parallel_tactic.h
Abstract:
Parallel tactic in the style of Treengeling.
Author:
Nikolaj Bjorner (nbjorner) 2017-10-9
Notes:
--*/
#ifndef PARALLEL_TACTIC_H_
#define PARALLEL_TACTIC_H_
class solver;
class tactic;
tactic * mk_parallel_tactic(ast_manager& m, params_ref const& p);
/*
ADD_TACTIC("qffdp", "builtin strategy for solving QF_FD problems in parallel.", "mk_parallel_tactic(m, p)")
*/
#endif

View file

@ -19,13 +19,13 @@ Notes:
#include "tactic/tactical.h"
#include "tactic/core/simplify_tactic.h"
#include "tactic/core/propagate_values_tactic.h"
#include "smt/tactic/smt_tactic.h"
#include "tactic/core/nnf_tactic.h"
#include "tactic/arith/probe_arith.h"
#include "smt/tactic/smt_tactic.h"
#include "qe/qe_tactic.h"
#include "qe/nlqsat.h"
#include "nlsat/tactic/qfnra_nlsat_tactic.h"
#include "qe/qe_lite.h"
#include "tactic/arith/probe_arith.h"
#include "nlsat/tactic/qfnra_nlsat_tactic.h"
tactic * mk_nra_tactic(ast_manager & m, params_ref const& p) {
params_ref p1 = p;

View file

@ -28,6 +28,7 @@ Notes:
#include "tactic/bv/bv_size_reduction_tactic.h"
#include "tactic/aig/aig_tactic.h"
#include "sat/tactic/sat_tactic.h"
#include "sat/sat_solver/inc_sat_solver.h"
#include "ackermannization/ackermannize_bv_tactic.h"
#define MEMLIMIT 300
@ -127,11 +128,10 @@ static tactic * mk_qfbv_tactic(ast_manager& m, params_ref const & p, tactic* sat
tactic * mk_qfbv_tactic(ast_manager & m, params_ref const & p) {
tactic * new_sat = cond(mk_produce_proofs_probe(),
and_then(mk_simplify_tactic(m), mk_smt_tactic()),
mk_sat_tactic(m));
mk_psat_tactic(m, p));
return mk_qfbv_tactic(m, p, new_sat, mk_smt_tactic());
return mk_qfbv_tactic(m, p, new_sat, mk_psmt_tactic(m, p));
}

View file

@ -89,7 +89,7 @@ static tactic * mk_bv2sat_tactic(ast_manager & m) {
mk_max_bv_sharing_tactic(m),
mk_bit_blaster_tactic(m),
mk_aig_tactic(),
mk_sat_tactic(m)),
mk_sat_tactic(m, solver_p)),
solver_p);
}
@ -220,7 +220,7 @@ tactic * mk_qflia_tactic(ast_manager & m, params_ref const & p) {
using_params(mk_lia2sat_tactic(m), quasi_pb_p),
mk_fail_if_undecided_tactic()),
mk_bounded_tactic(m),
mk_smt_tactic())),
mk_psmt_tactic(m, p))),
main_p);
st->updt_params(p);

View file

@ -40,6 +40,7 @@ Notes:
#include "tactic/smtlogics/qfbv_tactic.h"
#include "solver/tactic2solver.h"
#include "tactic/bv/bv_bound_chk_tactic.h"
#include "ackermannization/ackermannize_bv_tactic.h"
///////////////
class qfufbv_ackr_tactic : public tactic {
@ -157,13 +158,14 @@ static tactic * mk_qfufbv_preamble1(ast_manager & m, params_ref const & p) {
static tactic * mk_qfufbv_preamble(ast_manager & m, params_ref const & p) {
return and_then(mk_simplify_tactic(m),
mk_propagate_values_tactic(m),
mk_solve_eqs_tactic(m),
mk_elim_uncnstr_tactic(m),
if_no_proofs(if_no_unsat_cores(mk_reduce_args_tactic(m))),
if_no_proofs(if_no_unsat_cores(mk_bv_size_reduction_tactic(m))),
mk_max_bv_sharing_tactic(m)
);
mk_propagate_values_tactic(m),
mk_solve_eqs_tactic(m),
mk_elim_uncnstr_tactic(m),
if_no_proofs(if_no_unsat_cores(mk_reduce_args_tactic(m))),
if_no_proofs(if_no_unsat_cores(mk_bv_size_reduction_tactic(m))),
mk_max_bv_sharing_tactic(m),
if_no_proofs(if_no_unsat_cores(mk_ackermannize_bv_tactic(m,p)))
);
}
tactic * mk_qfufbv_tactic(ast_manager & m, params_ref const & p) {