3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-24 01:25:31 +00:00
This commit is contained in:
Nikolaj Bjorner 2021-02-12 19:46:47 -08:00
parent 612cc5cfba
commit 83f4a006c6
11 changed files with 402 additions and 219 deletions

View file

@ -387,4 +387,25 @@ namespace euf {
r = m.mk_eq(e1, e2);
return r;
}
unsigned solver::get_max_generation(expr* e) const {
unsigned g = 0;
expr_fast_mark1 mark;
m_todo.push_back(e);
while (!m_todo.empty()) {
e = m_todo.back();
m_todo.pop_back();
if (mark.is_marked(e))
continue;
mark.mark(e);
euf::enode* n = m_egraph.find(e);
if (n)
g = std::max(g, n->generation());
else if (is_app(e))
for (expr* arg : *to_app(e))
m_todo.push_back(arg);
}
return g;
}
}

View file

@ -96,6 +96,7 @@ namespace euf {
user::solver* m_user_propagator{ nullptr };
th_solver* m_qsolver { nullptr };
unsigned m_generation { 0 };
mutable ptr_vector<expr> m_todo;
ptr_vector<expr> m_bool_var2expr;
ptr_vector<size_t> m_explain;
@ -228,6 +229,7 @@ namespace euf {
s.m_generation = m_g;
}
};
unsigned get_max_generation(expr* e) const;
// accessors

View file

@ -213,7 +213,7 @@ namespace q {
qlit.neg();
TRACE("q", tout << "project: " << proj << "\n";);
++m_stats.m_num_instantiations;
unsigned generation = m_qs.get_max_generation(proj);
unsigned generation = ctx.get_max_generation(proj);
m_instantiations.push_back(instantiation_t(qlit, proj, generation));
}

View file

@ -207,26 +207,6 @@ namespace q {
return val;
}
unsigned solver::get_max_generation(expr* e) const {
unsigned g = 0;
expr_fast_mark1 mark;
m_todo.push_back(e);
while (!m_todo.empty()) {
e = m_todo.back();
m_todo.pop_back();
if (mark.is_marked(e))
continue;
mark.mark(e);
euf::enode* n = ctx.get_egraph().find(e);
if (n)
g = std::max(g, n->generation());
else if (is_app(e))
for (expr* arg : *to_app(e))
m_todo.push_back(arg);
}
return g;
}
expr_ref_vector const& solver::expand(quantifier* q) {
m_expanded.reset();
if (is_forall(q))

View file

@ -46,7 +46,6 @@ namespace q {
flat_table m_flat;
sat::literal_vector m_universal;
obj_map<sort, expr*> m_unit_table;
mutable ptr_vector<expr> m_todo;
expr_ref_vector m_expanded;
sat::literal instantiate(quantifier* q, bool negate, std::function<expr* (quantifier*, unsigned)>& mk_var);
@ -85,6 +84,5 @@ namespace q {
sat::literal_vector const& universal() const { return m_universal; }
quantifier* flatten(quantifier* q);
unsigned get_max_generation(expr* e) const;
};
}

View file

@ -15,10 +15,13 @@ Author:
--*/
#include "ast/rewriter/var_subst.h"
#include "sat/smt/recfun_solver.h"
#include "sat/smt/euf_solver.h"
#define TRACEFN(x) TRACE("recfun", tout << x << '\n';)
namespace recfun {
@ -29,11 +32,7 @@ namespace recfun {
m_util(m_plugin.u()),
m_disabled_guards(m),
m_enabled_guards(m),
m_preds(m),
m_num_rounds(0),
m_q_case_expand(),
m_q_body_expand() {
m_num_rounds = 0;
m_preds(m) {
}
solver::~solver() {
@ -41,34 +40,140 @@ namespace recfun {
}
void solver::reset() {
reset_queues();
m_propagation_queue.reset();
m_stats.reset();
m_disabled_guards.reset();
m_enabled_guards.reset();
m_q_guards.reset();
m_propagation_queue.reset();
for (auto & kv : m_guard2pending)
dealloc(kv.m_value);
m_guard2pending.reset();
}
void solver::reset_queues() {
for (auto* e : m_q_case_expand) {
dealloc(e);
expr_ref solver::apply_args(vars const & vars, expr_ref_vector const & args, expr * e) {
SASSERT(is_standard_order(vars));
var_subst subst(m, true);
expr_ref new_body = subst(e, args);
ctx.get_rewriter()(new_body);
return new_body;
}
/**
* For functions f(args) that are given as macros f(vs) = rhs
*
* 1. substitute `e.args` for `vs` into the macro rhs
* 2. add unit clause `f(args) = rhs`
*/
void solver::assert_macro_axiom(case_expansion & e) {
m_stats.m_macro_expansions++;
SASSERT(e.m_def->is_fun_macro());
auto & vars = e.m_def->get_vars();
auto lhs = e.m_lhs;
auto rhs = apply_args(vars, e.m_args, e.m_def->get_rhs());
unsigned generation = std::max(ctx.get_max_generation(lhs), ctx.get_max_generation(rhs));
euf::solver::scoped_generation _sgen(ctx, generation + 1);
auto eq = eq_internalize(lhs, rhs);
add_unit(eq);
}
/**
* Add case axioms for every case expansion path.
*
* assert `p(args) <=> And(guards)` (with CNF on the fly)
*
* also body-expand paths that do not depend on any defined fun
*/
void solver::assert_case_axioms(case_expansion & e) {
SASSERT(e.m_def->is_fun_defined());
// add case-axioms for all case-paths
// assert this was not defined before.
sat::literal_vector preds;
auto & vars = e.m_def->get_vars();
for (case_def const & c : e.m_def->get_cases()) {
// applied predicate to `args`
app_ref pred_applied = c.apply_case_predicate(e.m_args);
SASSERT(u().owns_app(pred_applied));
preds.push_back(mk_literal(pred_applied));
expr_ref_vector guards(m);
for (auto & g : c.get_guards())
guards.push_back(apply_args(vars, e.m_args, g));
if (c.is_immediate()) {
body_expansion be(pred_applied, c, e.m_args);
assert_body_axiom(be);
}
else if (!is_enabled_guard(pred_applied)) {
disable_guard(pred_applied, guards);
continue;
}
activate_guard(pred_applied, guards);
}
m_q_case_expand.reset();
for (auto* e : m_q_body_expand) {
dealloc(e);
}
m_q_body_expand.reset();
m_q_clauses.clear();
add_clause(preds);
}
void solver::activate_guard(expr* pred_applied, expr_ref_vector const& guards) {
sat::literal_vector lguards;
for (expr* ga : guards)
lguards.push_back(mk_literal(ga));
add_equiv_and(mk_literal(pred_applied), lguards);
}
/**
* make clause `depth_limit => ~guard`
* the guard appears at a depth below the current cutoff.
*/
void solver::disable_guard(expr* guard, expr_ref_vector const& guards) {
expr_ref nguard(m.mk_not(guard), m);
if (is_disabled_guard(nguard))
return;
SASSERT(!is_enabled_guard(nguard));
sat::literal_vector c;
app_ref dlimit = m_util.mk_num_rounds_pred(m_num_rounds);
c.push_back(~mk_literal(dlimit));
c.push_back(~mk_literal(guard));
m_disabled_guards.push_back(nguard);
SASSERT(!m_guard2pending.contains(nguard));
m_guard2pending.insert(nguard, alloc(expr_ref_vector, guards));
TRACEFN("add clause\n" << c);
m_propagation_queue.push_back(alloc(propagation_item, c));
}
/**
* For a guarded definition guards => f(vars) = rhs
* and occurrence f(args)
*
* substitute `args` for `vars` in guards, and rhs
* add axiom guards[args/vars] => f(args) = rhs[args/vars]
*
*/
void solver::assert_body_axiom(body_expansion & e) {
recfun::def & d = *e.m_cdef->get_def();
auto & vars = d.get_vars();
auto & args = e.m_args;
SASSERT(is_standard_order(vars));
sat::literal_vector clause;
for (auto & g : e.m_cdef->get_guards()) {
expr_ref guard = apply_args(vars, args, g);
if (m.is_false(guard))
return;
if (m.is_true(guard))
continue;
clause.push_back(~mk_literal(guard));
}
expr_ref lhs(u().mk_fun_defined(d, args), m);
expr_ref rhs = apply_args(vars, args, e.m_cdef->get_rhs());
clause.push_back(eq_internalize(lhs, rhs));
add_clause(clause);
}
void solver::get_antecedents(sat::literal l, sat::ext_justification_idx idx, sat::literal_vector& r, bool probing) {
UNREACHABLE();
}
void solver::asserted(sat::literal l) {
expr* e = ctx.bool_var2expr(l.var());
if (!l.sign() && u().is_case_pred(e))
push_body_expand(e);
}
sat::check_result solver::check() {
@ -76,15 +181,18 @@ namespace recfun {
}
std::ostream& solver::display(std::ostream& out) const {
return out;
return out << "disabled guards:\n" << m_disabled_guards << "\n";
}
std::ostream& solver::display_constraint(std::ostream& out, sat::ext_constraint_idx idx) const {
UNREACHABLE();
return out;
}
void solver::collect_statistics(statistics& st) const {
st.update("recfun macro expansion", m_stats.m_macro_expansions);
st.update("recfun case expansion", m_stats.m_case_expansions);
st.update("recfun body expansion", m_stats.m_body_expansions);
}
euf::th_solver* solver::clone(euf::solver& ctx) {
@ -92,13 +200,107 @@ namespace recfun {
}
bool solver::unit_propagate() {
return false;
if (m_qhead == m_propagation_queue.size())
return false;
ctx.push(value_trail<unsigned>(m_qhead));
for (; m_qhead < m_propagation_queue.size() && !s().inconsistent(); ++m_qhead) {
auto& p = *m_propagation_queue[m_qhead];
if (p.is_guard()) {
expr* ng = nullptr;
VERIFY(m.is_not(p.m_guard, ng));
activate_guard(ng, *m_guard2pending[p.m_guard]);
}
else if (p.is_clause()) {
add_clause(p.m_clause);
}
else if (p.is_case()) {
recfun::case_expansion& e = *p.m_case;
if (e.m_def->is_fun_macro())
assert_macro_axiom(e);
else
assert_case_axioms(e);
++m_stats.m_case_expansions;
}
else {
SASSERT(p.is_body());
assert_body_axiom(*p.m_body);
++m_stats.m_body_expansions;
}
}
return true;
}
sat::literal solver::internalize(expr* e, bool sign, bool root, bool learned) {
return sat::null_literal;
void solver::push_body_expand(expr* e) {
auto* b = alloc(body_expansion, u(), to_app(e));
m_propagation_queue.push_back(alloc(propagation_item, b));
ctx.push(push_back_vector<scoped_ptr_vector<propagation_item>>(m_propagation_queue));
}
void solver::push_case_expand(expr* e) {
auto* c = alloc(case_expansion, u(), to_app(e));
m_propagation_queue.push_back(alloc(propagation_item, c));
ctx.push(push_back_vector<scoped_ptr_vector<propagation_item>>(m_propagation_queue));
}
sat::literal solver::internalize(expr* e, bool sign, bool root, bool redundant) {
SASSERT(m.is_bool(e));
if (!visit_rec(m, e, sign, root, redundant)) {
TRACE("array", tout << mk_pp(e, m) << "\n";);
return sat::null_literal;
}
auto lit = expr2literal(e);
if (sign)
lit.neg();
return lit;
}
void solver::internalize(expr* e, bool redundant) {
visit_rec(m, e, false, false, redundant);
}
bool solver::visited(expr* e) {
euf::enode* n = expr2enode(e);
return n && n->is_attached_to(get_id());
}
bool solver::visit(expr* e) {
if (visited(e))
return true;
if (!is_app(e) || to_app(e)->get_family_id() != get_id()) {
ctx.internalize(e, m_is_redundant);
euf::enode* n = expr2enode(e);
// TODO ensure_var(n);
return true;
}
m_stack.push_back(sat::eframe(e));
return false;
}
bool solver::post_visit(expr* e, bool sign, bool root) {
euf::enode* n = expr2enode(e);
app* a = to_app(e);
SASSERT(!n || !n->is_attached_to(get_id()));
if (!n)
n = mk_enode(e, false);
SASSERT(!n->is_attached_to(get_id()));
mk_var(n);
#if 0
for (auto* arg : euf::enode_args(n))
ensure_var(arg);
switch (a->get_decl_kind()) {
default:
UNREACHABLE();
break;
}
#endif
if (u().is_defined(e) && u().has_defs())
push_case_expand(e);
return true;
}
euf::theory_var solver::mk_var(euf::enode* n) {
return euf::null_theory_var;
}

View file

@ -35,62 +35,6 @@ namespace recfun {
void reset() { memset(this, 0, sizeof(stats)); }
stats() { reset(); }
};
// one case-expansion of `f(t1...tn)`
struct case_expansion {
app * m_lhs; // the term to expand
recfun::def * m_def;
ptr_vector<expr> m_args;
case_expansion(recfun::util& u, app * n) :
m_lhs(n), m_def(nullptr), m_args() {
SASSERT(u.is_defined(n));
func_decl * d = n->get_decl();
m_def = &u.get_def(d);
m_args.append(n->get_num_args(), n->get_args());
}
case_expansion(case_expansion const & from)
: m_lhs(from.m_lhs),
m_def(from.m_def),
m_args(from.m_args) {}
case_expansion(case_expansion && from)
: m_lhs(from.m_lhs),
m_def(from.m_def),
m_args(std::move(from.m_args)) {}
};
struct pp_case_expansion {
case_expansion & e;
ast_manager & m;
pp_case_expansion(case_expansion & e, ast_manager & m) : e(e), m(m) {}
};
friend std::ostream& operator<<(std::ostream&, pp_case_expansion const &);
// one body-expansion of `f(t1...tn)` using a `C_f_i(t1...tn)`
struct body_expansion {
app* m_pred;
recfun::case_def const * m_cdef;
ptr_vector<expr> m_args;
body_expansion(recfun::util& u, app * n) : m_pred(n), m_cdef(nullptr), m_args() {
m_cdef = &u.get_case_def(n);
m_args.append(n->get_num_args(), n->get_args());
}
body_expansion(app* pred, recfun::case_def const & d, ptr_vector<expr> & args) :
m_pred(pred), m_cdef(&d), m_args(args) {}
body_expansion(body_expansion const & from):
m_pred(from.m_pred), m_cdef(from.m_cdef), m_args(from.m_args) {}
body_expansion(body_expansion && from) :
m_pred(from.m_pred), m_cdef(from.m_cdef), m_args(std::move(from.m_args)) {}
};
struct pp_body_expansion {
body_expansion & e;
ast_manager & m;
pp_body_expansion(body_expansion & e, ast_manager & m) : e(e), m(m) {}
};
friend std::ostream& operator<<(std::ostream&, pp_body_expansion const &);
recfun::decl::plugin& m_plugin;
recfun::util& m_util;
@ -103,12 +47,44 @@ namespace recfun {
obj_map<expr, unsigned> m_pred_depth;
expr_ref_vector m_preds;
unsigned_vector m_preds_lim;
unsigned m_num_rounds;
unsigned m_num_rounds { 0 };
ptr_vector<case_expansion> m_q_case_expand;
ptr_vector<body_expansion> m_q_body_expand;
vector<sat::literal_vector> m_q_clauses;
ptr_vector<expr> m_q_guards;
struct propagation_item {
case_expansion* m_case { nullptr };
body_expansion* m_body { nullptr };
sat::literal_vector m_clause;
expr* m_guard { nullptr };
~propagation_item() {
dealloc(m_case);
dealloc(m_body);
}
propagation_item(expr* guard):
m_guard(guard)
{}
propagation_item(sat::literal_vector const& clause):
m_clause(clause)
{}
propagation_item(body_expansion* b):
m_body(b)
{}
propagation_item(case_expansion* c):
m_case(c)
{}
bool is_guard() const { return m_guard != nullptr; }
bool is_clause() const { return !m_clause.empty(); }
bool is_case() const { return m_case != nullptr; }
bool is_body() const { return m_body != nullptr; }
};
scoped_ptr_vector<propagation_item> m_propagation_queue;
unsigned m_qhead { 0 };
void push_body_expand(expr* e);
void push_case_expand(expr* e);
bool is_enabled_guard(expr* guard) { expr_ref ng(m.mk_not(guard), m); return m_enabled_guards.contains(ng); }
bool is_disabled_guard(expr* guard) { return m_disabled_guards.contains(guard); }
@ -122,12 +98,10 @@ namespace recfun {
void activate_guard(expr* guard, expr_ref_vector const& guards);
void reset_queues();
expr_ref apply_args(unsigned depth, recfun::vars const & vars, ptr_vector<expr> const & args, expr * e); //!< substitute variables by args
expr_ref apply_args(vars const & vars, expr_ref_vector const & args, expr * e); //!< substitute variables by args
void assert_macro_axiom(case_expansion & e);
void assert_case_axioms(case_expansion & e);
void assert_body_axiom(body_expansion & e);
sat::literal mk_literal(expr* e);
void add_induction_lemmas(unsigned depth);
void disable_guard(expr* guard, expr_ref_vector const& guards);
@ -141,6 +115,10 @@ namespace recfun {
}
void reset();
bool visit(expr* e) override;
bool visited(expr* e) override;
bool post_visit(expr* e, bool sign, bool root) override;
public:
@ -157,7 +135,7 @@ namespace recfun {
euf::th_solver* clone(euf::solver& ctx) override;
bool unit_propagate() override;
sat::literal internalize(expr* e, bool sign, bool root, bool learned) override;
void internalize(expr* e, bool redundant) override { UNREACHABLE(); }
void internalize(expr* e, bool redundant) override;
euf::theory_var mk_var(euf::enode* n) override;
void init_search() override;
void finalize_model(model& mdl) override;