mirror of
https://github.com/Z3Prover/z3
synced 2025-04-15 21:38:44 +00:00
remove repeated default argument, remove tabs
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
5c99405db3
commit
82d0310d94
|
@ -275,89 +275,90 @@ typename symbolic_automata<T, M>::automaton_t* symbolic_automata<T, M>::mk_minim
|
|||
|
||||
template<class T, class M>
|
||||
typename symbolic_automata<T, M>::automaton_t* symbolic_automata<T, M>::mk_determinstic(automaton_t& a) {
|
||||
return mk_determinstic_param(a);
|
||||
return mk_determinstic_param(a);
|
||||
}
|
||||
|
||||
template<class T, class M>
|
||||
typename symbolic_automata<T, M>::automaton_t* symbolic_automata<T, M>::mk_complement(automaton_t& a) {
|
||||
return mk_determinstic_param(a, true);
|
||||
return mk_determinstic_param(a, true);
|
||||
}
|
||||
|
||||
template<class T, class M>
|
||||
typename symbolic_automata<T, M>::automaton_t* symbolic_automata<T, M>::mk_determinstic_param(automaton_t& a, bool flip_acceptance = false) {
|
||||
vector<std::pair<vector<bool>, ref_t> > min_terms;
|
||||
vector<ref_t> predicates;
|
||||
|
||||
map<uint_set, unsigned, uint_set::hash, uint_set::eq> s2id; // set of states to unique id
|
||||
vector<uint_set> id2s; // unique id to set of b-states
|
||||
uint_set set;
|
||||
unsigned_vector vector;
|
||||
moves_t new_mvs; // moves in the resulting automaton
|
||||
unsigned_vector new_final_states; // new final states
|
||||
unsigned p_state_id = 0; // next state identifier
|
||||
|
||||
// adds non-final states of a to final if flipping and and final otherwise
|
||||
if (a.is_final_configuration(set) != flip_acceptance) {
|
||||
new_final_states.push_back(p_state_id);
|
||||
}
|
||||
|
||||
set.insert(a.init()); // initial state as aset
|
||||
s2id.insert(set, p_state_id++); // the index to the initial state is 0
|
||||
id2s.push_back(set);
|
||||
|
||||
svector<uint_set> todo; //States to visit
|
||||
todo.push_back(set);
|
||||
|
||||
uint_set state;
|
||||
moves_t mvsA;
|
||||
|
||||
new_mvs.reset();
|
||||
|
||||
// or just make todo a vector whose indices coincide with state_id.
|
||||
while (!todo.empty()) {
|
||||
uint_set state = todo.back();
|
||||
|
||||
unsigned state_id = s2id[state];
|
||||
todo.pop_back();
|
||||
mvsA.reset();
|
||||
|
||||
min_terms.reset();
|
||||
predicates.reset();
|
||||
|
||||
a.get_moves_from_states(state, mvsA);
|
||||
|
||||
for (unsigned j = 0; j < mvsA.size(); ++j) {
|
||||
ref_t mv_guard(mvsA[j].t(),m);
|
||||
predicates.push_back(mv_guard);
|
||||
}
|
||||
|
||||
min_terms = generate_min_terms(predicates);
|
||||
for (unsigned j = 0; j < min_terms.size(); ++j) {
|
||||
set = uint_set();
|
||||
for (unsigned i = 0; i < mvsA.size(); ++i) {
|
||||
if (min_terms[j].first[i])
|
||||
set.insert(mvsA[i].dst());
|
||||
}
|
||||
|
||||
bool is_new = !s2id.contains(set);
|
||||
if (is_new) {
|
||||
if (a.is_final_configuration(set) != flip_acceptance) {
|
||||
new_final_states.push_back(p_state_id);
|
||||
}
|
||||
|
||||
s2id.insert(set, p_state_id++);
|
||||
id2s.push_back(set);
|
||||
todo.push_back(set);
|
||||
}
|
||||
new_mvs.push_back(move_t(m, state_id, s2id[set], min_terms[j].second));
|
||||
}
|
||||
}
|
||||
|
||||
if (new_final_states.empty()) {
|
||||
return alloc(automaton_t, m);
|
||||
}
|
||||
|
||||
return alloc(automaton_t, m, 0, new_final_states, new_mvs);
|
||||
typename symbolic_automata<T, M>::automaton_t*
|
||||
symbolic_automata<T, M>::mk_determinstic_param(automaton_t& a, bool flip_acceptance) {
|
||||
vector<std::pair<vector<bool>, ref_t> > min_terms;
|
||||
vector<ref_t> predicates;
|
||||
|
||||
map<uint_set, unsigned, uint_set::hash, uint_set::eq> s2id; // set of states to unique id
|
||||
vector<uint_set> id2s; // unique id to set of b-states
|
||||
uint_set set;
|
||||
unsigned_vector vector;
|
||||
moves_t new_mvs; // moves in the resulting automaton
|
||||
unsigned_vector new_final_states; // new final states
|
||||
unsigned p_state_id = 0; // next state identifier
|
||||
|
||||
// adds non-final states of a to final if flipping and and final otherwise
|
||||
if (a.is_final_configuration(set) != flip_acceptance) {
|
||||
new_final_states.push_back(p_state_id);
|
||||
}
|
||||
|
||||
set.insert(a.init()); // Initial state as aset
|
||||
s2id.insert(set, p_state_id++); // the index to the initial state is 0
|
||||
id2s.push_back(set);
|
||||
|
||||
svector<uint_set> todo; //States to visit
|
||||
todo.push_back(set);
|
||||
|
||||
uint_set state;
|
||||
moves_t mvsA;
|
||||
|
||||
new_mvs.reset();
|
||||
|
||||
// or just make todo a vector whose indices coincide with state_id.
|
||||
while (!todo.empty()) {
|
||||
uint_set state = todo.back();
|
||||
|
||||
unsigned state_id = s2id[state];
|
||||
todo.pop_back();
|
||||
mvsA.reset();
|
||||
|
||||
min_terms.reset();
|
||||
predicates.reset();
|
||||
|
||||
a.get_moves_from_states(state, mvsA);
|
||||
|
||||
for (unsigned j = 0; j < mvsA.size(); ++j) {
|
||||
ref_t mv_guard(mvsA[j].t(),m);
|
||||
predicates.push_back(mv_guard);
|
||||
}
|
||||
|
||||
min_terms = generate_min_terms(predicates);
|
||||
for (unsigned j = 0; j < min_terms.size(); ++j) {
|
||||
set = uint_set();
|
||||
for (unsigned i = 0; i < mvsA.size(); ++i) {
|
||||
if (min_terms[j].first[i])
|
||||
set.insert(mvsA[i].dst());
|
||||
}
|
||||
|
||||
bool is_new = !s2id.contains(set);
|
||||
if (is_new) {
|
||||
if (a.is_final_configuration(set) != flip_acceptance) {
|
||||
new_final_states.push_back(p_state_id);
|
||||
}
|
||||
|
||||
s2id.insert(set, p_state_id++);
|
||||
id2s.push_back(set);
|
||||
todo.push_back(set);
|
||||
}
|
||||
new_mvs.push_back(move_t(m, state_id, s2id[set], min_terms[j].second));
|
||||
}
|
||||
}
|
||||
|
||||
if (new_final_states.empty()) {
|
||||
return alloc(automaton_t, m);
|
||||
}
|
||||
|
||||
return alloc(automaton_t, m, 0, new_final_states, new_mvs);
|
||||
}
|
||||
|
||||
|
||||
|
@ -455,7 +456,7 @@ typename symbolic_automata<T, M>::automaton_t* symbolic_automata<T, M>::mk_produ
|
|||
|
||||
template<class T, class M>
|
||||
typename symbolic_automata<T, M>::automaton_t* symbolic_automata<T, M>::mk_difference(automaton_t& a, automaton_t& b) {
|
||||
return mk_product(a,mk_complement(b));
|
||||
return mk_product(a,mk_complement(b));
|
||||
}
|
||||
|
||||
#endif
|
||||
|
|
Loading…
Reference in a new issue