mirror of
https://github.com/Z3Prover/z3
synced 2025-04-22 16:45:31 +00:00
fix ashr axioms
This commit is contained in:
parent
9fb9e659b0
commit
80184c6ee2
1 changed files with 12 additions and 6 deletions
|
@ -364,7 +364,9 @@ namespace polysat {
|
|||
// r*2^k = a0
|
||||
// ab - a0 = 0b = p - r*2^k < 2^k
|
||||
// r < 2^{N-k}
|
||||
//
|
||||
// From p >= 0 we know a[N-k-1] = 0, thus:
|
||||
// r < 2^{N-k-1}
|
||||
//
|
||||
// Suppose q = k, p < 0
|
||||
// p = ab
|
||||
// r = 111a where 111 has length k
|
||||
|
@ -373,7 +375,11 @@ namespace polysat {
|
|||
// r >= 1110
|
||||
// example:
|
||||
// 1100 = 12 = 16 - 4 = 2^4 - 2^2 = 2^N - 2^k
|
||||
//
|
||||
// ^^^ a
|
||||
// p = 1ab, where b has length k, a has length N - k - 1
|
||||
// r = 111a, where 111 has length k + 1
|
||||
// r >= 2^N - 2^{N-k-1}
|
||||
//
|
||||
// Succinct:
|
||||
// if q = k & p >= 0 -> r*2^k + p < 2^{N-k} && r < 2^k
|
||||
// if q = k & p < 0 -> (p / 2^k) - 2^N + 2^{N-k}
|
||||
|
@ -388,12 +394,12 @@ namespace polysat {
|
|||
unsigned k = qv.val().get_unsigned();
|
||||
rational twoN = rational::power_of_two(N);
|
||||
rational twoK = rational::power_of_two(k);
|
||||
rational twoNk = rational::power_of_two(N - k);
|
||||
rational twoNk1 = rational::power_of_two(N - k - 1);
|
||||
|
||||
bool c1 = add_conflict(c, "q = k & 0 < k < N -> 2^k r <= p", { ~C.eq(q, k), C.ule(r * twoK, p) });
|
||||
bool c2 = add_conflict(c, "q = k & 0 < k < N -> p <= 2^k*x + 2^k - 1", { ~C.eq(q, k), C.ule(p, r * twoK + twoK - 1) });
|
||||
bool c3 = add_conflict(c, "p < 0 & q = k -> r >= 2^N - 2^{N-k}", { ~C.eq(q, k), ~C.slt(p, 0), C.uge(r, twoN - twoNk) });
|
||||
bool c4 = add_conflict(c, "p >= 0 & q = k -> r < 2^{N-k}", { ~C.eq(q, k), C.slt(p, 0), C.ult(r, twoNk)});
|
||||
bool c2 = add_conflict(c, "q = k & 0 < k < N -> p <= 2^k*r + 2^k - 1", { ~C.eq(q, k), C.ule(p, r * twoK + twoK - 1) });
|
||||
bool c3 = add_conflict(c, "p < 0 & q = k -> r >= 2^N - 2^{N-k-1}", { ~C.eq(q, k), ~C.slt(p, 0), C.uge(r, twoN - twoNk1) });
|
||||
bool c4 = add_conflict(c, "p >= 0 & q = k -> r < 2^{N-k-1}", { ~C.eq(q, k), C.slt(p, 0), C.ult(r, twoNk1)});
|
||||
VERIFY(c1 || c2 || c3 || c4);
|
||||
}
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue