mirror of
https://github.com/Z3Prover/z3
synced 2025-04-29 20:05:51 +00:00
wreckfun
This commit is contained in:
parent
612cc5cfba
commit
83f4a006c6
11 changed files with 402 additions and 219 deletions
|
@ -15,10 +15,13 @@ Author:
|
|||
|
||||
--*/
|
||||
|
||||
#include "ast/rewriter/var_subst.h"
|
||||
#include "sat/smt/recfun_solver.h"
|
||||
#include "sat/smt/euf_solver.h"
|
||||
|
||||
|
||||
#define TRACEFN(x) TRACE("recfun", tout << x << '\n';)
|
||||
|
||||
|
||||
namespace recfun {
|
||||
|
||||
|
@ -29,11 +32,7 @@ namespace recfun {
|
|||
m_util(m_plugin.u()),
|
||||
m_disabled_guards(m),
|
||||
m_enabled_guards(m),
|
||||
m_preds(m),
|
||||
m_num_rounds(0),
|
||||
m_q_case_expand(),
|
||||
m_q_body_expand() {
|
||||
m_num_rounds = 0;
|
||||
m_preds(m) {
|
||||
}
|
||||
|
||||
solver::~solver() {
|
||||
|
@ -41,34 +40,140 @@ namespace recfun {
|
|||
}
|
||||
|
||||
void solver::reset() {
|
||||
reset_queues();
|
||||
m_propagation_queue.reset();
|
||||
m_stats.reset();
|
||||
m_disabled_guards.reset();
|
||||
m_enabled_guards.reset();
|
||||
m_q_guards.reset();
|
||||
m_propagation_queue.reset();
|
||||
for (auto & kv : m_guard2pending)
|
||||
dealloc(kv.m_value);
|
||||
m_guard2pending.reset();
|
||||
}
|
||||
|
||||
void solver::reset_queues() {
|
||||
for (auto* e : m_q_case_expand) {
|
||||
dealloc(e);
|
||||
expr_ref solver::apply_args(vars const & vars, expr_ref_vector const & args, expr * e) {
|
||||
SASSERT(is_standard_order(vars));
|
||||
var_subst subst(m, true);
|
||||
expr_ref new_body = subst(e, args);
|
||||
ctx.get_rewriter()(new_body);
|
||||
return new_body;
|
||||
}
|
||||
|
||||
/**
|
||||
* For functions f(args) that are given as macros f(vs) = rhs
|
||||
*
|
||||
* 1. substitute `e.args` for `vs` into the macro rhs
|
||||
* 2. add unit clause `f(args) = rhs`
|
||||
*/
|
||||
void solver::assert_macro_axiom(case_expansion & e) {
|
||||
m_stats.m_macro_expansions++;
|
||||
SASSERT(e.m_def->is_fun_macro());
|
||||
auto & vars = e.m_def->get_vars();
|
||||
auto lhs = e.m_lhs;
|
||||
auto rhs = apply_args(vars, e.m_args, e.m_def->get_rhs());
|
||||
unsigned generation = std::max(ctx.get_max_generation(lhs), ctx.get_max_generation(rhs));
|
||||
euf::solver::scoped_generation _sgen(ctx, generation + 1);
|
||||
auto eq = eq_internalize(lhs, rhs);
|
||||
add_unit(eq);
|
||||
}
|
||||
|
||||
/**
|
||||
* Add case axioms for every case expansion path.
|
||||
*
|
||||
* assert `p(args) <=> And(guards)` (with CNF on the fly)
|
||||
*
|
||||
* also body-expand paths that do not depend on any defined fun
|
||||
*/
|
||||
void solver::assert_case_axioms(case_expansion & e) {
|
||||
SASSERT(e.m_def->is_fun_defined());
|
||||
// add case-axioms for all case-paths
|
||||
// assert this was not defined before.
|
||||
sat::literal_vector preds;
|
||||
auto & vars = e.m_def->get_vars();
|
||||
|
||||
for (case_def const & c : e.m_def->get_cases()) {
|
||||
// applied predicate to `args`
|
||||
app_ref pred_applied = c.apply_case_predicate(e.m_args);
|
||||
SASSERT(u().owns_app(pred_applied));
|
||||
preds.push_back(mk_literal(pred_applied));
|
||||
expr_ref_vector guards(m);
|
||||
for (auto & g : c.get_guards())
|
||||
guards.push_back(apply_args(vars, e.m_args, g));
|
||||
if (c.is_immediate()) {
|
||||
body_expansion be(pred_applied, c, e.m_args);
|
||||
assert_body_axiom(be);
|
||||
}
|
||||
else if (!is_enabled_guard(pred_applied)) {
|
||||
disable_guard(pred_applied, guards);
|
||||
continue;
|
||||
}
|
||||
activate_guard(pred_applied, guards);
|
||||
}
|
||||
m_q_case_expand.reset();
|
||||
for (auto* e : m_q_body_expand) {
|
||||
dealloc(e);
|
||||
}
|
||||
m_q_body_expand.reset();
|
||||
m_q_clauses.clear();
|
||||
add_clause(preds);
|
||||
}
|
||||
|
||||
void solver::activate_guard(expr* pred_applied, expr_ref_vector const& guards) {
|
||||
sat::literal_vector lguards;
|
||||
for (expr* ga : guards)
|
||||
lguards.push_back(mk_literal(ga));
|
||||
add_equiv_and(mk_literal(pred_applied), lguards);
|
||||
}
|
||||
|
||||
/**
|
||||
* make clause `depth_limit => ~guard`
|
||||
* the guard appears at a depth below the current cutoff.
|
||||
*/
|
||||
void solver::disable_guard(expr* guard, expr_ref_vector const& guards) {
|
||||
expr_ref nguard(m.mk_not(guard), m);
|
||||
if (is_disabled_guard(nguard))
|
||||
return;
|
||||
SASSERT(!is_enabled_guard(nguard));
|
||||
sat::literal_vector c;
|
||||
app_ref dlimit = m_util.mk_num_rounds_pred(m_num_rounds);
|
||||
c.push_back(~mk_literal(dlimit));
|
||||
c.push_back(~mk_literal(guard));
|
||||
m_disabled_guards.push_back(nguard);
|
||||
SASSERT(!m_guard2pending.contains(nguard));
|
||||
m_guard2pending.insert(nguard, alloc(expr_ref_vector, guards));
|
||||
TRACEFN("add clause\n" << c);
|
||||
m_propagation_queue.push_back(alloc(propagation_item, c));
|
||||
}
|
||||
|
||||
/**
|
||||
* For a guarded definition guards => f(vars) = rhs
|
||||
* and occurrence f(args)
|
||||
*
|
||||
* substitute `args` for `vars` in guards, and rhs
|
||||
* add axiom guards[args/vars] => f(args) = rhs[args/vars]
|
||||
*
|
||||
*/
|
||||
void solver::assert_body_axiom(body_expansion & e) {
|
||||
recfun::def & d = *e.m_cdef->get_def();
|
||||
auto & vars = d.get_vars();
|
||||
auto & args = e.m_args;
|
||||
SASSERT(is_standard_order(vars));
|
||||
sat::literal_vector clause;
|
||||
for (auto & g : e.m_cdef->get_guards()) {
|
||||
expr_ref guard = apply_args(vars, args, g);
|
||||
if (m.is_false(guard))
|
||||
return;
|
||||
if (m.is_true(guard))
|
||||
continue;
|
||||
clause.push_back(~mk_literal(guard));
|
||||
}
|
||||
expr_ref lhs(u().mk_fun_defined(d, args), m);
|
||||
expr_ref rhs = apply_args(vars, args, e.m_cdef->get_rhs());
|
||||
clause.push_back(eq_internalize(lhs, rhs));
|
||||
add_clause(clause);
|
||||
}
|
||||
|
||||
void solver::get_antecedents(sat::literal l, sat::ext_justification_idx idx, sat::literal_vector& r, bool probing) {
|
||||
|
||||
UNREACHABLE();
|
||||
}
|
||||
|
||||
void solver::asserted(sat::literal l) {
|
||||
|
||||
expr* e = ctx.bool_var2expr(l.var());
|
||||
if (!l.sign() && u().is_case_pred(e))
|
||||
push_body_expand(e);
|
||||
}
|
||||
|
||||
sat::check_result solver::check() {
|
||||
|
@ -76,15 +181,18 @@ namespace recfun {
|
|||
}
|
||||
|
||||
std::ostream& solver::display(std::ostream& out) const {
|
||||
return out;
|
||||
return out << "disabled guards:\n" << m_disabled_guards << "\n";
|
||||
}
|
||||
|
||||
std::ostream& solver::display_constraint(std::ostream& out, sat::ext_constraint_idx idx) const {
|
||||
UNREACHABLE();
|
||||
return out;
|
||||
}
|
||||
|
||||
void solver::collect_statistics(statistics& st) const {
|
||||
|
||||
st.update("recfun macro expansion", m_stats.m_macro_expansions);
|
||||
st.update("recfun case expansion", m_stats.m_case_expansions);
|
||||
st.update("recfun body expansion", m_stats.m_body_expansions);
|
||||
}
|
||||
|
||||
euf::th_solver* solver::clone(euf::solver& ctx) {
|
||||
|
@ -92,13 +200,107 @@ namespace recfun {
|
|||
}
|
||||
|
||||
bool solver::unit_propagate() {
|
||||
return false;
|
||||
if (m_qhead == m_propagation_queue.size())
|
||||
return false;
|
||||
ctx.push(value_trail<unsigned>(m_qhead));
|
||||
for (; m_qhead < m_propagation_queue.size() && !s().inconsistent(); ++m_qhead) {
|
||||
auto& p = *m_propagation_queue[m_qhead];
|
||||
if (p.is_guard()) {
|
||||
expr* ng = nullptr;
|
||||
VERIFY(m.is_not(p.m_guard, ng));
|
||||
activate_guard(ng, *m_guard2pending[p.m_guard]);
|
||||
}
|
||||
else if (p.is_clause()) {
|
||||
add_clause(p.m_clause);
|
||||
}
|
||||
else if (p.is_case()) {
|
||||
recfun::case_expansion& e = *p.m_case;
|
||||
if (e.m_def->is_fun_macro())
|
||||
assert_macro_axiom(e);
|
||||
else
|
||||
assert_case_axioms(e);
|
||||
++m_stats.m_case_expansions;
|
||||
}
|
||||
else {
|
||||
SASSERT(p.is_body());
|
||||
assert_body_axiom(*p.m_body);
|
||||
++m_stats.m_body_expansions;
|
||||
}
|
||||
}
|
||||
return true;
|
||||
}
|
||||
|
||||
sat::literal solver::internalize(expr* e, bool sign, bool root, bool learned) {
|
||||
return sat::null_literal;
|
||||
void solver::push_body_expand(expr* e) {
|
||||
auto* b = alloc(body_expansion, u(), to_app(e));
|
||||
m_propagation_queue.push_back(alloc(propagation_item, b));
|
||||
ctx.push(push_back_vector<scoped_ptr_vector<propagation_item>>(m_propagation_queue));
|
||||
}
|
||||
|
||||
void solver::push_case_expand(expr* e) {
|
||||
auto* c = alloc(case_expansion, u(), to_app(e));
|
||||
m_propagation_queue.push_back(alloc(propagation_item, c));
|
||||
ctx.push(push_back_vector<scoped_ptr_vector<propagation_item>>(m_propagation_queue));
|
||||
}
|
||||
|
||||
sat::literal solver::internalize(expr* e, bool sign, bool root, bool redundant) {
|
||||
SASSERT(m.is_bool(e));
|
||||
if (!visit_rec(m, e, sign, root, redundant)) {
|
||||
TRACE("array", tout << mk_pp(e, m) << "\n";);
|
||||
return sat::null_literal;
|
||||
}
|
||||
auto lit = expr2literal(e);
|
||||
if (sign)
|
||||
lit.neg();
|
||||
return lit;
|
||||
}
|
||||
|
||||
void solver::internalize(expr* e, bool redundant) {
|
||||
visit_rec(m, e, false, false, redundant);
|
||||
}
|
||||
|
||||
bool solver::visited(expr* e) {
|
||||
euf::enode* n = expr2enode(e);
|
||||
return n && n->is_attached_to(get_id());
|
||||
}
|
||||
|
||||
bool solver::visit(expr* e) {
|
||||
if (visited(e))
|
||||
return true;
|
||||
if (!is_app(e) || to_app(e)->get_family_id() != get_id()) {
|
||||
ctx.internalize(e, m_is_redundant);
|
||||
euf::enode* n = expr2enode(e);
|
||||
// TODO ensure_var(n);
|
||||
return true;
|
||||
}
|
||||
m_stack.push_back(sat::eframe(e));
|
||||
return false;
|
||||
}
|
||||
|
||||
bool solver::post_visit(expr* e, bool sign, bool root) {
|
||||
euf::enode* n = expr2enode(e);
|
||||
app* a = to_app(e);
|
||||
SASSERT(!n || !n->is_attached_to(get_id()));
|
||||
if (!n)
|
||||
n = mk_enode(e, false);
|
||||
SASSERT(!n->is_attached_to(get_id()));
|
||||
mk_var(n);
|
||||
#if 0
|
||||
for (auto* arg : euf::enode_args(n))
|
||||
ensure_var(arg);
|
||||
switch (a->get_decl_kind()) {
|
||||
default:
|
||||
UNREACHABLE();
|
||||
break;
|
||||
}
|
||||
#endif
|
||||
if (u().is_defined(e) && u().has_defs())
|
||||
push_case_expand(e);
|
||||
|
||||
return true;
|
||||
}
|
||||
|
||||
|
||||
|
||||
euf::theory_var solver::mk_var(euf::enode* n) {
|
||||
return euf::null_theory_var;
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue