3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 01:24:08 +00:00

add ddnf tests, add facility to solve QF_NRA + QF_UF(and other theories) in joint solver to allow broader use of QF_NRA core

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2015-05-09 19:40:34 -07:00
parent 9377779e58
commit 839e3fbb7c
20 changed files with 1158 additions and 8 deletions

View file

@ -2083,7 +2083,7 @@ bool parse_is_sat_line(char const* line, bool& is_sat) {
return true;
}
return false;
}
bool parse_is_sat(char const* filename, bool& is_sat) {
std::ifstream is(filename);

View file

@ -69,7 +69,8 @@ def init_project_def():
add_lib('ddnf', ['muz', 'transforms', 'rel'], 'muz/ddnf')
add_lib('duality_intf', ['muz', 'transforms', 'duality'], 'muz/duality')
add_lib('fp', ['muz', 'pdr', 'clp', 'tab', 'rel', 'bmc', 'duality_intf', 'ddnf'], 'muz/fp')
add_lib('smtlogic_tactics', ['arith_tactics', 'bv_tactics', 'nlsat_tactic', 'smt_tactic', 'aig_tactic', 'fp', 'muz','qe'], 'tactic/smtlogics')
add_lib('nlsat_smt_tactic', ['nlsat_tactic', 'smt_tactic'], 'tactic/nlsat_smt')
add_lib('smtlogic_tactics', ['arith_tactics', 'bv_tactics', 'nlsat_tactic', 'smt_tactic', 'aig_tactic', 'fp', 'muz','qe','nlsat_smt_tactic'], 'tactic/smtlogics')
add_lib('ufbv_tactic', ['normal_forms', 'core_tactics', 'macros', 'smt_tactic', 'rewriter'], 'tactic/ufbv')
add_lib('portfolio', ['smtlogic_tactics', 'ufbv_tactic', 'fpa_tactics', 'aig_tactic', 'fp', 'qe','sls_tactic', 'subpaving_tactic'], 'tactic/portfolio')
add_lib('smtparser', ['portfolio'], 'parsers/smt')

View file

@ -123,6 +123,13 @@ namespace datalog {
class ddnf_mgr {
struct stats {
unsigned m_num_inserts;
unsigned m_num_comparisons;
stats() { reset(); }
void reset() { memset(this, 0, sizeof(*this)); }
};
unsigned m_num_bits;
ddnf_node* m_root;
ddnf_node_vector m_noderefs;
@ -131,6 +138,8 @@ namespace datalog {
ddnf_node::hash m_hash;
ddnf_node::eq m_eq;
ddnf_nodes m_nodes;
svector<bool> m_marked;
stats m_stats;
public:
ddnf_mgr(unsigned n): m_num_bits(n), m_noderefs(*this), m_internalized(false), m_tbv(n),
m_hash(m_tbv), m_eq(m_tbv),
@ -154,6 +163,31 @@ namespace datalog {
n->dec_ref();
}
void reset_accumulate() {
m_marked.resize(m_nodes.size());
for (unsigned i = 0; i < m_marked.size(); ++i) {
m_marked[i] = false;
}
}
void accumulate(tbv const& t, unsigned_vector& acc) {
ddnf_node* n = find(t);
ptr_vector<ddnf_node> todo;
todo.push_back(n);
while (!todo.empty()) {
n = todo.back();
todo.pop_back();
unsigned id = n->get_id();
if (m_marked[id]) continue;
acc.push_back(id);
m_marked[id] = true;
unsigned sz = n->num_children();
for (unsigned i = 0; i < sz; ++i) {
todo.push_back((*n)[i]);
}
}
}
ddnf_node* insert(tbv const& t) {
SASSERT(!m_internalized);
ptr_vector<tbv const> new_tbvs;
@ -173,6 +207,9 @@ namespace datalog {
return m_tbv.allocate(v, hi, lo);
}
tbv_manager& get_tbv_manager() {
return m_tbv;
}
unsigned size() const {
return m_noderefs.size();
@ -183,13 +220,21 @@ namespace datalog {
return find(t)->descendants();
}
void display(std::ostream& out) const {
void display_statistics(std::ostream& out) const {
std::cout << "Number of insertions: " << m_stats.m_num_inserts << "\n";
std::cout << "Number of comparisons: " << m_stats.m_num_comparisons << "\n";
std::cout << "Number of nodes: " << size() << "\n";
}
void display(std::ostream& out) const {
for (unsigned i = 0; i < m_noderefs.size(); ++i) {
m_noderefs[i]->display(out);
out << "\n";
}
}
private:
ddnf_node* find(tbv const& t) {
@ -207,9 +252,11 @@ namespace datalog {
SASSERT(m_tbv.contains(root.get_tbv(), new_tbv));
if (&root == new_n) return;
++m_stats.m_num_inserts;
bool inserted = false;
for (unsigned i = 0; i < root.num_children(); ++i) {
ddnf_node& child = *(root[i]);
++m_stats.m_num_comparisons;
if (m_tbv.contains(child.get_tbv(), new_tbv)) {
inserted = true;
insert(child, new_n, new_intersections);
@ -227,11 +274,16 @@ namespace datalog {
// checking for subset
if (m_tbv.contains(new_tbv, child.get_tbv())) {
subset_children.push_back(&child);
++m_stats.m_num_comparisons;
}
else if (m_tbv.intersect(child.get_tbv(), new_tbv, *intr)) {
// this means there is a non-full intersection
new_intersections.push_back(intr);
intr = m_tbv.allocate();
m_stats.m_num_comparisons += 2;
}
else {
m_stats.m_num_comparisons += 2;
}
}
m_tbv.deallocate(intr);
@ -284,10 +336,38 @@ namespace datalog {
for (; it != end; ++it) {
dst.insert(*it);
}
}
}
};
ddnf_core::ddnf_core(unsigned n) {
m_imp = alloc(ddnf_mgr, n);
}
ddnf_core::~ddnf_core() {
dealloc(m_imp);
}
ddnf_node* ddnf_core::insert(tbv const& t) {
return m_imp->insert(t);
}
tbv_manager& ddnf_core::get_tbv_manager() {
return m_imp->get_tbv_manager();
}
unsigned ddnf_core::size() const {
return m_imp->size();
}
void ddnf_core::reset_accumulate() {
return m_imp->reset_accumulate();
}
void ddnf_core::accumulate(tbv const& t, unsigned_vector& acc) {
return m_imp->accumulate(t, acc);
}
void ddnf_core::display(std::ostream& out) const {
m_imp->display(out);
}
void ddnf_core::display_statistics(std::ostream& out) const {
m_imp->display_statistics(out);
}
void ddnf_node::add_child(ddnf_node* n) {
//SASSERT(!m_tbv.is_subset(n->m_tbv));
m_children.push_back(n);

View file

@ -24,6 +24,9 @@ Revision History:
#include "statistics.h"
#include "dl_engine_base.h"
class tbv;
class tbv_manager;
namespace datalog {
class context;
@ -41,6 +44,28 @@ namespace datalog {
virtual void display_certificate(std::ostream& out) const;
virtual expr_ref get_answer();
};
class ddnf_node;
class ddnf_mgr;
class ddnf_core {
ddnf_mgr* m_imp;
public:
ddnf_core(unsigned n);
~ddnf_core();
ddnf_node* insert(tbv const& t);
tbv_manager& get_tbv_manager();
unsigned size() const;
//
// accumulate labels covered by the stream of tbvs,
// such that labels that are covered by the current
// tbv but not the previous tbvs are included.
//
void reset_accumulate();
void accumulate(tbv const& t, unsigned_vector& labels);
void display(std::ostream& out) const;
void display_statistics(std::ostream& out) const;
};
};
#endif

View file

@ -99,6 +99,20 @@ tbv* tbv_manager::allocate(tbv const& bv, unsigned const* permutation) {
}
return r;
}
tbv* tbv_manager::allocate(char const* bv) {
tbv* result = allocateX();
unsigned i = 0, sz = num_tbits();
while(*bv && i < sz) {
if (*bv == '0') set(*result, i++, tbit::BIT_0);
else if (*bv == '1') set(*result, i++, tbit::BIT_1);
else if (*bv == '*') i++;
else if (i == 0 && (*bv == ' ' || *bv == '\t')) ;
else break;
++bv;
}
return result;
}
tbv* tbv_manager::project(bit_vector const& to_delete, tbv const& src) {
tbv* r = allocate();
unsigned i, j;

View file

@ -55,6 +55,7 @@ public:
tbv* allocate(rational const& r);
tbv* allocate(uint64 n, unsigned hi, unsigned lo);
tbv* allocate(tbv const& bv, unsigned const* permutation);
tbv* allocate(char const* bv);
void deallocate(tbv* bv);

View file

@ -22,6 +22,7 @@ Notes:
#include"smt_params.h"
#include"smt_params_helper.hpp"
#include"rewriter_types.h"
#include"filter_model_converter.h"
class smt_tactic : public tactic {
smt_params m_params;
@ -150,6 +151,7 @@ public:
scoped_ptr<expr2expr_map> dep2bool;
scoped_ptr<expr2expr_map> bool2dep;
ptr_vector<expr> assumptions;
ref<filter_model_converter> fmc;
if (in->unsat_core_enabled()) {
if (in->proofs_enabled())
throw tactic_exception("smt tactic does not support simultaneous generation of proofs and unsat cores");
@ -191,6 +193,10 @@ public:
dep2bool->insert(d, b);
bool2dep->insert(b, d);
assumptions.push_back(b);
if (!fmc) {
fmc = alloc(filter_model_converter, m);
}
fmc->insert(to_app(b)->get_decl());
}
clause.push_back(m.mk_not(b));
}
@ -229,11 +235,12 @@ public:
// the empty assertion set is trivially satifiable.
in->reset();
result.push_back(in.get());
// store the model in a do nothin model converter.
// store the model in a no-op model converter, and filter fresh Booleans
if (in->models_enabled()) {
model_ref md;
m_ctx->get_model(md);
mc = model2model_converter(md.get());
mc = concat(fmc.get(), mc.get());
}
pc = 0;
core = 0;

View file

@ -513,6 +513,53 @@ static bool is_lira(goal const & g) {
return !test(g, p);
}
struct is_non_qfufnra_functor {
struct found {};
ast_manager & m;
arith_util u;
is_non_qfufnra_functor(ast_manager & _m): m(_m), u(m) {}
void throw_found() {
throw found();
}
void operator()(var * x) {
throw_found();
}
void operator()(quantifier *) {
throw_found();
}
void operator()(app * n) {
family_id fid = n->get_family_id();
if (fid == m.get_basic_family_id())
return;
if (fid == u.get_family_id()) {
switch (n->get_decl_kind()) {
case OP_LE: case OP_GE: case OP_LT: case OP_GT:
case OP_ADD: case OP_UMINUS: case OP_SUB: case OP_ABS:
case OP_NUM: case OP_MUL:
case OP_IRRATIONAL_ALGEBRAIC_NUM:
return;
case OP_IDIV: case OP_DIV: case OP_REM: case OP_MOD:
case OP_POWER:
if (!u.is_numeral(n->get_arg(1)))
throw_found();
return;
case OP_IS_INT:
case OP_TO_INT:
case OP_TO_REAL:
throw_found();
return;
default:
throw_found();
}
}
}
};
class is_qfnia_probe : public probe {
public:
virtual result operator()(goal const & g) {
@ -569,6 +616,18 @@ public:
}
};
static bool is_qfufnra(goal const& g) {
is_non_qfufnra_functor p(g.m());
return !test(g, p);
}
class is_qfufnra_probe : public probe {
public:
virtual result operator()(goal const & g) {
return is_qfufnra(g);
}
};
probe * mk_is_qfnia_probe() {
return alloc(is_qfnia_probe);
}
@ -600,3 +659,7 @@ probe * mk_is_lra_probe() {
probe * mk_is_lira_probe() {
return alloc(is_lira_probe);
}
probe* mk_is_qfufnra_probe() {
return alloc(is_qfufnra_probe);
}

View file

@ -55,6 +55,7 @@ probe * mk_is_nira_probe();
probe * mk_is_lia_probe();
probe * mk_is_lra_probe();
probe * mk_is_lira_probe();
probe * mk_is_qfufnra_probe();
/*
ADD_PROBE("is-qfnia", "true if the goal is in QF_NIA (quantifier-free nonlinear integer arithmetic).", "mk_is_qfnia_probe()")
@ -65,5 +66,6 @@ probe * mk_is_lira_probe();
ADD_PROBE("is-lia", "true if the goal is in LIA (linear integer arithmetic, formula may have quantifiers).", "mk_is_lia_probe()")
ADD_PROBE("is-lra", "true if the goal is in LRA (linear real arithmetic, formula may have quantifiers).", "mk_is_lra_probe()")
ADD_PROBE("is-lira", "true if the goal is in LIRA (linear integer and real arithmetic, formula may have quantifiers).", "mk_is_lira_probe()")
ADD_PROBE("is-qfufnra", "true if the goal is QF_UFNRA (quantifier-free nonlinear real arithmetic with other theories).", mk_is_qfufnra_probe()");
*/
#endif

View file

@ -0,0 +1,667 @@
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
nl_purify_tactic.cpp
Abstract:
Tactic for purifying quantifier-free formulas that mix QF_NRA and other theories.
It is designed to allow cooprating between the nlsat solver and other theories
in a decoupled way.
Let goal be formula F.
Let NL goal be formula G.
Assume F is in NNF.
Assume F does not contain mix of real/integers.
Assume F is quantifier-free (please, otherwise we need to reprocess from instantiated satisfiable formula)
For each atomic nl formula f,
- introduce a propositional variable p
- replace f by p
- add clauses p => f to G
For each interface term t,
- introduce interface variable v (or use t if it is already a variable)
- replace t by v
Check satisfiability of G.
If satisfiable, then check assignment to p and interface equalities on F
If unsat:
Retrieve core and add core to G.
else:
For interface equalities from model of F that are not equal in G, add
For interface variables that are equal under one model, but not the other model,
create interface predicate p_vw => v = w, add to both F, G.
Add interface equations to assumptions, recheck F.
If unsat retrieve core add to G.
Author:
Nikolaj Bjorner (nbjorner) 2015-5-5.
Revision History:
- check for input assumptions
- check for proof mode
- check for quantifiers
- add applicability filter
- add to smtlogics
--*/
#include "tactical.h"
#include "nl_purify_tactic.h"
#include "smt_tactic.h"
#include "rewriter.h"
#include "nlsat_tactic.h"
#include "filter_model_converter.h"
#include "obj_pair_hashtable.h"
#include "rewriter_def.h"
#include "ast_pp.h"
#include "trace.h"
#include "smt_solver.h"
#include "solver.h"
class nl_purify_tactic : public tactic {
enum polarity_t {
pol_pos,
pol_neg,
pol_dual
};
ast_manager & m;
arith_util m_util;
params_ref m_params;
bool m_produce_proofs;
ref<filter_model_converter> m_fmc;
bool m_cancel;
tactic_ref m_nl_tac; // nlsat tactic
ref<solver> m_solver; // SMT solver
expr_ref_vector m_eq_preds; // predicates for equality between pairs of interface variables
svector<lbool> m_eq_values; // truth value of the equality predicates in nlsat
app_ref_vector m_new_reals; // interface real variables
app_ref_vector m_new_preds; // abstraction predicates for smt_solver (hide real constraints)
expr_ref_vector m_asms; // assumptions to pass to SMT solver
obj_pair_map<expr,expr,expr*> m_eq_pairs; // map pairs of interface variables to auxiliary predicates
obj_map<expr,expr*> m_interface_cache; // map of compound real expression to interface variable.
obj_map<expr, polarity_t> m_polarities; // polarities of sub-expressions
public:
struct rw_cfg : public default_rewriter_cfg {
enum mode_t {
mode_interface_var,
mode_bool_preds
};
ast_manager& m;
nl_purify_tactic & m_owner;
app_ref_vector& m_new_reals;
app_ref_vector& m_new_preds;
obj_map<expr, polarity_t>& m_polarities;
obj_map<expr,expr*>& m_interface_cache;
expr_ref_vector m_nl_cnstrs;
proof_ref_vector m_nl_cnstr_prs;
expr_ref_vector m_args;
mode_t m_mode;
rw_cfg(nl_purify_tactic & o):
m(o.m),
m_owner(o),
m_new_reals(o.m_new_reals),
m_new_preds(o.m_new_preds),
m_polarities(o.m_polarities),
m_interface_cache(o.m_interface_cache),
m_nl_cnstrs(m),
m_nl_cnstr_prs(m),
m_args(m),
m_mode(mode_interface_var) {
}
virtual ~rw_cfg() {}
arith_util & u() { return m_owner.m_util; }
bool produce_proofs() const { return m_owner.m_produce_proofs; }
expr * mk_interface_var(expr* arg) {
expr* r;
if (m_interface_cache.find(arg, r)) {
return r;
}
if (is_uninterp_const(arg)) {
m_interface_cache.insert(arg, arg);
return arg;
}
r = m.mk_fresh_const(0, u().mk_real());
m_new_reals.push_back(to_app(r));
m_interface_cache.insert(arg, r);
return r;
}
void mk_interface_bool(func_decl * f, unsigned num, expr* const* args, expr_ref& result) {
expr_ref old_pred(m.mk_app(f, num, args), m);
polarity_t pol;
TRACE("nlsat_smt", tout << old_pred << "\n";);
VERIFY(m_polarities.find(old_pred, pol));
result = m.mk_fresh_const(0, m.mk_bool_sort());
m_polarities.insert(result, pol);
m_new_preds.push_back(to_app(result));
if (pol != pol_neg) {
m_nl_cnstrs.push_back(m.mk_or(m.mk_not(result), m.mk_app(f, num, args)));
}
if (pol != pol_pos) {
m_nl_cnstrs.push_back(m.mk_or(result, m.mk_not(m.mk_app(f, num, args))));
}
TRACE("nlsat_smt", tout << result << " : " << mk_pp(m_nl_cnstrs.back(), m) << "\n";);
}
bool reduce_quantifier(quantifier * old_q,
expr * new_body,
expr * const * new_patterns,
expr * const * new_no_patterns,
expr_ref & result,
proof_ref & result_pr) {
throw tactic_exception("quantifiers are not supported in mixed-mode nlsat engine");
}
br_status reduce_app_bool(func_decl * f, unsigned num, expr* const* args, expr_ref& result, proof_ref & pr) {
if (f->get_family_id() == m.get_basic_family_id()) {
// TBD: do we have negated inequalities for strict?
// maybe equalities are already deleted by pre-processor stage, but why depend on this?
if (f->get_decl_kind() == OP_EQ && u().is_real(args[0])) {
mk_interface_bool(f, num, args, result);
return BR_DONE;
}
else {
return BR_FAILED;
}
}
if (f->get_family_id() == u().get_family_id()) {
switch (f->get_decl_kind()) {
case OP_LE:
case OP_GE:
case OP_LT:
case OP_GT:
// these are the only real cases of non-linear atomic formulas besides equality.
mk_interface_bool(f, num, args, result);
return BR_DONE;
default:
return BR_FAILED;
}
}
return BR_FAILED;
}
br_status reduce_app_real(func_decl * f, unsigned num, expr* const* args, expr_ref& result, proof_ref & pr) {
m_args.reset();
bool has_interface = false;
for (unsigned i = 0; i < num; ++i) {
expr* arg = args[i];
if (u().is_real(arg)) {
has_interface = true;
m_args.push_back(mk_interface_var(arg));
}
else {
m_args.push_back(arg);
}
}
if (has_interface) {
result = m.mk_app(f, num, m_args.c_ptr());
TRACE("nlsat_smt", tout << result << "\n";);
return BR_DONE;
}
else {
return BR_FAILED;
}
}
br_status reduce_app(func_decl * f, unsigned num, expr* const* args, expr_ref& result, proof_ref & pr) {
if (m_mode == mode_bool_preds) {
return reduce_app_bool(f, num, args, result, pr);
}
else {
return reduce_app_real(f, num, args, result, pr);
}
}
};
private:
class rw : public rewriter_tpl<rw_cfg> {
rw_cfg m_cfg;
public:
rw(nl_purify_tactic & o):
rewriter_tpl<rw_cfg>(o.m, o.m_produce_proofs, m_cfg),
m_cfg(o) {
}
expr_ref_vector const& nl_cnstrs() const {
return m_cfg.m_nl_cnstrs;
}
void set_bool_mode() {
m_cfg.m_mode = rw_cfg::mode_bool_preds;
}
void set_interface_var_mode() {
m_cfg.m_mode = rw_cfg::mode_interface_var;
}
};
arith_util & u() { return m_util; }
void check_point() {
if (m_cancel) {
throw tactic_exception("canceled");
}
}
void display_result(std::ostream& out, goal_ref_buffer const& result) {
for (unsigned i = 0; i < result.size(); ++i) {
result[i]->display(tout << "goal\n");
}
}
void update_eq_values(model_ref& mdl) {
expr_ref tmp(m);
for (unsigned i = 0; i < m_eq_preds.size(); ++i) {
expr* pred = m_eq_preds[i].get();
m_eq_values[i] = l_undef;
if (mdl->eval(pred, tmp)) {
if (m.is_true(tmp)) {
m_eq_values[i] = l_true;
}
else if (m.is_false(tmp)) {
m_eq_values[i] = l_false;
}
}
}
}
void solve(goal_ref const& nl_g,
goal_ref_buffer& result,
model_converter_ref& mc) {
while (true) {
check_point();
TRACE("nlsat_smt", m_solver->display(tout << "SMT:\n"); nl_g->display(tout << "\nNL:\n"); );
goal_ref tmp_nl = alloc(goal, m, true, false);
model_converter_ref nl_mc;
proof_converter_ref nl_pc;
expr_dependency_ref nl_core(m);
result.reset();
tmp_nl->copy_from(*nl_g.get());
(*m_nl_tac)(tmp_nl, result, nl_mc, nl_pc, nl_core);
if (is_decided_unsat(result)) {
TRACE("nlsat_smt", tout << "unsat\n";);
break;
}
if (!is_decided_sat(result)) {
TRACE("nlsat_smt", tout << "not a unit\n";);
break;
}
// extract evaluation on interface variables.
// assert booleans that evaluate to true.
// assert equalities between equal interface real variables.
model_ref mdl_nl, mdl_smt;
model_converter2model(m, nl_mc.get(), mdl_nl);
update_eq_values(mdl_nl);
enforce_equalities(mdl_nl, nl_g);
setup_assumptions(mdl_nl);
TRACE("nlsat_smt", m_solver->display(tout << "smt goal:\n"); );
result.reset();
lbool r = m_solver->check_sat(m_asms.size(), m_asms.c_ptr());
if (r == l_false) {
// extract the core from the result
ptr_vector<expr> core;
m_solver->get_unsat_core(core);
if (core.empty()) {
goal_ref g = alloc(goal, m);
g->assert_expr(m.mk_false());
result.push_back(g.get());
break;
}
expr_ref_vector clause(m);
expr_ref fml(m);
expr* e;
for (unsigned i = 0; i < core.size(); ++i) {
clause.push_back(m.is_not(core[i], e)?e:m.mk_not(core[i]));
}
fml = m.mk_or(clause.size(), clause.c_ptr());
nl_g->assert_expr(fml);
continue;
}
else if (r == l_true) {
m_solver->get_model(mdl_smt);
if (enforce_equalities(mdl_smt, nl_g)) {
// SMT enforced a new equality that wasn't true for nlsat.
continue;
}
TRACE("nlsat_smt",
m_fmc->display(tout << "joint state is sat\n");
nl_mc->display(tout << "nl\n"););
merge_models(*mdl_nl.get(), mdl_smt);
mc = m_fmc.get();
apply(mc, mdl_smt, 0);
mc = model2model_converter(mdl_smt.get());
result.push_back(alloc(goal, m));
}
else {
TRACE("nlsat_smt", tout << "unknown\n";);
}
break;
}
TRACE("nlsat_smt", display_result(tout, result););
}
void setup_assumptions(model_ref& mdl) {
m_asms.reset();
app_ref_vector const& fresh_preds = m_new_preds;
expr_ref tmp(m);
for (unsigned i = 0; i < fresh_preds.size(); ++i) {
expr* pred = fresh_preds[i];
if (mdl->eval(pred, tmp)) {
TRACE("nlsat_smt", tout << "pred: " << mk_pp(pred, m) << "\n";);
polarity_t pol = m_polarities.find(pred);
if (pol != pol_neg && m.is_true(tmp)) {
m_asms.push_back(pred);
}
else if (pol != pol_pos && m.is_false(tmp)) {
m_asms.push_back(m.mk_not(pred));
}
}
}
for (unsigned i = 0; i < m_eq_preds.size(); ++i) {
expr* pred = m_eq_preds[i].get();
switch(m_eq_values[i]) {
case l_true:
m_asms.push_back(pred);
break;
case l_false:
m_asms.push_back(m.mk_not(pred));
break;
default:
break;
}
}
}
bool enforce_equalities(model_ref& mdl, goal_ref const& nl_g) {
TRACE("nlsat_smt", tout << "Enforce equalities " << m_interface_cache.size() << "\n";);
bool new_equality = false;
expr_ref_vector nums(m);
obj_map<expr, expr*> num2var;
obj_map<expr, expr*>::iterator it = m_interface_cache.begin(), end = m_interface_cache.end();
for (; it != end; ++it) {
expr_ref r(m);
expr* v, *w, *pred;
w = it->m_value;
VERIFY(mdl->eval(w, r));
TRACE("nlsat_smt", tout << mk_pp(w, m) << " |-> " << r << "\n";);
nums.push_back(r);
if (num2var.find(r, v)) {
if (!m_eq_pairs.find(v, w, pred)) {
pred = m.mk_fresh_const(0, m.mk_bool_sort());
m_eq_preds.push_back(pred);
m_eq_values.push_back(l_true);
m_fmc->insert(to_app(pred)->get_decl());
nl_g->assert_expr(m.mk_or(m.mk_not(pred), m.mk_eq(w, v)));
nl_g->assert_expr(m.mk_or(pred, m.mk_not(m.mk_eq(w, v))));
m_solver->assert_expr(m.mk_iff(pred, m.mk_eq(w, v)));
new_equality = true;
m_eq_pairs.insert(v, w, pred);
}
else {
// interface equality is already enforced.
}
}
else {
num2var.insert(r, w);
}
}
return new_equality;
}
void merge_models(model const& mdl_nl, model_ref& mdl_smt) {
obj_map<expr,expr*> num2num;
expr_ref result(m), val2(m);
expr_ref_vector args(m), trail(m);
unsigned sz = mdl_nl.get_num_constants();
for (unsigned i = 0; i < sz; ++i) {
func_decl* v = mdl_nl.get_constant(i);
if (u().is_real(v->get_range())) {
expr* val = mdl_nl.get_const_interp(v);
if (mdl_smt->eval(v, val2)) {
if (val != val2) {
num2num.insert(val2, val);
trail.push_back(val2);
}
}
}
}
sz = mdl_smt->get_num_functions();
for (unsigned i = 0; i < sz; ++i) {
func_decl* f = mdl_smt->get_function(i);
if (has_real(f)) {
unsigned arity = f->get_arity();
func_interp* f1 = mdl_smt->get_func_interp(f);
func_interp* f2 = alloc(func_interp, m, f->get_arity());
for (unsigned j = 0; j < f1->num_entries(); ++j) {
args.reset();
func_entry const* entry = f1->get_entry(j);
for (unsigned k = 0; k < arity; ++k) {
args.push_back(translate(num2num, entry->get_arg(k)));
}
result = translate(num2num, entry->get_result());
f2->insert_entry(args.c_ptr(), result);
}
expr* e = f1->get_else();
result = translate(num2num, e);
f2->set_else(result);
mdl_smt->register_decl(f, f2);
}
}
mdl_smt->copy_const_interps(mdl_nl);
}
bool has_real(func_decl* f) {
for (unsigned i = 0; i < f->get_arity(); ++i) {
if (u().is_real(f->get_domain(i))) return true;
}
return u().is_real(f->get_range());
}
expr* translate(obj_map<expr, expr*> const& num2num, expr* e) {
if (!e || !u().is_real(e)) return e;
expr* result = 0;
if (num2num.find(e, result)) return result;
return e;
}
void get_polarities(goal const& g) {
ptr_vector<expr> forms;
svector<polarity_t> pols;
unsigned sz = g.size();
for (unsigned i = 0; i < sz; ++i) {
forms.push_back(g.form(i));
pols.push_back(pol_pos);
}
polarity_t p, q;
while (!forms.empty()) {
expr* e = forms.back();
p = pols.back();
forms.pop_back();
pols.pop_back();
if (m_polarities.find(e, q)) {
if (p == q || q == pol_dual) continue;
p = pol_dual;
}
TRACE("nlsat_smt", tout << mk_pp(e, m) << "\n";);
m_polarities.insert(e, p);
if (is_quantifier(e) || is_var(e)) {
throw tactic_exception("nl-purify tactic does not support quantifiers");
}
SASSERT(is_app(e));
app* a = to_app(e);
func_decl* f = a->get_decl();
if (f->get_family_id() == m.get_basic_family_id() && p != pol_dual) {
switch(f->get_decl_kind()) {
case OP_NOT:
p = neg(p);
break;
case OP_AND:
case OP_OR:
break;
default:
p = pol_dual;
break;
}
}
else {
p = pol_dual;
}
for (unsigned i = 0; i < a->get_num_args(); ++i) {
forms.push_back(a->get_arg(i));
pols.push_back(p);
}
}
}
polarity_t neg(polarity_t p) {
switch (p) {
case pol_pos: return pol_neg;
case pol_neg: return pol_pos;
case pol_dual: return pol_dual;
}
return pol_dual;
}
polarity_t join(polarity_t p, polarity_t q) {
if (p == q) return p;
return pol_dual;
}
void rewrite_goal(rw& r, goal_ref const& g) {
expr_ref new_curr(m);
proof_ref new_pr(m);
unsigned sz = g->size();
for (unsigned i = 0; i < sz; i++) {
expr * curr = g->form(i);
r(curr, new_curr, new_pr);
if (m_produce_proofs) {
proof * pr = g->pr(i);
new_pr = m.mk_modus_ponens(pr, new_pr);
}
g->update(i, new_curr, new_pr, g->dep(i));
}
}
public:
nl_purify_tactic(ast_manager & m, params_ref const& p):
m(m),
m_util(m),
m_params(p),
m_nl_tac(mk_nlsat_tactic(m, p)),
m_solver(mk_smt_solver(m, p, symbol::null)),
m_fmc(0),
m_cancel(false),
m_eq_preds(m),
m_new_reals(m),
m_new_preds(m),
m_asms(m)
{}
virtual ~nl_purify_tactic() {}
virtual void updt_params(params_ref const & p) {
m_params = p;
}
virtual tactic * translate(ast_manager& m) {
return alloc(nl_purify_tactic, m, m_params);
}
virtual void set_cancel(bool f) {
if (f) {
m_nl_tac->cancel();
m_solver->cancel();
}
else {
m_solver->reset_cancel();
m_nl_tac->reset_cancel();
}
m_cancel = f;
}
virtual void cleanup() {
m_solver = mk_smt_solver(m, m_params, symbol::null);
m_nl_tac->cleanup();
m_eq_preds.reset();
m_eq_values.reset();
m_new_reals.reset();
m_new_preds.reset();
m_eq_pairs.reset();
m_polarities.reset();
}
virtual void operator()(goal_ref const & g,
goal_ref_buffer & result,
model_converter_ref & mc,
proof_converter_ref & pc,
expr_dependency_ref & core) {
tactic_report report("qfufnl-purify", *g);
m_produce_proofs = g->proofs_enabled();
mc = 0; pc = 0; core = 0;
fail_if_proof_generation("qfufnra-purify", g);
fail_if_unsat_core_generation("qfufnra-purify", g);
rw r(*this);
goal_ref nlg = alloc(goal, m, true, false);
TRACE("nlsat_smt", g->display(tout););
// first hoist interface variables,
// then annotate subformulas by polarities,
// finally extract polynomial inequalities by
// creating a place-holder predicate inside the
// original goal and extracing pure nlsat clauses.
r.set_interface_var_mode();
rewrite_goal(r, g);
get_polarities(*g.get());
r.set_bool_mode();
rewrite_goal(r, g);
m_fmc = alloc(filter_model_converter, m);
app_ref_vector const& vars1 = m_new_reals;
for (unsigned i = 0; i < vars1.size(); ++i) {
SASSERT(is_uninterp_const(vars1[i]));
m_fmc->insert(vars1[i]->get_decl());
}
app_ref_vector const& vars2 = m_new_preds;
for (unsigned i = 0; i < vars2.size(); ++i) {
SASSERT(is_uninterp_const(vars2[i]));
m_fmc->insert(vars2[i]->get_decl());
}
// add constraints to nlg.
unsigned sz = r.nl_cnstrs().size();
for (unsigned i = 0; i < sz; i++) {
nlg->assert_expr(r.nl_cnstrs()[i], m_produce_proofs ? r.cfg().m_nl_cnstr_prs.get(i) : 0, 0);
}
g->inc_depth();
for (unsigned i = 0; i < g->size(); ++i) {
m_solver->assert_expr(g->form(i));
}
g->inc_depth();
solve(nlg, result, mc);
}
};
tactic * mk_nl_purify_tactic(ast_manager& m, params_ref const& p) {
return alloc(nl_purify_tactic, m, p);
}

View file

@ -0,0 +1,35 @@
/*++
Copyright (c) 2011 Microsoft Corporation
Module Name:
nl_purify_tactic.h
Abstract:
Tactic for purifying quantifier-free formulas that mix QF_NRA and other theories.
It is designed to allow cooprating between the nlsat solver and other theories
in a decoubled way.
Author:
Nikolaj Bjorner (nbjorner) 2015-5-5.
Revision History:
--*/
#ifndef _NL_PURIFY_TACTIC_H_
#define _NL_PURIFY_TACTIC_H_
#include"params.h"
class ast_manager;
class tactic;
tactic * mk_nl_purify_tactic(ast_manager & m, params_ref const & p = params_ref());
/*
ADD_TACTIC("nl-purify", "Decompose goal into pure NL-sat formula and formula over other theories.", "mk_nl_purify_tactic(m, p)")
*/
#endif

View file

@ -30,6 +30,7 @@ Notes:
#include"qffp_tactic.h"
#include"qfaufbv_tactic.h"
#include"qfauflia_tactic.h"
#include"qfufnra_tactic.h"
tactic * mk_default_tactic(ast_manager & m, params_ref const & p) {
tactic * st = using_params(and_then(mk_simplify_tactic(m),
@ -43,7 +44,8 @@ tactic * mk_default_tactic(ast_manager & m, params_ref const & p) {
cond(mk_is_nra_probe(), mk_nra_tactic(m),
cond(mk_is_lira_probe(), mk_lira_tactic(m, p),
cond(mk_is_qffp_probe(), mk_qffp_tactic(m, p),
mk_smt_tactic()))))))))))),
cond(mk_is_qfufnra_probe(), mk_qfufnra_tactic(m, p),
mk_smt_tactic())))))))))))),
p);
return st;
}

View file

@ -34,6 +34,7 @@ Notes:
#include"default_tactic.h"
#include"ufbv_tactic.h"
#include"qffp_tactic.h"
#include"qfufnra_tactic.h"
#include"horn_tactic.h"
#include"smt_solver.h"
@ -84,6 +85,8 @@ tactic * mk_tactic_for_logic(ast_manager & m, params_ref const & p, symbol const
return mk_qffpbv_tactic(m, p);
else if (logic=="HORN")
return mk_horn_tactic(m, p);
else if (logic=="QF_UFNRA")
return mk_qfufnra_tactic(m, p);
else
return mk_default_tactic(m, p);
}

View file

@ -0,0 +1,46 @@
/*++
Copyright (c) 2015 Microsoft Corporation
Module Name:
qfufnra_tactic.cpp
Abstract:
Tactic for QF_UFNRA
Author:
Nikolaj (nbjorner) 2015-05-05
Notes:
--*/
#include"tactical.h"
#include"simplify_tactic.h"
#include"propagate_values_tactic.h"
#include"nl_purify_tactic.h"
#include"qfufnra_tactic.h"
#include"purify_arith_tactic.h"
#include"solve_eqs_tactic.h"
#include"elim_term_ite_tactic.h"
#include"elim_uncnstr_tactic.h"
#include"simplify_tactic.h"
#include"nnf_tactic.h"
tactic * mk_qfufnra_tactic(ast_manager & m, params_ref const& p) {
return and_then(and_then(mk_simplify_tactic(m, p),
mk_purify_arith_tactic(m, p),
mk_propagate_values_tactic(m, p),
mk_solve_eqs_tactic(m, p),
mk_elim_uncnstr_tactic(m, p)),
and_then(mk_elim_term_ite_tactic(m, p),
mk_solve_eqs_tactic(m, p),
mk_simplify_tactic(m, p),
mk_nnf_tactic(m, p),
mk_nl_purify_tactic(m, p)));
}

View file

@ -0,0 +1,31 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
qfufnra_tactic.h
Abstract:
Tactic for QF_UFNRA
Author:
Leonardo (leonardo) 2012-02-28
Notes:
--*/
#ifndef _QFUFNRA_TACTIC_
#define _QFUFNRA_TACTIC_
#include"params.h"
class ast_manager;
class tactic;
tactic * mk_qfufnra_tactic(ast_manager & m, params_ref const & p = params_ref());
/*
ADD_TACTIC("qfufnra", "builtin strategy for solving QF_UNFRA problems.", "mk_qfufnra_tactic(m, p)")
*/
#endif

View file

@ -207,7 +207,7 @@ lbool check_sat(tactic & t, goal_ref & g, model_ref & md, proof_ref & pr, expr_d
TRACE("tactic_mc", mc->display(tout););
TRACE("tactic_check_sat",
tout << "r.size(): " << r.size() << "\n";
for (unsigned i = 0; i < r.size(); i++) r[0]->display(tout););
for (unsigned i = 0; i < r.size(); i++) r[i]->display(tout););
if (is_decided_sat(r)) {
if (models_enabled) {

View file

@ -283,6 +283,10 @@ tactic * and_then(tactic * t1, tactic * t2, tactic * t3, tactic * t4, tactic * t
return and_then(t1, and_then(t2, t3, t4, t5, t6, t7, t8, t9, t10));
}
tactic * and_then(tactic * t1, tactic * t2, tactic * t3, tactic * t4, tactic * t5, tactic * t6, tactic * t7, tactic * t8, tactic * t9, tactic * t10, tactic * t11) {
return and_then(t1, and_then(t2, t3, t4, t5, t6, t7, t8, t9, t10, t11));
}
tactic * and_then(unsigned num, tactic * const * ts) {
SASSERT(num > 0);
unsigned i = num - 1;

View file

@ -32,6 +32,7 @@ tactic * and_then(tactic * t1, tactic * t2, tactic * t3, tactic * t4, tactic * t
tactic * and_then(tactic * t1, tactic * t2, tactic * t3, tactic * t4, tactic * t5, tactic * t6, tactic * t7, tactic * t8);
tactic * and_then(tactic * t1, tactic * t2, tactic * t3, tactic * t4, tactic * t5, tactic * t6, tactic * t7, tactic * t8, tactic * t9);
tactic * and_then(tactic * t1, tactic * t2, tactic * t3, tactic * t4, tactic * t5, tactic * t6, tactic * t7, tactic * t8, tactic * t9, tactic * t10);
tactic * and_then(tactic * t1, tactic * t2, tactic * t3, tactic * t4, tactic * t5, tactic * t6, tactic * t7, tactic * t8, tactic * t9, tactic * t10, tactic * t11);
tactic * or_else(unsigned num, tactic * const * ts);
tactic * or_else(tactic * t1, tactic * t2);

167
src/test/ddnf.cpp Normal file
View file

@ -0,0 +1,167 @@
#include "ddnf.h"
#include "tbv.h"
#include <iostream>
#include <fstream>
#include <list>
#include <vector>
#include <string>
#include <cstring>
#include <cstdlib>
#include <map>
/*
TBD: count number of nodes, number of operations accross all insertions
*/
void read_nums(std::istream& is, unsigned & x, unsigned& y) {
x = 0; y = 0;
is >> x;
is >> y;
std::string line;
std::getline(is, line);
}
static bool g_verbose = false;
static char const* g_file = 0;
void create_forwarding(char const* file, datalog::ddnf_core& ddnf, ptr_vector<tbv>& tbvs) {
if (g_verbose) {
std::cout << "creating (and forgetting) forwarding index\n";
}
std::ifstream is(file);
if (is.bad() || is.fail()) {
std::cout << "could not load " << file << "\n";
exit(0);
}
std::string line;
unsigned W, M;
read_nums(is, W, M);
tbv_manager& tbvm = ddnf.get_tbv_manager();
tbv* tX = tbvm.allocateX();
unsigned_vector forwarding_set;
for (unsigned r = 0; r < M; ++r) {
unsigned P, K;
read_nums(is, K, P);
ddnf.reset_accumulate();
unsigned p;
unsigned_vector forwarding_index;
forwarding_index.resize(ddnf.size());
for (unsigned g = 0; g < K; ++g) {
is >> p;
std::getline(is, line);
tbv* t = tbvm.allocate(line.c_str());
if (p > P) {
std::cout << "port number " << p << " too big " << P << "\n";
tbvm.display(std::cout, *t) << " " << line << "\n";
exit(0);
}
forwarding_set.reset();
ddnf.accumulate(*t, forwarding_set);
for (unsigned i = 0; i < forwarding_set.size(); ++i) {
forwarding_index[forwarding_set[i]] = p;
}
tbvs.push_back(t);
if (p == 0 && tbvm.equals(*t, *tX)) break;
}
}
tbvm.deallocate(tX);
}
datalog::ddnf_core* populate_ddnf(char const* file, ptr_vector<tbv>& tbvs) {
if (g_verbose) {
std::cout << "populate ddnf\n";
}
std::ifstream is(file);
if (is.bad() || is.fail()) {
std::cout << "could not load " << file << "\n";
exit(0);
}
std::string line;
unsigned W, M;
read_nums(is, W, M);
datalog::ddnf_core* ddnf = alloc(datalog::ddnf_core, W);
tbv_manager& tbvm = ddnf->get_tbv_manager();
tbv* tX = tbvm.allocateX();
for (unsigned r = 0; r < M; ++r) {
unsigned P, K;
read_nums(is, K, P);
if (g_verbose) {
std::cout << K << " " << P << "\n";
}
unsigned p;
for (unsigned g = 0; g < K; ++g) {
is >> p;
std::getline(is, line);
tbv* t = tbvm.allocate(line.c_str());
ddnf->insert(*t);
//tbvm.display(std::cout << line << " ", *t) << "\n";
tbvs.push_back(t);
if (p > P) {
std::cout << "port number " << p << " too big " << P << "\n";
tbvm.display(std::cout, *t) << " " << line << "\n";
exit(0);
}
if (p == 0 && tbvm.equals(*t, *tX)) break;
}
}
tbvm.deallocate(tX);
return ddnf;
}
static void read_args(char ** argv, int argc) {
if (argc == 3) {
g_file = argv[2];
return;
}
for (int i = 2; i < argc; ++i) {
if (argv[i] == "v") {
g_verbose = true;
}
else {
g_file = argv[i];
}
}
if (!g_file) {
std::cout << "Need routing table file as argument. Arguments provided: ";
for (int i = 0; i < argc; ++i) {
std::cout << argv[i] << " ";
}
std::cout << "\n";
exit(0);
}
}
void tst_ddnf(char ** argv, int argc, int& i) {
read_args(argv, argc);
ptr_vector<tbv> tbvs;
datalog::ddnf_core* ddnf = populate_ddnf(g_file, tbvs);
create_forwarding(g_file, *ddnf, tbvs);
std::cout << "resulting size: " << ddnf->size() << "\n";
ddnf->display_statistics(std::cout);
if (g_verbose) {
ddnf->display(std::cout);
}
std::cout.flush();
tbv_manager& tbvm = ddnf->get_tbv_manager();
for (unsigned i = 0; i < tbvs.size(); ++i) {
tbvm.deallocate(tbvs[i]);
}
dealloc(ddnf);
}

View file

@ -225,6 +225,7 @@ int main(int argc, char ** argv) {
TST(simplex);
TST(sat_user_scope);
TST(pdr);
TST_ARGV(ddnf);
//TST_ARGV(hs);
}