mirror of
https://github.com/Z3Prover/z3
synced 2025-10-13 19:20:18 +00:00
Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
parent
8b10e13251
commit
825b72719c
2 changed files with 189 additions and 173 deletions
|
@ -27,7 +27,7 @@ Revision History:
|
|||
// define to create a copy of the solver before starting the search
|
||||
// useful for checking models
|
||||
// #define CLONE_BEFORE_SOLVING
|
||||
|
||||
|
||||
namespace sat {
|
||||
|
||||
solver::solver(params_ref const & p, extension * ext):
|
||||
|
@ -103,7 +103,7 @@ namespace sat {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
// -----------------------
|
||||
//
|
||||
// Variable & Clause creation
|
||||
|
@ -312,7 +312,7 @@ namespace sat {
|
|||
/**
|
||||
\brief Select a watch literal starting the search at the given position.
|
||||
This method is only used for clauses created during the search.
|
||||
|
||||
|
||||
I use the following rules to select a watch literal.
|
||||
|
||||
1- select a literal l in idx >= starting_at such that value(l) = l_true,
|
||||
|
@ -329,7 +329,7 @@ namespace sat {
|
|||
lvl(l) >= lvl(l')
|
||||
|
||||
Without rule 3, boolean propagation is incomplete, that is, it may miss possible propagations.
|
||||
|
||||
|
||||
\remark The method select_lemma_watch_lit is used to select the watch literal for regular learned clauses.
|
||||
*/
|
||||
unsigned solver::select_watch_lit(clause const & cls, unsigned starting_at) const {
|
||||
|
@ -443,7 +443,7 @@ namespace sat {
|
|||
erase_clause_watch(get_wlist(~c[0]), cls_off);
|
||||
erase_clause_watch(get_wlist(~c[1]), cls_off);
|
||||
}
|
||||
|
||||
|
||||
void solver::dettach_ter_clause(clause & c) {
|
||||
erase_ternary_watch(get_wlist(~c[0]), c[1], c[2]);
|
||||
erase_ternary_watch(get_wlist(~c[1]), c[0], c[2]);
|
||||
|
@ -498,10 +498,10 @@ namespace sat {
|
|||
unsigned sz = c.size();
|
||||
for (unsigned i = 0; i < sz; i++) {
|
||||
switch (value(c[i])) {
|
||||
case l_true:
|
||||
case l_true:
|
||||
return l_true;
|
||||
case l_undef:
|
||||
found_undef = true;
|
||||
case l_undef:
|
||||
found_undef = true;
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
|
@ -515,7 +515,7 @@ namespace sat {
|
|||
// Propagation
|
||||
//
|
||||
// -----------------------
|
||||
|
||||
|
||||
bool solver::propagate_core(bool update) {
|
||||
if (m_inconsistent)
|
||||
return false;
|
||||
|
@ -545,7 +545,7 @@ namespace sat {
|
|||
}
|
||||
for (; it != end; ++it) {
|
||||
switch (it->get_kind()) {
|
||||
case watched::BINARY:
|
||||
case watched::BINARY:
|
||||
l1 = it->get_literal();
|
||||
switch (value(l1)) {
|
||||
case l_false:
|
||||
|
@ -585,12 +585,26 @@ namespace sat {
|
|||
break;
|
||||
case watched::CLAUSE: {
|
||||
if (value(it->get_blocked_literal()) == l_true) {
|
||||
TRACE("propagate_clause_bug", tout << "blocked literal " << it->get_blocked_literal() << "\n";
|
||||
clause_offset cls_off = it->get_clause_offset();
|
||||
clause & c = *(m_cls_allocator.get_clause(cls_off));
|
||||
tout << c << "\n";);
|
||||
*it2 = *it;
|
||||
it2++;
|
||||
break;
|
||||
}
|
||||
clause_offset cls_off = it->get_clause_offset();
|
||||
clause & c = *(m_cls_allocator.get_clause(cls_off));
|
||||
TRACE("propagate_clause_bug", tout << "processing... " << c << "\nwas_removed: " << c.was_removed() << "\n";);
|
||||
if (c.was_removed()) {
|
||||
// Remark: this method may be invoked when the watch lists are not in a consistent state,
|
||||
// and may contain dead/removed clauses.
|
||||
// See: sat_simplifier.cpp
|
||||
// So, we must check whether the clause was marked for deletion, and ignore it.
|
||||
*it2 = *it;
|
||||
it2++;
|
||||
break;
|
||||
}
|
||||
if (c[0] == not_l)
|
||||
std::swap(c[0], c[1]);
|
||||
CTRACE("propagate_bug", c[1] != not_l, tout << "l: " << l << " " << c << "\n";);
|
||||
|
@ -693,7 +707,7 @@ namespace sat {
|
|||
m_conflicts_since_restart = 0;
|
||||
m_restart_threshold = m_config.m_restart_initial;
|
||||
}
|
||||
|
||||
|
||||
// iff3_finder(*this)();
|
||||
simplify_problem();
|
||||
|
||||
|
@ -704,10 +718,10 @@ namespace sat {
|
|||
IF_VERBOSE(SAT_VB_LVL, verbose_stream() << "\"abort: max-conflicts = 0\"\n";);
|
||||
return l_undef;
|
||||
}
|
||||
|
||||
|
||||
while (true) {
|
||||
SASSERT(!inconsistent());
|
||||
|
||||
|
||||
lbool r = bounded_search();
|
||||
if (r != l_undef)
|
||||
return r;
|
||||
|
@ -716,7 +730,7 @@ namespace sat {
|
|||
IF_VERBOSE(SAT_VB_LVL, verbose_stream() << "\"abort: max-conflicts = " << m_conflicts << "\"\n";);
|
||||
return l_undef;
|
||||
}
|
||||
|
||||
|
||||
restart();
|
||||
if (m_conflicts >= m_next_simplify) {
|
||||
simplify_problem();
|
||||
|
@ -734,7 +748,7 @@ namespace sat {
|
|||
|
||||
bool_var solver::next_var() {
|
||||
bool_var next;
|
||||
|
||||
|
||||
if (m_rand() < static_cast<int>(m_config.m_random_freq * random_gen::max_value())) {
|
||||
if (num_vars() == 0)
|
||||
return null_bool_var;
|
||||
|
@ -743,16 +757,16 @@ namespace sat {
|
|||
if (value(next) == l_undef && !was_eliminated(next))
|
||||
return next;
|
||||
}
|
||||
|
||||
|
||||
while (!m_case_split_queue.empty()) {
|
||||
next = m_case_split_queue.next_var();
|
||||
if (value(next) == l_undef && !was_eliminated(next))
|
||||
return next;
|
||||
}
|
||||
|
||||
|
||||
return null_bool_var;
|
||||
}
|
||||
|
||||
|
||||
bool solver::decide() {
|
||||
bool_var next = next_var();
|
||||
if (next == null_bool_var)
|
||||
|
@ -760,7 +774,7 @@ namespace sat {
|
|||
push();
|
||||
m_stats.m_decision++;
|
||||
lbool phase = m_ext ? m_ext->get_phase(next) : l_undef;
|
||||
|
||||
|
||||
if (phase == l_undef) {
|
||||
switch (m_config.m_phase) {
|
||||
case PS_ALWAYS_TRUE:
|
||||
|
@ -784,7 +798,7 @@ namespace sat {
|
|||
break;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
SASSERT(phase != l_undef);
|
||||
literal next_lit(next, phase == l_false);
|
||||
assign(next_lit, justification());
|
||||
|
@ -807,23 +821,23 @@ namespace sat {
|
|||
return l_undef;
|
||||
if (scope_lvl() == 0) {
|
||||
cleanup(); // cleaner may propagate frozen clauses
|
||||
if (inconsistent())
|
||||
if (inconsistent())
|
||||
return l_false;
|
||||
gc();
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
gc();
|
||||
|
||||
if (!decide()) {
|
||||
if (m_ext) {
|
||||
switch (m_ext->check()) {
|
||||
case CR_DONE:
|
||||
case CR_DONE:
|
||||
mk_model();
|
||||
return l_true;
|
||||
case CR_CONTINUE:
|
||||
case CR_CONTINUE:
|
||||
break;
|
||||
case CR_GIVEUP:
|
||||
case CR_GIVEUP:
|
||||
throw abort_solver();
|
||||
}
|
||||
}
|
||||
|
@ -849,23 +863,23 @@ namespace sat {
|
|||
m_stopwatch.reset();
|
||||
m_stopwatch.start();
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
\brief Apply all simplifications.
|
||||
*/
|
||||
void solver::simplify_problem() {
|
||||
SASSERT(scope_lvl() == 0);
|
||||
|
||||
|
||||
m_cleaner();
|
||||
CASSERT("sat_simplify_bug", check_invariant());
|
||||
|
||||
|
||||
m_scc();
|
||||
CASSERT("sat_simplify_bug", check_invariant());
|
||||
|
||||
m_simplifier(false);
|
||||
|
||||
m_simplifier(false);
|
||||
CASSERT("sat_simplify_bug", check_invariant());
|
||||
CASSERT("sat_missed_prop", check_missed_propagation());
|
||||
|
||||
|
||||
if (!m_learned.empty()) {
|
||||
m_simplifier(true);
|
||||
CASSERT("sat_missed_prop", check_missed_propagation());
|
||||
|
@ -878,11 +892,11 @@ namespace sat {
|
|||
m_probing();
|
||||
CASSERT("sat_missed_prop", check_missed_propagation());
|
||||
CASSERT("sat_simplify_bug", check_invariant());
|
||||
|
||||
|
||||
m_asymm_branch();
|
||||
CASSERT("sat_missed_prop", check_missed_propagation());
|
||||
CASSERT("sat_simplify_bug", check_invariant());
|
||||
|
||||
|
||||
if (m_ext) {
|
||||
m_ext->clauses_modifed();
|
||||
m_ext->simplify();
|
||||
|
@ -956,7 +970,7 @@ namespace sat {
|
|||
}
|
||||
}
|
||||
}
|
||||
if (!m_mc.check_model(m))
|
||||
if (!m_mc.check_model(m))
|
||||
ok = false;
|
||||
CTRACE("sat_model_bug", !ok, tout << m << "\n";);
|
||||
return ok;
|
||||
|
@ -964,9 +978,9 @@ namespace sat {
|
|||
|
||||
void solver::restart() {
|
||||
m_stats.m_restart++;
|
||||
IF_VERBOSE(1,
|
||||
IF_VERBOSE(1,
|
||||
verbose_stream() << "(sat-restart :conflicts " << m_stats.m_conflict << " :decisions " << m_stats.m_decision
|
||||
<< " :restarts " << m_stats.m_restart << mk_stat(*this)
|
||||
<< " :restarts " << m_stats.m_restart << mk_stat(*this)
|
||||
<< " :time " << std::fixed << std::setprecision(2) << m_stopwatch.get_current_seconds() << ")\n";);
|
||||
IF_VERBOSE(30, display_status(verbose_stream()););
|
||||
pop(scope_lvl());
|
||||
|
@ -991,9 +1005,9 @@ namespace sat {
|
|||
// GC
|
||||
//
|
||||
// -----------------------
|
||||
|
||||
|
||||
void solver::gc() {
|
||||
if (m_conflicts_since_gc <= m_gc_threshold)
|
||||
if (m_conflicts_since_gc <= m_gc_threshold)
|
||||
return;
|
||||
CASSERT("sat_gc_bug", check_invariant());
|
||||
switch (m_config.m_gc_strategy) {
|
||||
|
@ -1073,7 +1087,7 @@ namespace sat {
|
|||
std::stable_sort(m_learned.begin(), m_learned.end(), glue_lt());
|
||||
gc_half("glue");
|
||||
}
|
||||
|
||||
|
||||
void solver::gc_psm() {
|
||||
save_psm();
|
||||
std::stable_sort(m_learned.begin(), m_learned.end(), psm_lt());
|
||||
|
@ -1134,8 +1148,8 @@ namespace sat {
|
|||
void solver::gc_dyn_psm() {
|
||||
// To do gc at scope_lvl() > 0, I will need to use the reinitialization stack, or live with the fact
|
||||
// that I may miss some propagations for reactivated clauses.
|
||||
SASSERT(scope_lvl() == 0);
|
||||
// compute
|
||||
SASSERT(scope_lvl() == 0);
|
||||
// compute
|
||||
// d_tk
|
||||
unsigned h = 0;
|
||||
unsigned V_tk = 0;
|
||||
|
@ -1152,7 +1166,7 @@ namespace sat {
|
|||
double d_tk = V_tk == 0 ? static_cast<double>(num_vars() + 1) : static_cast<double>(h)/static_cast<double>(V_tk);
|
||||
if (d_tk < m_min_d_tk)
|
||||
m_min_d_tk = d_tk;
|
||||
TRACE("sat_frozen", tout << "m_min_d_tk: " << m_min_d_tk << "\n";);
|
||||
TRACE("sat_frozen", tout << "m_min_d_tk: " << m_min_d_tk << "\n";);
|
||||
unsigned frozen = 0;
|
||||
unsigned deleted = 0;
|
||||
unsigned activated = 0;
|
||||
|
@ -1218,15 +1232,15 @@ namespace sat {
|
|||
++it2;
|
||||
}
|
||||
m_learned.set_end(it2);
|
||||
IF_VERBOSE(SAT_VB_LVL, verbose_stream() << "(sat-gc :d_tk " << d_tk << " :min-d_tk " << m_min_d_tk <<
|
||||
IF_VERBOSE(SAT_VB_LVL, verbose_stream() << "(sat-gc :d_tk " << d_tk << " :min-d_tk " << m_min_d_tk <<
|
||||
" :frozen " << frozen << " :activated " << activated << " :deleted " << deleted << ")\n";);
|
||||
}
|
||||
|
||||
|
||||
// return true if should keep the clause, and false if we should delete it.
|
||||
bool solver::activate_frozen_clause(clause & c) {
|
||||
bool solver::activate_frozen_clause(clause & c) {
|
||||
TRACE("sat_gc", tout << "reactivating:\n" << c << "\n";);
|
||||
SASSERT(scope_lvl() == 0);
|
||||
// do some cleanup
|
||||
// do some cleanup
|
||||
unsigned sz = c.size();
|
||||
unsigned j = 0;
|
||||
for (unsigned i = 0; i < sz; i++) {
|
||||
|
@ -1292,7 +1306,7 @@ namespace sat {
|
|||
bool r = resolve_conflict_core();
|
||||
CASSERT("sat_check_marks", check_marks());
|
||||
// after pop, clauses are reinitialized, this may trigger another conflict.
|
||||
if (!r)
|
||||
if (!r)
|
||||
return false;
|
||||
if (!inconsistent())
|
||||
return true;
|
||||
|
@ -1311,7 +1325,7 @@ namespace sat {
|
|||
if (m_conflict_lvl == 0)
|
||||
return false;
|
||||
m_lemma.reset();
|
||||
|
||||
|
||||
forget_phase_of_vars(m_conflict_lvl);
|
||||
|
||||
unsigned idx = skip_literals_above_conflict_level();
|
||||
|
@ -1326,7 +1340,7 @@ namespace sat {
|
|||
|
||||
literal consequent = m_not_l;
|
||||
justification js = m_conflict;
|
||||
|
||||
|
||||
do {
|
||||
TRACE("sat_conflict_detail", tout << "processing consequent: " << consequent << "\n";
|
||||
tout << "num_marks: " << num_marks << ", js kind: " << js.get_kind() << "\n";);
|
||||
|
@ -1362,7 +1376,7 @@ namespace sat {
|
|||
fill_ext_antecedents(consequent, js);
|
||||
literal_vector::iterator it = m_ext_antecedents.begin();
|
||||
literal_vector::iterator end = m_ext_antecedents.end();
|
||||
for (; it != end; ++it)
|
||||
for (; it != end; ++it)
|
||||
process_antecedent(*it, num_marks);
|
||||
break;
|
||||
}
|
||||
|
@ -1370,10 +1384,10 @@ namespace sat {
|
|||
UNREACHABLE();
|
||||
break;
|
||||
}
|
||||
|
||||
|
||||
while (true) {
|
||||
literal l = m_trail[idx];
|
||||
if (is_marked(l.var()))
|
||||
if (is_marked(l.var()))
|
||||
break;
|
||||
SASSERT(idx > 0);
|
||||
idx--;
|
||||
|
@ -1386,9 +1400,9 @@ namespace sat {
|
|||
idx--;
|
||||
num_marks--;
|
||||
reset_mark(c_var);
|
||||
}
|
||||
}
|
||||
while (num_marks > 0);
|
||||
|
||||
|
||||
m_lemma[0] = ~consequent;
|
||||
TRACE("sat_lemma", tout << "new lemma size: " << m_lemma.size() << "\n" << m_lemma << "\n";);
|
||||
|
||||
|
@ -1401,7 +1415,7 @@ namespace sat {
|
|||
}
|
||||
else
|
||||
reset_lemma_var_marks();
|
||||
|
||||
|
||||
literal_vector::iterator it = m_lemma.begin();
|
||||
literal_vector::iterator end = m_lemma.end();
|
||||
unsigned new_scope_lvl = 0;
|
||||
|
@ -1432,10 +1446,10 @@ namespace sat {
|
|||
return 0;
|
||||
|
||||
unsigned r = 0;
|
||||
|
||||
|
||||
if (consequent != null_literal)
|
||||
r = lvl(consequent);
|
||||
|
||||
|
||||
switch (js.get_kind()) {
|
||||
case justification::NONE:
|
||||
break;
|
||||
|
@ -1468,7 +1482,7 @@ namespace sat {
|
|||
fill_ext_antecedents(consequent, js);
|
||||
literal_vector::iterator it = m_ext_antecedents.begin();
|
||||
literal_vector::iterator end = m_ext_antecedents.end();
|
||||
for (; it != end; ++it)
|
||||
for (; it != end; ++it)
|
||||
r = std::max(r, lvl(*it));
|
||||
break;
|
||||
}
|
||||
|
@ -1497,7 +1511,7 @@ namespace sat {
|
|||
}
|
||||
return idx;
|
||||
}
|
||||
|
||||
|
||||
void solver::process_antecedent(literal antecedent, unsigned & num_marks) {
|
||||
bool_var var = antecedent.var();
|
||||
unsigned var_lvl = lvl(var);
|
||||
|
@ -1511,7 +1525,7 @@ namespace sat {
|
|||
m_lemma.push_back(~antecedent);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
\brief js is an external justification. Collect its antecedents and store at m_ext_antecedents.
|
||||
*/
|
||||
|
@ -1578,7 +1592,7 @@ namespace sat {
|
|||
unsigned var_lvl = lvl(var);
|
||||
if (!is_marked(var) && var_lvl > 0) {
|
||||
if (m_lvl_set.may_contain(var_lvl)) {
|
||||
mark(var);
|
||||
mark(var);
|
||||
m_unmark.push_back(var);
|
||||
m_lemma_min_stack.push_back(var);
|
||||
}
|
||||
|
@ -1590,17 +1604,17 @@ namespace sat {
|
|||
}
|
||||
|
||||
/**
|
||||
\brief Return true if lit is implied by other marked literals
|
||||
and/or literals assigned at the base level.
|
||||
The set lvl_set is used as an optimization.
|
||||
\brief Return true if lit is implied by other marked literals
|
||||
and/or literals assigned at the base level.
|
||||
The set lvl_set is used as an optimization.
|
||||
The idea is to stop the recursive search with a failure
|
||||
as soon as we find a literal assigned in a level that is not in lvl_set.
|
||||
as soon as we find a literal assigned in a level that is not in lvl_set.
|
||||
*/
|
||||
bool solver::implied_by_marked(literal lit) {
|
||||
m_lemma_min_stack.reset(); // avoid recursive function
|
||||
m_lemma_min_stack.push_back(lit.var());
|
||||
unsigned old_size = m_unmark.size();
|
||||
|
||||
|
||||
while (!m_lemma_min_stack.empty()) {
|
||||
bool_var var = m_lemma_min_stack.back();
|
||||
m_lemma_min_stack.pop_back();
|
||||
|
@ -1701,7 +1715,7 @@ namespace sat {
|
|||
void solver::minimize_lemma() {
|
||||
m_unmark.reset();
|
||||
updt_lemma_lvl_set();
|
||||
|
||||
|
||||
unsigned sz = m_lemma.size();
|
||||
unsigned i = 1; // the first literal is the FUIP
|
||||
unsigned j = 1;
|
||||
|
@ -1717,12 +1731,12 @@ namespace sat {
|
|||
j++;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
reset_unmark(0);
|
||||
m_lemma.shrink(j);
|
||||
m_stats.m_minimized_lits += sz - j;
|
||||
}
|
||||
|
||||
|
||||
/**
|
||||
\brief Reset the mark of the variables in the current lemma.
|
||||
*/
|
||||
|
@ -1742,17 +1756,17 @@ namespace sat {
|
|||
Only binary and ternary clauses are used.
|
||||
*/
|
||||
void solver::dyn_sub_res() {
|
||||
unsigned sz = m_lemma.size();
|
||||
unsigned sz = m_lemma.size();
|
||||
for (unsigned i = 0; i < sz; i++) {
|
||||
mark_lit(m_lemma[i]);
|
||||
}
|
||||
|
||||
|
||||
literal l0 = m_lemma[0];
|
||||
// l0 is the FUIP, and we never remove the FUIP.
|
||||
//
|
||||
//
|
||||
// In the following loop, we use unmark_lit(l) to remove a
|
||||
// literal from m_lemma.
|
||||
|
||||
|
||||
for (unsigned i = 0; i < sz; i++) {
|
||||
literal l = m_lemma[i];
|
||||
if (!is_marked_lit(l))
|
||||
|
@ -1764,8 +1778,8 @@ namespace sat {
|
|||
for (; it != end; ++it) {
|
||||
// In this for-loop, the conditions l0 != ~l2 and l0 != ~l3
|
||||
// are not really needed if the solver does not miss unit propagations.
|
||||
// However, we add them anyway because we don't want to rely on this
|
||||
// property of the propagator.
|
||||
// However, we add them anyway because we don't want to rely on this
|
||||
// property of the propagator.
|
||||
// For example, if this property is relaxed in the future, then the code
|
||||
// without the conditions l0 != ~l2 and l0 != ~l3 may remove the FUIP
|
||||
if (it->is_binary_clause()) {
|
||||
|
@ -1811,10 +1825,10 @@ namespace sat {
|
|||
// p1 \/ ~p2
|
||||
// p2 \/ ~p3
|
||||
// p3 \/ ~p4
|
||||
// q1 \/ q2 \/ p1 \/ p2 \/ p3 \/ p4 \/ l2
|
||||
// q1 \/ ~q2 \/ p1 \/ p2 \/ p3 \/ p4 \/ l2
|
||||
// ~q1 \/ q2 \/ p1 \/ p2 \/ p3 \/ p4 \/ l2
|
||||
// ~q1 \/ ~q2 \/ p1 \/ p2 \/ p3 \/ p4 \/ l2
|
||||
// q1 \/ q2 \/ p1 \/ p2 \/ p3 \/ p4 \/ l2
|
||||
// q1 \/ ~q2 \/ p1 \/ p2 \/ p3 \/ p4 \/ l2
|
||||
// ~q1 \/ q2 \/ p1 \/ p2 \/ p3 \/ p4 \/ l2
|
||||
// ~q1 \/ ~q2 \/ p1 \/ p2 \/ p3 \/ p4 \/ l2
|
||||
// ...
|
||||
//
|
||||
// 2. Now suppose we learned the lemma
|
||||
|
@ -1825,15 +1839,15 @@ namespace sat {
|
|||
// That is, l \/ l2 is an implied clause. Note that probing does not add
|
||||
// this clause to the clause database (there are too many).
|
||||
//
|
||||
// 4. Lemma (*) is deleted (garbage collected).
|
||||
// 4. Lemma (*) is deleted (garbage collected).
|
||||
//
|
||||
// 5. l is decided to be false, p1, p2, p3 and p4 are propagated using BCP,
|
||||
// but l2 is not since the lemma (*) was deleted.
|
||||
//
|
||||
//
|
||||
// Probing module still "knows" that l \/ l2 is valid binary clause
|
||||
//
|
||||
//
|
||||
// 6. A new lemma is created where ~l2 is the FUIP and the lemma also contains l.
|
||||
// If we remove l0 != ~l2 may try to delete the FUIP.
|
||||
// If we remove l0 != ~l2 may try to delete the FUIP.
|
||||
if (is_marked_lit(~l2) && l0 != ~l2) {
|
||||
// eliminate ~l2 from lemma because we have the clause l \/ l2
|
||||
unmark_lit(~l2);
|
||||
|
@ -1844,7 +1858,7 @@ namespace sat {
|
|||
|
||||
// can't eliminat FUIP
|
||||
SASSERT(is_marked_lit(m_lemma[0]));
|
||||
|
||||
|
||||
unsigned j = 0;
|
||||
for (unsigned i = 0; i < sz; i++) {
|
||||
literal l = m_lemma[i];
|
||||
|
@ -1856,7 +1870,7 @@ namespace sat {
|
|||
}
|
||||
|
||||
m_stats.m_dyn_sub_res += sz - j;
|
||||
|
||||
|
||||
SASSERT(j >= 1);
|
||||
m_lemma.shrink(j);
|
||||
}
|
||||
|
@ -1949,7 +1963,7 @@ namespace sat {
|
|||
// Misc
|
||||
//
|
||||
// -----------------------
|
||||
|
||||
|
||||
void solver::updt_params(params_ref const & p) {
|
||||
m_params = p;
|
||||
m_config.updt_params(p);
|
||||
|
@ -1971,7 +1985,7 @@ namespace sat {
|
|||
void solver::set_cancel(bool f) {
|
||||
m_cancel = f;
|
||||
}
|
||||
|
||||
|
||||
void solver::collect_statistics(statistics & st) {
|
||||
m_stats.collect_statistics(st);
|
||||
m_cleaner.collect_statistics(st);
|
||||
|
@ -2067,7 +2081,7 @@ namespace sat {
|
|||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
void solver::display_units(std::ostream & out) const {
|
||||
unsigned end = scope_lvl() == 0 ? m_trail.size() : m_scopes[0].m_trail_lim;
|
||||
for (unsigned i = 0; i < end; i++) {
|
||||
|
@ -2221,26 +2235,26 @@ namespace sat {
|
|||
// Simplification
|
||||
//
|
||||
// -----------------------
|
||||
void solver::cleanup() {
|
||||
if (scope_lvl() > 0 || inconsistent())
|
||||
return;
|
||||
void solver::cleanup() {
|
||||
if (scope_lvl() > 0 || inconsistent())
|
||||
return;
|
||||
if (m_cleaner() && m_ext)
|
||||
m_ext->clauses_modifed();
|
||||
}
|
||||
|
||||
void solver::simplify(bool learned) {
|
||||
if (scope_lvl() > 0 || inconsistent())
|
||||
return;
|
||||
m_simplifier(learned);
|
||||
m_simplifier.free_memory();
|
||||
void solver::simplify(bool learned) {
|
||||
if (scope_lvl() > 0 || inconsistent())
|
||||
return;
|
||||
m_simplifier(learned);
|
||||
m_simplifier.free_memory();
|
||||
if (m_ext)
|
||||
m_ext->clauses_modifed();
|
||||
}
|
||||
|
||||
unsigned solver::scc_bin() {
|
||||
if (scope_lvl() > 0 || inconsistent())
|
||||
return 0;
|
||||
unsigned r = m_scc();
|
||||
unsigned solver::scc_bin() {
|
||||
if (scope_lvl() > 0 || inconsistent())
|
||||
return 0;
|
||||
unsigned r = m_scc();
|
||||
if (r > 0 && m_ext)
|
||||
m_ext->clauses_modifed();
|
||||
return r;
|
||||
|
@ -2314,10 +2328,10 @@ namespace sat {
|
|||
out << " :inconsistent " << (m_inconsistent ? "true" : "false") << "\n";
|
||||
out << " :vars " << num_vars() << "\n";
|
||||
out << " :elim-vars " << num_elim << "\n";
|
||||
out << " :lits " << num_lits << "\n";
|
||||
out << " :lits " << num_lits << "\n";
|
||||
out << " :assigned " << m_trail.size() << "\n";
|
||||
out << " :binary-clauses " << num_bin << "\n";
|
||||
out << " :ternary-clauses " << num_ter << "\n";
|
||||
out << " :binary-clauses " << num_bin << "\n";
|
||||
out << " :ternary-clauses " << num_ter << "\n";
|
||||
out << " :clauses " << num_cls << "\n";
|
||||
out << " :del-clause " << m_stats.m_del_clause << "\n";
|
||||
out << " :avg-clause-size " << (total_cls == 0 ? 0.0 : static_cast<double>(num_lits) / static_cast<double>(total_cls)) << "\n";
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue