3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-07 18:05:21 +00:00

solver factories, cleanup solver API, simplified strategic solver, added combined solver

Signed-off-by: Leonardo de Moura <leonardo@microsoft.com>
This commit is contained in:
Leonardo de Moura 2012-12-11 17:47:27 -08:00
parent bfe6678ad2
commit 8198e62cbd
22 changed files with 720 additions and 492 deletions

View file

@ -34,15 +34,15 @@ Revision History:
extern "C" {
static void init_solver_core(Z3_context c, Z3_solver _s) {
ast_manager & m = mk_c(c)->m();
Z3_solver_ref * s = to_solver(_s);
mk_c(c)->params().init_solver_params(mk_c(c)->m(), *(s->m_solver), s->m_params);
s->m_solver->init(m, s->m_logic);
s->m_initialized = true;
bool proofs_enabled, models_enabled, unsat_core_enabled;
params_ref p = s->m_params;
mk_c(c)->params().get_solver_params(mk_c(c)->m(), p, proofs_enabled, models_enabled, unsat_core_enabled);
s->m_solver = (*(s->m_solver_factory))(mk_c(c)->m(), p, proofs_enabled, models_enabled, unsat_core_enabled, s->m_logic);
}
static void init_solver(Z3_context c, Z3_solver s) {
if (!to_solver(s)->m_initialized)
if (to_solver(s)->m_solver.get() == 0)
init_solver_core(c, s);
}
@ -50,8 +50,7 @@ extern "C" {
Z3_TRY;
LOG_Z3_mk_simple_solver(c);
RESET_ERROR_CODE();
Z3_solver_ref * s = alloc(Z3_solver_ref);
s->m_solver = mk_smt_solver();
Z3_solver_ref * s = alloc(Z3_solver_ref, mk_smt_solver_factory());
mk_c(c)->save_object(s);
Z3_solver r = of_solver(s);
RETURN_Z3(r);
@ -62,8 +61,7 @@ extern "C" {
Z3_TRY;
LOG_Z3_mk_solver(c);
RESET_ERROR_CODE();
Z3_solver_ref * s = alloc(Z3_solver_ref);
s->m_solver = mk_smt_strategic_solver();
Z3_solver_ref * s = alloc(Z3_solver_ref, mk_smt_strategic_solver_factory());
mk_c(c)->save_object(s);
Z3_solver r = of_solver(s);
RETURN_Z3(r);
@ -74,8 +72,7 @@ extern "C" {
Z3_TRY;
LOG_Z3_mk_solver_for_logic(c, logic);
RESET_ERROR_CODE();
Z3_solver_ref * s = alloc(Z3_solver_ref, to_symbol(logic));
s->m_solver = mk_smt_strategic_solver(true /* force solver to use tactics even when auto_config is disabled */);
Z3_solver_ref * s = alloc(Z3_solver_ref, mk_smt_strategic_solver_factory(to_symbol(logic)));
mk_c(c)->save_object(s);
Z3_solver r = of_solver(s);
RETURN_Z3(r);
@ -86,8 +83,7 @@ extern "C" {
Z3_TRY;
LOG_Z3_mk_solver_from_tactic(c, t);
RESET_ERROR_CODE();
Z3_solver_ref * s = alloc(Z3_solver_ref);
s->m_solver = alloc(tactic2solver, to_tactic_ref(t));
Z3_solver_ref * s = alloc(Z3_solver_ref, mk_tactic2solver_factory(to_tactic_ref(t)));
mk_c(c)->save_object(s);
Z3_solver r = of_solver(s);
RETURN_Z3(r);
@ -100,7 +96,12 @@ extern "C" {
RESET_ERROR_CODE();
std::ostringstream buffer;
param_descrs descrs;
bool initialized = to_solver(s)->m_solver.get() != 0;
if (!initialized)
init_solver(c, s);
to_solver_ref(s)->collect_param_descrs(descrs);
if (!initialized)
to_solver(s)->m_solver = 0;
descrs.display(buffer);
return mk_c(c)->mk_external_string(buffer.str());
Z3_CATCH_RETURN("");
@ -112,7 +113,12 @@ extern "C" {
RESET_ERROR_CODE();
Z3_param_descrs_ref * d = alloc(Z3_param_descrs_ref);
mk_c(c)->save_object(d);
bool initialized = to_solver(s)->m_solver.get() != 0;
if (!initialized)
init_solver(c, s);
to_solver_ref(s)->collect_param_descrs(d->m_descrs);
if (!initialized)
to_solver(s)->m_solver = 0;
Z3_param_descrs r = of_param_descrs(d);
RETURN_Z3(r);
Z3_CATCH_RETURN(0);
@ -122,7 +128,7 @@ extern "C" {
Z3_TRY;
LOG_Z3_solver_set_params(c, s, p);
RESET_ERROR_CODE();
if (to_solver(s)->m_initialized) {
if (to_solver(s)->m_solver) {
bool old_model = to_solver(s)->m_params.get_bool("model", true);
bool new_model = to_param_ref(p).get_bool("model", true);
if (old_model != new_model)
@ -176,8 +182,7 @@ extern "C" {
Z3_TRY;
LOG_Z3_solver_reset(c, s);
RESET_ERROR_CODE();
to_solver_ref(s)->reset();
to_solver(s)->m_initialized = false;
to_solver(s)->m_solver = 0;
Z3_CATCH;
}

View file

@ -22,17 +22,16 @@ Revision History:
#include"solver.h"
struct Z3_solver_ref : public api::object {
solver * m_solver;
params_ref m_params;
bool m_initialized;
symbol m_logic;
Z3_solver_ref():m_solver(0), m_initialized(false), m_logic(symbol::null) {}
Z3_solver_ref(symbol const & logic):m_solver(0), m_initialized(false), m_logic(logic) {}
virtual ~Z3_solver_ref() { dealloc(m_solver); }
scoped_ptr<solver_factory> m_solver_factory;
ref<solver> m_solver;
params_ref m_params;
symbol m_logic;
Z3_solver_ref(solver_factory * f):m_solver_factory(f), m_solver(0), m_logic(symbol::null) {}
virtual ~Z3_solver_ref() {}
};
inline Z3_solver_ref * to_solver(Z3_solver s) { return reinterpret_cast<Z3_solver_ref *>(s); }
inline Z3_solver of_solver(Z3_solver_ref * s) { return reinterpret_cast<Z3_solver>(s); }
inline solver * to_solver_ref(Z3_solver s) { return to_solver(s)->m_solver; }
inline solver * to_solver_ref(Z3_solver s) { return to_solver(s)->m_solver.get(); }
#endif

View file

@ -582,8 +582,8 @@ void cmd_context::init_manager_core(bool new_manager) {
// it prevents clashes with builtin types.
insert(pm().mk_plist_decl());
}
if (m_solver) {
init_solver_options(m_solver.get());
if (m_solver_factory) {
mk_solver();
}
m_check_logic.set_logic(m(), m_logic);
}
@ -1119,7 +1119,7 @@ void cmd_context::reset(bool finalize) {
reset_func_decls();
restore_assertions(0);
if (m_solver)
m_solver->reset();
m_solver = 0;
m_pp_env = 0;
m_dt_eh = 0;
if (m_manager) {
@ -1441,17 +1441,18 @@ void cmd_context::validate_model() {
}
}
void cmd_context::init_solver_options(solver * s) {
void cmd_context::mk_solver() {
bool proofs_enabled, models_enabled, unsat_core_enabled;
params_ref p;
m_params.init_solver_params(m(), *m_solver, p);
m_solver->init(m(), m_logic);
m_params.get_solver_params(m(), p, proofs_enabled, models_enabled, unsat_core_enabled);
m_solver = (*m_solver_factory)(m(), p, proofs_enabled, models_enabled, unsat_core_enabled, m_logic);
}
void cmd_context::set_solver(solver * s) {
void cmd_context::set_solver_factory(solver_factory * f) {
m_solver_factory = f;
m_check_sat_result = 0;
m_solver = s;
if (has_manager() && s != 0) {
init_solver_options(s);
if (has_manager() && f != 0) {
mk_solver();
// assert formulas and create scopes in the new solver.
unsigned lim = 0;
svector<scope>::iterator it = m_scopes.begin();

View file

@ -185,6 +185,7 @@ protected:
};
svector<scope> m_scopes;
scoped_ptr<solver_factory> m_solver_factory;
ref<solver> m_solver;
ref<check_sat_result> m_check_sat_result;
@ -243,7 +244,7 @@ protected:
void print_unsupported_msg() { regular_stream() << "unsupported" << std::endl; }
void print_unsupported_info(symbol const& s) { if (s != symbol::null) diagnostic_stream() << "; " << s << std::endl;}
void init_solver_options(solver * s);
void mk_solver();
public:
cmd_context(bool main_ctx = true, ast_manager * m = 0, symbol const & l = symbol::null);
@ -289,8 +290,7 @@ public:
pdecl_manager & pm() const { if (!m_pmanager) const_cast<cmd_context*>(this)->init_manager(); return *m_pmanager; }
sexpr_manager & sm() const { if (!m_sexpr_manager) const_cast<cmd_context*>(this)->m_sexpr_manager = alloc(sexpr_manager); return *m_sexpr_manager; }
void set_solver(solver * s);
solver * get_solver() const { return m_solver.get(); }
void set_solver_factory(solver_factory * s);
void set_check_sat_result(check_sat_result * r) { m_check_sat_result = r; }
check_sat_result * get_check_sat_result() const { return m_check_sat_result.get(); }
check_sat_state cs_state() const;

View file

@ -131,11 +131,11 @@ params_ref context_params::merge_default_params(params_ref const & p) {
}
}
void context_params::init_solver_params(ast_manager & m, solver & s, params_ref const & p) {
s.set_produce_proofs(m.proofs_enabled() && m_proof);
s.set_produce_models(p.get_bool("model", m_model));
s.set_produce_unsat_cores(p.get_bool("unsat_core", m_unsat_core));
s.updt_params(merge_default_params(p));
void context_params::get_solver_params(ast_manager const & m, params_ref & p, bool & proofs_enabled, bool & models_enabled, bool & unsat_core_enabled) {
proofs_enabled = m.proofs_enabled() && p.get_bool("proof", m_proof);
models_enabled = p.get_bool("model", m_model);
unsat_core_enabled = p.get_bool("unsat_core", m_unsat_core);
p = merge_default_params(p);
}
ast_manager * context_params::mk_ast_manager() {

View file

@ -22,7 +22,6 @@ Notes:
#include"params.h"
class ast_manager;
class solver;
class context_params {
void set_bool(bool & opt, char const * param, char const * value);
@ -50,13 +49,9 @@ public:
*/
/**
\brief Goodie for updating the solver params
based on the configuration of the context_params object.
This method is used when creating solvers from the
cmd_context and API.
\brief Goodies for extracting parameters for creating a solver object.
*/
void init_solver_params(ast_manager & m, solver & s, params_ref const & p);
void get_solver_params(ast_manager const & m, params_ref & p, bool & proofs_enabled, bool & models_enabled, bool & unsat_core_enabled);
/**
\brief Include in p parameters derived from this context_params.

View file

@ -86,7 +86,7 @@ namespace smtlib {
benchmark.add_formula(m_ast_manager.mk_true());
}
m_ctx = alloc(cmd_context, true, &m_ast_manager, benchmark.get_logic());
m_ctx->set_solver(mk_smt_strategic_solver(false));
m_ctx->set_solver_factory(mk_smt_strategic_solver_factory());
theory::expr_iterator fit = benchmark.begin_formulas();
theory::expr_iterator fend = benchmark.end_formulas();
for (; fit != fend; ++fit)

View file

@ -30,9 +30,6 @@ Revision History:
#include"subpaving_cmds.h"
#include"smt_strategic_solver.h"
#include"tactic2solver.h"
#include"qfnra_nlsat_tactic.h"
extern bool g_display_statistics;
extern void display_config();
static clock_t g_start_time;
@ -98,8 +95,7 @@ unsigned read_smtlib2_commands(char const * file_name) {
signal(SIGINT, on_ctrl_c);
cmd_context ctx;
solver * s = mk_smt_strategic_solver(false);
ctx.set_solver(s);
ctx.set_solver_factory(mk_smt_strategic_solver_factory());
install_dl_cmds(ctx);
install_dbg_cmds(ctx);

View file

@ -25,166 +25,114 @@ namespace smt {
class solver : public solver_na2as {
smt_params m_params;
smt::kernel * m_context;
smt::kernel m_context;
progress_callback * m_callback;
symbol m_logic;
public:
solver():m_context(0), m_callback(0) {}
solver(ast_manager & m, params_ref const & p, symbol const & l):
solver_na2as(m),
m_params(p),
m_context(m, m_params) {
m_logic = l;
if (m_logic != symbol::null)
m_context.set_logic(m_logic);
}
virtual ~solver() {
if (m_context != 0)
dealloc(m_context);
}
virtual void updt_params(params_ref const & p) {
m_params.updt_params(p);
if (m_context == 0)
return;
m_context->updt_params(p);
m_context.updt_params(p);
}
virtual void collect_param_descrs(param_descrs & r) {
if (m_context == 0) {
ast_manager m;
reg_decl_plugins(m);
smt::kernel s(m, m_params);
s.collect_param_descrs(r);
}
else {
m_context->collect_param_descrs(r);
}
}
virtual void init_core(ast_manager & m, symbol const & logic) {
reset();
// We can throw exceptions when creating a smt::kernel object
// So, we should create the smt::kernel outside of the criticial section
// block. OMP does not allow exceptions to cross critical section boundaries.
smt::kernel * new_kernel = alloc(smt::kernel, m, m_params);
#pragma omp critical (solver)
{
m_context = new_kernel;
if (m_callback)
m_context->set_progress_callback(m_callback);
}
if (logic != symbol::null)
m_context->set_logic(logic);
m_context.collect_param_descrs(r);
}
virtual void collect_statistics(statistics & st) const {
if (m_context == 0) {
return;
}
else {
m_context->collect_statistics(st);
}
}
virtual void reset_core() {
if (m_context != 0) {
#pragma omp critical (solver)
{
dealloc(m_context);
m_context = 0;
}
}
}
// An exception may be thrown when creating a smt::kernel.
// So, there is no guarantee that m_context != 0 when
// using smt_solver from the SMT 2.0 command line frontend.
void check_context() const {
if (m_context == 0)
throw default_exception("Z3 failed to create solver, check previous error messages");
m_context.collect_statistics(st);
}
virtual void assert_expr(expr * t) {
check_context();
m_context->assert_expr(t);
m_context.assert_expr(t);
}
virtual void push_core() {
check_context();
m_context->push();
m_context.push();
}
virtual void pop_core(unsigned n) {
check_context();
m_context->pop(n);
m_context.pop(n);
}
virtual lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions) {
check_context();
TRACE("solver_na2as", tout << "smt_solver::check_sat_core: " << num_assumptions << "\n";);
return m_context->check(num_assumptions, assumptions);
return m_context.check(num_assumptions, assumptions);
}
virtual void get_unsat_core(ptr_vector<expr> & r) {
check_context();
unsigned sz = m_context->get_unsat_core_size();
unsigned sz = m_context.get_unsat_core_size();
for (unsigned i = 0; i < sz; i++)
r.push_back(m_context->get_unsat_core_expr(i));
r.push_back(m_context.get_unsat_core_expr(i));
}
virtual void get_model(model_ref & m) {
check_context();
m_context->get_model(m);
m_context.get_model(m);
}
virtual proof * get_proof() {
check_context();
return m_context->get_proof();
return m_context.get_proof();
}
virtual std::string reason_unknown() const {
check_context();
return m_context->last_failure_as_string();
return m_context.last_failure_as_string();
}
virtual void get_labels(svector<symbol> & r) {
check_context();
buffer<symbol> tmp;
m_context->get_relevant_labels(0, tmp);
m_context.get_relevant_labels(0, tmp);
r.append(tmp.size(), tmp.c_ptr());
}
virtual void set_cancel(bool f) {
#pragma omp critical (solver)
{
if (m_context)
m_context->set_cancel(f);
}
m_context.set_cancel(f);
}
virtual void set_progress_callback(progress_callback * callback) {
m_callback = callback;
if (m_context)
m_context->set_progress_callback(callback);
m_context.set_progress_callback(callback);
}
virtual unsigned get_num_assertions() const {
if (m_context)
return m_context->size();
else
return 0;
return m_context.size();
}
virtual expr * get_assertion(unsigned idx) const {
SASSERT(m_context);
SASSERT(idx < get_num_assertions());
return m_context->get_formulas()[idx];
return m_context.get_formulas()[idx];
}
virtual void display(std::ostream & out) const {
if (m_context)
m_context->display(out);
else
out << "(solver)";
m_context.display(out);
}
};
};
solver * mk_smt_solver() {
return alloc(smt::solver);
solver * mk_smt_solver(ast_manager & m, params_ref const & p, symbol const & logic) {
return alloc(smt::solver, m, p, logic);
}
class smt_solver_factory : public solver_factory {
public:
virtual solver * operator()(ast_manager & m, params_ref const & p, bool proofs_enabled, bool models_enabled, bool unsat_core_enabled, symbol const & logic) {
return mk_smt_solver(m, p, logic);
}
};
solver_factory * mk_smt_solver_factory() {
return alloc(smt_solver_factory);
}

View file

@ -21,8 +21,13 @@ Notes:
#ifndef _SMT_SOLVER_H_
#define _SMT_SOLVER_H_
class solver;
#include"ast.h"
#include"params.h"
solver * mk_smt_solver();
class solver;
class solver_factory;
solver * mk_smt_solver(ast_manager & m, params_ref const & p, symbol const & logic);
solver_factory * mk_smt_solver_factory();
#endif

View file

@ -0,0 +1,289 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
combined_solver.cpp
Abstract:
Implements the solver API by combining two solvers.
This is a replacement for the strategic_solver class.
Author:
Leonardo (leonardo) 2012-12-11
Notes:
--*/
#include"solver.h"
#include"scoped_timer.h"
#include"combined_solver_params.hpp"
#define PS_VB_LVL 15
/**
\brief Implementation of the solver API that combines two given solvers.
The combined solver has two modes:
- non-incremental
- incremental
In non-incremental mode, the first solver is used.
In incremental mode, the second one is used.
A timeout for the second solver can be specified.
If the timeout is reached, then the first solver is executed.
The object switches to incremental when:
- push is used
- assertions are peformed after a check_sat
- parameter ignore_solver1==false
*/
class combined_solver : public solver {
public:
// Behavior when the incremental solver returns unknown.
enum inc_unknown_behavior {
IUB_RETURN_UNDEF, // just return unknown
IUB_USE_TACTIC_IF_QF, // invoke tactic if problem is quantifier free
IUB_USE_TACTIC // invoke tactic
};
private:
bool m_inc_mode;
bool m_check_sat_executed;
bool m_use_solver1_results;
ref<solver> m_solver1;
ref<solver> m_solver2;
bool m_ignore_solver1;
inc_unknown_behavior m_inc_unknown_behavior;
unsigned m_inc_timeout;
void switch_inc_mode() {
m_inc_mode = true;
}
struct aux_timeout_eh : public event_handler {
solver * m_solver;
volatile bool m_canceled;
aux_timeout_eh(solver * s):m_solver(s), m_canceled(false) {}
virtual void operator()() {
m_solver->cancel();
m_canceled = true;
}
};
void updt_local_params(params_ref const & _p) {
combined_solver_params p(_p);
m_inc_timeout = p.solver2_timeout();
m_ignore_solver1 = p.ignore_solver1();
m_inc_unknown_behavior = static_cast<inc_unknown_behavior>(p.solver2_unknown());
}
bool has_quantifiers() const {
unsigned sz = get_num_assertions();
for (unsigned i = 0; i < sz; i++) {
if (::has_quantifiers(get_assertion(i)))
return true;
}
return false;
}
bool use_solver1_when_undef() const {
switch (m_inc_unknown_behavior) {
case IUB_RETURN_UNDEF: return false;
case IUB_USE_TACTIC_IF_QF: return !has_quantifiers();
case IUB_USE_TACTIC: return true;
default:
UNREACHABLE();
return false;
}
}
public:
combined_solver(solver * s1, solver * s2, params_ref const & p) {
m_solver1 = s1;
m_solver2 = s2;
updt_local_params(p);
m_inc_mode = false;
m_check_sat_executed = false;
m_use_solver1_results = true;
}
virtual void updt_params(params_ref const & p) {
m_solver1->updt_params(p);
m_solver2->updt_params(p);
updt_local_params(p);
}
virtual void collect_param_descrs(param_descrs & r) {
m_solver1->collect_param_descrs(r);
m_solver2->collect_param_descrs(r);
combined_solver_params::collect_param_descrs(r);
}
virtual void set_produce_models(bool f) {
m_solver1->set_produce_models(f);
m_solver2->set_produce_models(f);
}
virtual void assert_expr(expr * t) {
if (m_check_sat_executed)
switch_inc_mode();
m_solver1->assert_expr(t);
m_solver2->assert_expr(t);
}
virtual void assert_expr(expr * t, expr * a) {
if (m_check_sat_executed)
switch_inc_mode();
m_solver1->assert_expr(t, a);
m_solver2->assert_expr(t, a);
}
virtual void push() {
switch_inc_mode();
m_solver1->push();
m_solver2->push();
}
virtual void pop(unsigned n) {
switch_inc_mode();
m_solver1->pop(n);
m_solver2->pop(n);
}
virtual unsigned get_scope_level() const {
return m_solver1->get_scope_level();
}
virtual lbool check_sat(unsigned num_assumptions, expr * const * assumptions) {
m_check_sat_executed = true;
if (num_assumptions > 0 || // assumptions were provided
m_ignore_solver1) {
// must use incremental solver
switch_inc_mode();
m_use_solver1_results = false;
return m_solver2->check_sat(num_assumptions, assumptions);
}
if (m_inc_mode) {
if (m_inc_timeout == UINT_MAX) {
IF_VERBOSE(PS_VB_LVL, verbose_stream() << "(combined-solver \"using solver 2 (without a timeout)\")\n";);
lbool r = m_solver2->check_sat(0, 0);
if (r != l_undef || !use_solver1_when_undef()) {
m_use_solver1_results = false;
return r;
}
}
else {
IF_VERBOSE(PS_VB_LVL, verbose_stream() << "(combined-solver \"using solver 2 (with timeout)\")\n";);
aux_timeout_eh eh(m_solver2.get());
lbool r;
{
scoped_timer timer(m_inc_timeout, &eh);
r = m_solver2->check_sat(0, 0);
}
if ((r != l_undef || !use_solver1_when_undef()) && !eh.m_canceled) {
m_use_solver1_results = false;
return r;
}
}
IF_VERBOSE(PS_VB_LVL, verbose_stream() << "(combined-solver \"solver 2 failed, trying solver1\")\n";);
}
IF_VERBOSE(PS_VB_LVL, verbose_stream() << "(combined-solver \"using solver 1\")\n";);
m_use_solver1_results = true;
return m_solver1->check_sat(0, 0);
}
virtual void set_cancel(bool f) {
m_solver1->set_cancel(f);
m_solver2->set_cancel(f);
}
virtual void set_progress_callback(progress_callback * callback) {
m_solver1->set_progress_callback(callback);
m_solver2->set_progress_callback(callback);
}
virtual unsigned get_num_assertions() const {
return m_solver1->get_num_assertions();
}
virtual expr * get_assertion(unsigned idx) const {
return m_solver1->get_assertion(idx);
}
virtual void display(std::ostream & out) const {
m_solver1->display(out);
}
virtual void collect_statistics(statistics & st) const {
if (m_use_solver1_results)
m_solver1->collect_statistics(st);
else
m_solver2->collect_statistics(st);
}
virtual void get_unsat_core(ptr_vector<expr> & r) {
if (m_use_solver1_results)
m_solver1->get_unsat_core(r);
else
m_solver2->get_unsat_core(r);
}
virtual void get_model(model_ref & m) {
if (m_use_solver1_results)
m_solver1->get_model(m);
else
m_solver2->get_model(m);
}
virtual proof * get_proof() {
if (m_use_solver1_results)
return m_solver1->get_proof();
else
return m_solver2->get_proof();
}
virtual std::string reason_unknown() const {
if (m_use_solver1_results)
return m_solver1->reason_unknown();
else
return m_solver2->reason_unknown();
}
virtual void get_labels(svector<symbol> & r) {
if (m_use_solver1_results)
return m_solver1->get_labels(r);
else
return m_solver2->get_labels(r);
}
};
solver * mk_combined_solver(solver * s1, solver * s2, params_ref const & p) {
return alloc(combined_solver, s1, s2, p);
}
class combined_solver_factory : public solver_factory {
scoped_ptr<solver_factory> m_f1;
scoped_ptr<solver_factory> m_f2;
public:
combined_solver_factory(solver_factory * f1, solver_factory * f2):m_f1(f1), m_f2(f2) {}
virtual ~combined_solver_factory() {}
virtual solver * operator()(ast_manager & m, params_ref const & p, bool proofs_enabled, bool models_enabled, bool unsat_core_enabled, symbol const & logic) {
return mk_combined_solver((*m_f1)(m, p, proofs_enabled, models_enabled, unsat_core_enabled, logic),
(*m_f2)(m, p, proofs_enabled, models_enabled, unsat_core_enabled, logic),
p);
}
};
solver_factory * mk_combined_solver_factory(solver_factory * f1, solver_factory * f2) {
return alloc(combined_solver_factory, f1, f2);
}

View file

@ -0,0 +1,32 @@
/*++
Copyright (c) 2012 Microsoft Corporation
Module Name:
combined_solver.cpp
Abstract:
Implements the solver API by combining two solvers.
This is a replacement for the strategic_solver class.
Author:
Leonardo (leonardo) 2012-12-11
Notes:
--*/
#ifndef _COMBINED_SOLVER_H_
#define _COMBINED_SOLVER_H_
#include"params.h"
class solver;
class solver_factory;
solver * mk_combined_solver(solver * s1, solver * s2, params_ref const & p);
solver_factory * mk_combined_solver_factory(solver_factory * f1, solver_factory * f2);
#endif

View file

@ -0,0 +1,9 @@
def_module_params('combined_solver',
description='combines two solvers: non-incremental (solver1) and incremental (solver2)',
export=True,
params=(('solver2_timeout', UINT, UINT_MAX, "fallback to solver 1 after timeout even when in incremental model"),
('ignore_solver1', BOOL, False, "if true, solver 2 is always used"),
('solver2_unknown', UINT, 1, "what should be done when solver 2 returns unknown: 0 - just return unknown, 1 - execute solver 1 if quantifier free problem, 2 - execute solver 1")
))

View file

@ -23,6 +23,14 @@ Notes:
#include"progress_callback.h"
#include"params.h"
class solver;
class solver_factory {
public:
virtual ~solver_factory() {}
virtual solver * operator()(ast_manager & m, params_ref const & p, bool proofs_enabled, bool models_enabled, bool unsat_core_enabled, symbol const & logic) = 0;
};
/**
\brief Abstract interface for making solvers available in the Z3
API and front-ends such as SMT 2.0 and (legacy) SMT 1.0.
@ -34,7 +42,6 @@ Notes:
- statistics
- results based on check_sat_result API
- interruption (set_cancel)
- resets
*/
class solver : public check_sat_result {
public:
@ -50,12 +57,6 @@ public:
*/
virtual void collect_param_descrs(param_descrs & r) {}
/**
\brief Enable/Disable proof production for this solver object.
It is invoked before init(m, logic).
*/
virtual void set_produce_proofs(bool f) {}
/**
\brief Enable/Disable model generation for this solver object.
@ -63,23 +64,7 @@ public:
The user may optionally invoke it after init(m, logic).
*/
virtual void set_produce_models(bool f) {}
/**
\brief Enable/Disable unsat core generation for this solver object.
It is invoked before init(m, logic).
*/
virtual void set_produce_unsat_cores(bool f) {}
/**
\brief Initialize the solver object with the given ast_manager and logic.
*/
virtual void init(ast_manager & m, symbol const & logic) = 0;
/**
\brief Reset the solver internal state. All assertions should be removed.
*/
virtual void reset() = 0;
/**
\brief Add a new formula to the assertion stack.
*/

View file

@ -22,8 +22,8 @@ Notes:
#include"solver_na2as.h"
#include"ast_smt2_pp.h"
solver_na2as::solver_na2as() {
m_manager = 0;
solver_na2as::solver_na2as(ast_manager & m):
m_manager(m) {
}
solver_na2as::~solver_na2as() {
@ -35,23 +35,16 @@ void solver_na2as::assert_expr(expr * t, expr * a) {
assert_expr(t);
}
else {
SASSERT(m_manager != 0);
SASSERT(is_uninterp_const(a));
SASSERT(m_manager->is_bool(a));
TRACE("solver_na2as", tout << "asserting\n" << mk_ismt2_pp(t, *m_manager) << "\n" << mk_ismt2_pp(a, *m_manager) << "\n";);
m_manager->inc_ref(a);
SASSERT(m_manager.is_bool(a));
TRACE("solver_na2as", tout << "asserting\n" << mk_ismt2_pp(t, m_manager) << "\n" << mk_ismt2_pp(a, m_manager) << "\n";);
m_manager.inc_ref(a);
m_assumptions.push_back(a);
expr_ref new_t(*m_manager);
new_t = m_manager->mk_implies(a, t);
expr_ref new_t(m_manager);
new_t = m_manager.mk_implies(a, t);
assert_expr(new_t);
}
}
void solver_na2as::init(ast_manager & m, symbol const & logic) {
SASSERT(m_assumptions.empty());
m_manager = &m;
init_core(m, logic);
}
struct append_assumptions {
ptr_vector<expr> & m_assumptions;
@ -89,9 +82,9 @@ void solver_na2as::pop(unsigned n) {
}
void solver_na2as::restore_assumptions(unsigned old_sz) {
SASSERT(old_sz == 0 || m_manager != 0);
SASSERT(old_sz == 0);
for (unsigned i = old_sz; i < m_assumptions.size(); i++) {
m_manager->dec_ref(m_assumptions[i]);
m_manager.dec_ref(m_assumptions[i]);
}
m_assumptions.shrink(old_sz);
}
@ -100,7 +93,3 @@ unsigned solver_na2as::get_scope_level() const {
return m_scopes.size();
}
void solver_na2as::reset() {
reset_core();
restore_assumptions(0);
}

View file

@ -25,30 +25,26 @@ Notes:
#include"solver.h"
class solver_na2as : public solver {
ast_manager * m_manager;
ast_manager & m_manager;
ptr_vector<expr> m_assumptions;
unsigned_vector m_scopes;
void restore_assumptions(unsigned old_sz);
public:
solver_na2as();
solver_na2as(ast_manager & m);
virtual ~solver_na2as();
virtual void assert_expr(expr * t, expr * a);
virtual void assert_expr(expr * t) = 0;
// Subclasses of solver_na2as should redefine the following *_core methods instead of these ones.
virtual void init(ast_manager & m, symbol const & logic);
virtual lbool check_sat(unsigned num_assumptions, expr * const * assumptions);
virtual void push();
virtual void pop(unsigned n);
virtual unsigned get_scope_level() const;
virtual void reset();
protected:
virtual void init_core(ast_manager & m, symbol const & logic) = 0;
virtual lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions) = 0;
virtual void push_core() = 0;
virtual void pop_core(unsigned n) = 0;
virtual void reset_core() = 0;
};

View file

@ -16,6 +16,7 @@ Author:
Notes:
--*/
#if 0
#include"strategic_solver.h"
#include"scoped_timer.h"
#include"ast_smt2_pp.h"
@ -526,6 +527,7 @@ void strategic_solver::display(std::ostream & out) const {
}
}
#endif

View file

@ -61,7 +61,8 @@ private:
bool m_force_tactic; // use tactics even when auto_config = false
bool m_inc_mode;
bool m_check_sat_executed;
scoped_ptr<solver> m_inc_solver;
scoped_ptr<solver_factory> m_inc_solver_factory;
ref<solver> m_inc_solver;
unsigned m_inc_solver_timeout;
inc_unknown_behavior m_inc_unknown_behavior;
scoped_ptr<tactic_factory> m_default_fct;
@ -107,12 +108,12 @@ private:
bool use_tactic_when_undef() const;
public:
strategic_solver();
strategic_solver(ast_manager & m, bool produce_proofs, bool produce_models, bool produce_unsat_cores, symbol const & logic);
~strategic_solver();
ast_manager & m() const { SASSERT(m_manager); return *m_manager; }
void set_inc_solver(solver * s);
void set_inc_solver_factory(solver_factory * s);
void set_inc_solver_timeout(unsigned timeout);
void set_default_tactic(tactic_factory * fct);
void set_tactic_for(symbol const & logic, tactic_factory * fct);

View file

@ -19,96 +19,115 @@ Author:
Notes:
--*/
#include"tactic2solver.h"
#include"solver_na2as.h"
#include"tactic.h"
#include"ast_smt2_pp.h"
tactic2solver_core::ctx::ctx(ast_manager & m, symbol const & logic):
m_logic(logic),
/**
\brief Simulates the incremental solver interface using a tactic.
Every query will be solved from scratch. So, this is not a good
option for applications trying to solve many easy queries that a
similar to each other.
*/
class tactic2solver : public solver_na2as {
expr_ref_vector m_assertions;
unsigned_vector m_scopes;
ref<simple_check_sat_result> m_result;
tactic_ref m_tactic;
symbol m_logic;
params_ref m_params;
bool m_produce_models;
bool m_produce_proofs;
bool m_produce_unsat_cores;
public:
tactic2solver(ast_manager & m, tactic * t, params_ref const & p, bool produce_proofs, bool produce_models, bool produce_unsat_cores, symbol const & logic);
virtual ~tactic2solver();
virtual void updt_params(params_ref const & p);
virtual void collect_param_descrs(param_descrs & r);
virtual void set_produce_models(bool f) { m_produce_models = f; }
virtual void assert_expr(expr * t);
virtual void push_core();
virtual void pop_core(unsigned n);
virtual lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions);
virtual void set_cancel(bool f);
virtual void collect_statistics(statistics & st) const;
virtual void get_unsat_core(ptr_vector<expr> & r);
virtual void get_model(model_ref & m);
virtual proof * get_proof();
virtual std::string reason_unknown() const;
virtual void get_labels(svector<symbol> & r) {}
virtual void set_progress_callback(progress_callback * callback) {}
virtual unsigned get_num_assertions() const;
virtual expr * get_assertion(unsigned idx) const;
virtual void display(std::ostream & out) const;
};
tactic2solver::tactic2solver(ast_manager & m, tactic * t, params_ref const & p, bool produce_proofs, bool produce_models, bool produce_unsat_cores, symbol const & logic):
solver_na2as(m),
m_assertions(m) {
m_tactic = t;
m_logic = logic;
m_params = p;
m_produce_models = produce_models;
m_produce_proofs = produce_proofs;
m_produce_unsat_cores = produce_unsat_cores;
}
tactic2solver_core::~tactic2solver_core() {
tactic2solver::~tactic2solver() {
}
void tactic2solver_core::init_core(ast_manager & m, symbol const & logic) {
m_ctx = alloc(ctx, m, logic);
}
void tactic2solver_core::updt_params(params_ref const & p) {
void tactic2solver::updt_params(params_ref const & p) {
m_params = p;
}
void tactic2solver_core::collect_param_descrs(param_descrs & r) {
if (m_ctx) {
if (!m_ctx->m_tactic) {
#pragma omp critical (tactic2solver_core)
{
m_ctx->m_tactic = get_tactic(m_ctx->m(), m_params);
}
if (m_ctx->m_tactic) {
m_ctx->m_tactic->collect_param_descrs(r);
}
#pragma omp critical (tactic2solver_core)
{
m_ctx->m_tactic = 0;
}
}
else {
m_ctx->m_tactic->collect_param_descrs(r);
}
}
void tactic2solver::collect_param_descrs(param_descrs & r) {
if (m_tactic.get())
m_tactic->collect_param_descrs(r);
}
void tactic2solver_core::reset_core() {
SASSERT(m_ctx);
m_ctx->m_assertions.reset();
m_ctx->m_scopes.reset();
m_ctx->m_result = 0;
void tactic2solver::assert_expr(expr * t) {
m_assertions.push_back(t);
m_result = 0;
}
void tactic2solver_core::assert_expr(expr * t) {
SASSERT(m_ctx);
m_ctx->m_assertions.push_back(t);
m_ctx->m_result = 0;
void tactic2solver::push_core() {
m_scopes.push_back(m_assertions.size());
m_result = 0;
}
void tactic2solver_core::push_core() {
SASSERT(m_ctx);
m_ctx->m_scopes.push_back(m_ctx->m_assertions.size());
m_ctx->m_result = 0;
void tactic2solver::pop_core(unsigned n) {
unsigned new_lvl = m_scopes.size() - n;
unsigned old_sz = m_scopes[new_lvl];
m_assertions.shrink(old_sz);
m_scopes.shrink(new_lvl);
m_result = 0;
}
void tactic2solver_core::pop_core(unsigned n) {
SASSERT(m_ctx);
unsigned new_lvl = m_ctx->m_scopes.size() - n;
unsigned old_sz = m_ctx->m_scopes[new_lvl];
m_ctx->m_assertions.shrink(old_sz);
m_ctx->m_scopes.shrink(new_lvl);
m_ctx->m_result = 0;
}
lbool tactic2solver_core::check_sat_core(unsigned num_assumptions, expr * const * assumptions) {
SASSERT(m_ctx);
ast_manager & m = m_ctx->m();
params_ref p = m_params;
#pragma omp critical (tactic2solver_core)
{
m_ctx->m_tactic = get_tactic(m, p);
if (m_ctx->m_tactic) {
m_ctx->m_result = alloc(simple_check_sat_result, m);
}
}
if (!m_ctx->m_tactic)
return l_undef;
tactic & t = *(m_ctx->m_tactic);
simple_check_sat_result & result = *(m_ctx->m_result);
lbool tactic2solver::check_sat_core(unsigned num_assumptions, expr * const * assumptions) {
if (m_tactic.get() == 0)
return l_false;
ast_manager & m = m_assertions.m();
m_result = alloc(simple_check_sat_result, m);
m_tactic->cleanup();
m_tactic->updt_params(m_params);
m_tactic->set_logic(m_logic);
goal_ref g = alloc(goal, m, m_produce_proofs, m_produce_models, m_produce_unsat_cores);
t.set_logic(m_ctx->m_logic);
unsigned sz = m_ctx->m_assertions.size();
unsigned sz = m_assertions.size();
for (unsigned i = 0; i < sz; i++) {
g->assert_expr(m_ctx->m_assertions.get(i));
g->assert_expr(m_assertions.get(i));
}
for (unsigned i = 0; i < num_assumptions; i++) {
g->assert_expr(assumptions[i], m.mk_asserted(assumptions[i]), m.mk_leaf(assumptions[i]));
@ -119,17 +138,17 @@ lbool tactic2solver_core::check_sat_core(unsigned num_assumptions, expr * const
expr_dependency_ref core(m);
std::string reason_unknown = "unknown";
try {
switch (::check_sat(t, g, md, pr, core, reason_unknown)) {
switch (::check_sat(*m_tactic, g, md, pr, core, reason_unknown)) {
case l_true:
result.set_status(l_true);
m_result->set_status(l_true);
break;
case l_false:
result.set_status(l_false);
m_result->set_status(l_false);
break;
default:
result.set_status(l_undef);
m_result->set_status(l_undef);
if (reason_unknown != "")
result.m_unknown = reason_unknown;
m_result->m_unknown = reason_unknown;
break;
}
}
@ -137,112 +156,115 @@ lbool tactic2solver_core::check_sat_core(unsigned num_assumptions, expr * const
throw ex;
}
catch (z3_exception & ex) {
TRACE("tactic2solver_core", tout << "exception: " << ex.msg() << "\n";);
result.set_status(l_undef);
result.m_unknown = ex.msg();
TRACE("tactic2solver", tout << "exception: " << ex.msg() << "\n";);
m_result->set_status(l_undef);
m_result->m_unknown = ex.msg();
}
t.collect_statistics(result.m_stats);
result.m_model = md;
result.m_proof = pr;
m_tactic->collect_statistics(m_result->m_stats);
m_result->m_model = md;
m_result->m_proof = pr;
if (m_produce_unsat_cores) {
ptr_vector<expr> core_elems;
m.linearize(core, core_elems);
result.m_core.append(core_elems.size(), core_elems.c_ptr());
m_result->m_core.append(core_elems.size(), core_elems.c_ptr());
}
#pragma omp critical (tactic2solver_core)
{
m_ctx->m_tactic = 0;
}
return result.status();
m_tactic->cleanup();
return m_result->status();
}
void tactic2solver_core::set_cancel(bool f) {
#pragma omp critical (tactic2solver_core)
{
if (m_ctx && m_ctx->m_tactic)
m_ctx->m_tactic->set_cancel(f);
}
void tactic2solver::set_cancel(bool f) {
if (m_tactic.get())
m_tactic->set_cancel(f);
}
void tactic2solver_core::collect_statistics(statistics & st) const {
if (m_ctx->m_result.get())
m_ctx->m_result->collect_statistics(st);
void tactic2solver::collect_statistics(statistics & st) const {
if (m_result.get())
m_result->collect_statistics(st);
}
void tactic2solver_core::get_unsat_core(ptr_vector<expr> & r) {
if (m_ctx->m_result.get())
m_ctx->m_result->get_unsat_core(r);
void tactic2solver::get_unsat_core(ptr_vector<expr> & r) {
if (m_result.get())
m_result->get_unsat_core(r);
}
void tactic2solver_core::get_model(model_ref & m) {
if (m_ctx->m_result.get())
m_ctx->m_result->get_model(m);
void tactic2solver::get_model(model_ref & m) {
if (m_result.get())
m_result->get_model(m);
}
proof * tactic2solver_core::get_proof() {
if (m_ctx->m_result.get())
return m_ctx->m_result->get_proof();
proof * tactic2solver::get_proof() {
if (m_result.get())
return m_result->get_proof();
else
return 0;
}
std::string tactic2solver_core::reason_unknown() const {
if (m_ctx->m_result.get())
return m_ctx->m_result->reason_unknown();
std::string tactic2solver::reason_unknown() const {
if (m_result.get())
return m_result->reason_unknown();
else
return std::string("unknown");
}
unsigned tactic2solver_core::get_num_assertions() const {
if (m_ctx)
return m_ctx->m_assertions.size();
else
return 0;
unsigned tactic2solver::get_num_assertions() const {
return m_assertions.size();
}
expr * tactic2solver_core::get_assertion(unsigned idx) const {
SASSERT(m_ctx);
return m_ctx->m_assertions.get(idx);
expr * tactic2solver::get_assertion(unsigned idx) const {
return m_assertions.get(idx);
}
void tactic2solver_core::display(std::ostream & out) const {
if (m_ctx) {
ast_manager & m = m_ctx->m_assertions.m();
unsigned num = m_ctx->m_assertions.size();
out << "(solver";
for (unsigned i = 0; i < num; i++) {
out << "\n " << mk_ismt2_pp(m_ctx->m_assertions.get(i), m, 2);
}
out << ")";
void tactic2solver::display(std::ostream & out) const {
ast_manager & m = m_assertions.m();
unsigned num = m_assertions.size();
out << "(solver";
for (unsigned i = 0; i < num; i++) {
out << "\n " << mk_ismt2_pp(m_assertions.get(i), m, 2);
}
else {
out << "(solver)";
out << ")";
}
solver * mk_tactic2solver(ast_manager & m,
tactic * t,
params_ref const & p,
bool produce_proofs,
bool produce_models,
bool produce_unsat_cores,
symbol const & logic) {
return alloc(tactic2solver, m, t, p, produce_proofs, produce_models, produce_unsat_cores, logic);
}
class tactic2solver_factory : public solver_factory {
ref<tactic> m_tactic;
public:
tactic2solver_factory(tactic * t):m_tactic(t) {
}
virtual ~tactic2solver_factory() {}
virtual solver * operator()(ast_manager & m, params_ref const & p, bool proofs_enabled, bool models_enabled, bool unsat_core_enabled, symbol const & logic) {
return mk_tactic2solver(m, m_tactic.get(), p, proofs_enabled, models_enabled, unsat_core_enabled, logic);
}
};
class tactic_factory2solver_factory : public solver_factory {
scoped_ptr<tactic_factory> m_factory;
public:
tactic_factory2solver_factory(tactic_factory * f):m_factory(f) {
}
virtual ~tactic_factory2solver_factory() {}
virtual solver * operator()(ast_manager & m, params_ref const & p, bool proofs_enabled, bool models_enabled, bool unsat_core_enabled, symbol const & logic) {
tactic * t = (*m_factory)(m, p);
return mk_tactic2solver(m, t, p, proofs_enabled, models_enabled, unsat_core_enabled, logic);
}
};
solver_factory * mk_tactic2solver_factory(tactic * t) {
return alloc(tactic2solver_factory, t);
}
tactic2solver::tactic2solver(tactic * t):
m_tactic(t) {
}
tactic2solver::~tactic2solver() {
}
tactic * tactic2solver::get_tactic(ast_manager & m, params_ref const & p) {
m_tactic->cleanup();
m_tactic->updt_params(p);
return m_tactic.get();
}
tactic_factory2solver::~tactic_factory2solver() {
}
void tactic_factory2solver::set_tactic(tactic_factory * f) {
m_tactic_factory = f;
}
tactic * tactic_factory2solver::get_tactic(ast_manager & m, params_ref const & p) {
if (m_tactic_factory == 0)
return 0;
return (*m_tactic_factory)(m, p);
solver_factory * mk_tactic_factory2solver_factory(tactic_factory * f) {
return alloc(tactic_factory2solver_factory, f);
}

View file

@ -22,88 +22,22 @@ Notes:
#ifndef _TACTIC2SOLVER_H_
#define _TACTIC2SOLVER_H_
#include"solver_na2as.h"
#include"tactic.h"
#include"params.h"
class ast_manager;
class tactic;
class tactic_factory;
class solver;
class solver_factory;
/**
\brief Simulates the incremental solver interface using a tactic.
Every query will be solved from scratch. So, this is not a good
option for applications trying to solve many easy queries that a
similar to each other.
*/
class tactic2solver_core : public solver_na2as {
struct ctx {
symbol m_logic;
expr_ref_vector m_assertions;
unsigned_vector m_scopes;
ref<simple_check_sat_result> m_result;
tactic_ref m_tactic;
ctx(ast_manager & m, symbol const & logic);
ast_manager & m() const { return m_assertions.m(); }
};
scoped_ptr<ctx> m_ctx;
params_ref m_params;
bool m_produce_models;
bool m_produce_proofs;
bool m_produce_unsat_cores;
public:
tactic2solver_core():m_ctx(0), m_produce_models(false), m_produce_proofs(false), m_produce_unsat_cores(false) {}
virtual ~tactic2solver_core();
virtual tactic * get_tactic(ast_manager & m, params_ref const & p) = 0;
virtual void updt_params(params_ref const & p);
virtual void collect_param_descrs(param_descrs & r);
virtual void set_produce_proofs(bool f) { m_produce_proofs = f; }
virtual void set_produce_models(bool f) { m_produce_models = f; }
virtual void set_produce_unsat_cores(bool f) { m_produce_unsat_cores = f; }
virtual void assert_expr(expr * t);
virtual void init_core(ast_manager & m, symbol const & logic);
virtual void reset_core();
virtual void push_core();
virtual void pop_core(unsigned n);
virtual lbool check_sat_core(unsigned num_assumptions, expr * const * assumptions);
virtual void set_cancel(bool f);
virtual void collect_statistics(statistics & st) const;
virtual void get_unsat_core(ptr_vector<expr> & r);
virtual void get_model(model_ref & m);
virtual proof * get_proof();
virtual std::string reason_unknown() const;
virtual void get_labels(svector<symbol> & r) {}
virtual void set_progress_callback(progress_callback * callback) {}
virtual unsigned get_num_assertions() const;
virtual expr * get_assertion(unsigned idx) const;
virtual void display(std::ostream & out) const;
};
class tactic2solver : public tactic2solver_core {
tactic_ref m_tactic;
public:
tactic2solver(tactic * t);
virtual ~tactic2solver();
virtual tactic * get_tactic(ast_manager & m, params_ref const & p);
};
class tactic_factory2solver : public tactic2solver_core {
scoped_ptr<tactic_factory> m_tactic_factory;
public:
virtual ~tactic_factory2solver();
/**
\brief Set tactic that will be used to process the satisfiability queries.
*/
void set_tactic(tactic_factory * f);
virtual tactic * get_tactic(ast_manager & m, params_ref const & p);
};
solver * mk_tactic2solver(ast_manager & m,
tactic * t = 0,
params_ref const & p = params_ref(),
bool produce_proofs = false,
bool produce_models = true,
bool produce_unsat_cores = false,
symbol const & logic = symbol::null);
solver_factory * mk_tactic2solver_factory(tactic * t);
solver_factory * mk_tactic_factory2solver_factory(tactic_factory * f);
#endif

View file

@ -18,7 +18,8 @@ Notes:
--*/
#include"cmd_context.h"
#include"strategic_solver.h"
#include"combined_solver.h"
#include"tactic2solver.h"
#include"qfbv_tactic.h"
#include"qflia_tactic.h"
#include"qfnia_tactic.h"
@ -36,57 +37,76 @@ Notes:
#include"horn_tactic.h"
#include"smt_solver.h"
MK_SIMPLE_TACTIC_FACTORY(qfuf_fct, mk_qfuf_tactic(m, p));
MK_SIMPLE_TACTIC_FACTORY(qfidl_fct, mk_qfidl_tactic(m, p));
MK_SIMPLE_TACTIC_FACTORY(qfauflia_fct, mk_qfauflia_tactic(m, p));
MK_SIMPLE_TACTIC_FACTORY(auflia_fct, mk_auflia_tactic(m, p));
MK_SIMPLE_TACTIC_FACTORY(auflira_fct, mk_auflira_tactic(m, p));
MK_SIMPLE_TACTIC_FACTORY(aufnira_fct, mk_aufnira_tactic(m, p));
MK_SIMPLE_TACTIC_FACTORY(ufnia_fct, mk_ufnia_tactic(m, p));
MK_SIMPLE_TACTIC_FACTORY(uflra_fct, mk_uflra_tactic(m, p));
MK_SIMPLE_TACTIC_FACTORY(lra_fct, mk_lra_tactic(m, p));
MK_SIMPLE_TACTIC_FACTORY(qfbv_fct, mk_qfbv_tactic(m, p));
MK_SIMPLE_TACTIC_FACTORY(default_fct, mk_default_tactic(m, p));
MK_SIMPLE_TACTIC_FACTORY(qfaufbv_fct, mk_qfaufbv_tactic(m, p));
MK_SIMPLE_TACTIC_FACTORY(qflra_fct, mk_qflra_tactic(m, p));
MK_SIMPLE_TACTIC_FACTORY(qflia_fct, mk_qflia_tactic(m, p));
MK_SIMPLE_TACTIC_FACTORY(qfufbv_fct, mk_qfufbv_tactic(m, p));
MK_SIMPLE_TACTIC_FACTORY(qfnia_fct, mk_qfnia_tactic(m, p));
MK_SIMPLE_TACTIC_FACTORY(qfnra_fct, mk_qfnra_tactic(m, p));
MK_SIMPLE_TACTIC_FACTORY(qffpa_fct, mk_qffpa_tactic(m, p));
MK_SIMPLE_TACTIC_FACTORY(ufbv_fct, mk_ufbv_tactic(m, p));
MK_SIMPLE_TACTIC_FACTORY(horn_fct, mk_horn_tactic(m, p));
static void init(strategic_solver * s) {
s->set_default_tactic(alloc(default_fct));
s->set_tactic_for(symbol("QF_UF"), alloc(qfuf_fct));
s->set_tactic_for(symbol("QF_BV"), alloc(qfbv_fct));
s->set_tactic_for(symbol("QF_IDL"), alloc(qfidl_fct));
s->set_tactic_for(symbol("QF_LIA"), alloc(qflia_fct));
s->set_tactic_for(symbol("QF_LRA"), alloc(qflra_fct));
s->set_tactic_for(symbol("QF_NIA"), alloc(qfnia_fct));
s->set_tactic_for(symbol("QF_NRA"), alloc(qfnra_fct));
s->set_tactic_for(symbol("QF_AUFLIA"), alloc(qfauflia_fct));
s->set_tactic_for(symbol("QF_AUFBV"), alloc(qfaufbv_fct));
s->set_tactic_for(symbol("QF_ABV"), alloc(qfaufbv_fct));
s->set_tactic_for(symbol("QF_UFBV"), alloc(qfufbv_fct));
s->set_tactic_for(symbol("AUFLIA"), alloc(auflia_fct));
s->set_tactic_for(symbol("AUFLIRA"), alloc(auflira_fct));
s->set_tactic_for(symbol("AUFNIRA"), alloc(aufnira_fct));
s->set_tactic_for(symbol("UFNIA"), alloc(ufnia_fct));
s->set_tactic_for(symbol("UFLRA"), alloc(uflra_fct));
s->set_tactic_for(symbol("LRA"), alloc(lra_fct));
s->set_tactic_for(symbol("UFBV"), alloc(ufbv_fct));
s->set_tactic_for(symbol("BV"), alloc(ufbv_fct));
s->set_tactic_for(symbol("QF_FPA"), alloc(qffpa_fct));
s->set_tactic_for(symbol("QF_FPABV"), alloc(qffpa_fct));
s->set_tactic_for(symbol("HORN"), alloc(horn_fct));
tactic * mk_tactic_for_logic(ast_manager & m, params_ref const & p, symbol const & logic) {
if (logic=="QF_UF")
return mk_qfufbv_tactic(m, p);
else if (logic=="QF_BV")
return mk_qfbv_tactic(m, p);
else if (logic=="QF_IDL")
return mk_qfidl_tactic(m, p);
else if (logic=="QF_LIA")
return mk_qflia_tactic(m, p);
else if (logic=="QF_LRA")
return mk_qflra_tactic(m, p);
else if (logic=="QF_NIA")
return mk_qfnia_tactic(m, p);
else if (logic=="QF_NRA")
return mk_qfnra_tactic(m, p);
else if (logic=="QF_AUFLIA")
return mk_qfauflia_tactic(m, p);
else if (logic=="QF_AUFBV")
return mk_qfaufbv_tactic(m, p);
else if (logic=="QF_ABV")
return mk_qfaufbv_tactic(m, p);
else if (logic=="QF_UFBV")
return mk_qfufbv_tactic(m, p);
else if (logic=="AUFLIA")
return mk_auflia_tactic(m, p);
else if (logic=="AUFLIRA")
return mk_auflira_tactic(m, p);
else if (logic=="AUFNIRA")
return mk_aufnira_tactic(m, p);
else if (logic=="UFNIA")
return mk_ufnia_tactic(m, p);
else if (logic=="UFLRA")
return mk_uflra_tactic(m, p);
else if (logic=="LRA")
return mk_lra_tactic(m, p);
else if (logic=="UFBV")
return mk_ufbv_tactic(m, p);
else if (logic=="BV")
return mk_ufbv_tactic(m, p);
else if (logic=="QF_FPA")
return mk_qffpa_tactic(m, p);
else if (logic=="QF_FPABV")
return mk_qffpa_tactic(m, p);
else if (logic=="HORN")
return mk_horn_tactic(m, p);
else
return mk_default_tactic(m, p);
}
solver * mk_smt_strategic_solver(bool force_tactic) {
strategic_solver * s = alloc(strategic_solver);
s->force_tactic(force_tactic);
s->set_inc_solver(mk_smt_solver());
init(s);
return s;
class smt_strategic_solver_factory : public solver_factory {
symbol const & m_logic;
public:
smt_strategic_solver_factory(symbol const & logic):m_logic(logic) {}
virtual ~smt_strategic_solver_factory() {}
virtual solver * operator()(ast_manager & m, params_ref const & p, bool proofs_enabled, bool models_enabled, bool unsat_core_enabled, symbol const & logic) {
symbol l;
if (m_logic != symbol::null)
l = m_logic;
else
l = logic;
tactic * t = mk_tactic_for_logic(m, p, logic);
return mk_combined_solver(mk_tactic2solver(m, t, p, proofs_enabled, models_enabled, unsat_core_enabled, l),
mk_smt_solver(m, p, l),
p);
}
};
solver_factory * mk_smt_strategic_solver_factory(symbol const & logic) {
return alloc(smt_strategic_solver_factory, logic);
}

View file

@ -20,8 +20,8 @@ Notes:
#ifndef _SMT_STRATEGIC_SOLVER_H_
#define _SMT_STRATEGIC_SOLVER_H_
class solver;
// Create a strategic solver for the Z3 API
solver * mk_smt_strategic_solver(bool force_tactic=false);
class solver_factory;
solver_factory * mk_smt_strategic_solver_factory(symbol const & logic = symbol::null);
#endif