mirror of
https://github.com/Z3Prover/z3
synced 2025-04-06 17:44:08 +00:00
move branch of unit variable
This commit is contained in:
parent
3c26a965e1
commit
7eceeff349
|
@ -8,9 +8,12 @@
|
||||||
from z3 import *
|
from z3 import *
|
||||||
import random
|
import random
|
||||||
|
|
||||||
|
counter = 0
|
||||||
|
|
||||||
def add_def(s, fml):
|
def add_def(s, fml):
|
||||||
name = Bool(f"f{fml}")
|
global counter
|
||||||
|
name = Bool(f"def-{counter}")
|
||||||
|
counter += 1
|
||||||
s.add(name == fml)
|
s.add(name == fml)
|
||||||
return name
|
return name
|
||||||
|
|
||||||
|
@ -52,7 +55,8 @@ def count_sets_by_size(sets):
|
||||||
|
|
||||||
class Soft:
|
class Soft:
|
||||||
def __init__(self, soft):
|
def __init__(self, soft):
|
||||||
self.formulas = soft
|
self.formulas = set(soft)
|
||||||
|
self.original_soft = soft.copy()
|
||||||
self.offset = 0
|
self.offset = 0
|
||||||
self.init_names()
|
self.init_names()
|
||||||
|
|
||||||
|
@ -60,6 +64,11 @@ class Soft:
|
||||||
self.name2formula = { Bool(f"s{s}") : s for s in self.formulas }
|
self.name2formula = { Bool(f"s{s}") : s for s in self.formulas }
|
||||||
self.formula2name = { s : v for (v, s) in self.name2formula.items() }
|
self.formula2name = { s : v for (v, s) in self.name2formula.items() }
|
||||||
|
|
||||||
|
#
|
||||||
|
# TODO: try to replace this by a recursive invocation of HsMaxSAT
|
||||||
|
# such that the invocation is incremental with respect to adding constraints
|
||||||
|
# and has resource bounded invocation.
|
||||||
|
#
|
||||||
class HsPicker:
|
class HsPicker:
|
||||||
def __init__(self, soft):
|
def __init__(self, soft):
|
||||||
self.soft = soft
|
self.soft = soft
|
||||||
|
@ -75,7 +84,7 @@ class HsPicker:
|
||||||
hs = hs | { h }
|
hs = hs | { h }
|
||||||
print("approximate hitting set", len(hs), "smallest possible size", lo)
|
print("approximate hitting set", len(hs), "smallest possible size", lo)
|
||||||
return hs, lo
|
return hs, lo
|
||||||
|
|
||||||
#
|
#
|
||||||
# This can improve lower bound, but is expensive.
|
# This can improve lower bound, but is expensive.
|
||||||
# Note that Z3 does not work well for hitting set optimization.
|
# Note that Z3 does not work well for hitting set optimization.
|
||||||
|
@ -86,6 +95,8 @@ class HsPicker:
|
||||||
#
|
#
|
||||||
|
|
||||||
def pick_hs(self, Ks, lo):
|
def pick_hs(self, Ks, lo):
|
||||||
|
if len(Ks) == 0:
|
||||||
|
return set(), lo
|
||||||
if self.opt_backoff_count < self.opt_backoff_limit:
|
if self.opt_backoff_count < self.opt_backoff_limit:
|
||||||
self.opt_backoff_count += 1
|
self.opt_backoff_count += 1
|
||||||
return self.pick_hs_(Ks, lo)
|
return self.pick_hs_(Ks, lo)
|
||||||
|
@ -100,7 +111,7 @@ class HsPicker:
|
||||||
if is_sat == sat:
|
if is_sat == sat:
|
||||||
mdl = opt.model()
|
mdl = opt.model()
|
||||||
hs = [self.soft.name2formula[n] for n in self.soft.formula2name.values() if is_true(mdl.eval(n))]
|
hs = [self.soft.name2formula[n] for n in self.soft.formula2name.values() if is_true(mdl.eval(n))]
|
||||||
return hs, lo
|
return set(hs), lo
|
||||||
else:
|
else:
|
||||||
print("Timeout", self.timeout_value, "lo", lo, "limit", self.opt_backoff_limit)
|
print("Timeout", self.timeout_value, "lo", lo, "limit", self.opt_backoff_limit)
|
||||||
self.opt_backoff_limit += 1
|
self.opt_backoff_limit += 1
|
||||||
|
@ -113,17 +124,18 @@ class HsMaxSAT:
|
||||||
|
|
||||||
def __init__(self, soft, s):
|
def __init__(self, soft, s):
|
||||||
self.s = s # solver object
|
self.s = s # solver object
|
||||||
self.original_soft = soft
|
|
||||||
self.soft = Soft(soft) # Soft constraints
|
self.soft = Soft(soft) # Soft constraints
|
||||||
self.hs = HsPicker(self.soft) # Pick a hitting set
|
self.hs = HsPicker(self.soft) # Pick a hitting set
|
||||||
self.mdl = None # Current best model
|
self.model = None # Current best model
|
||||||
self.lo = 0 # Current lower bound
|
self.lo = 0 # Current lower bound
|
||||||
self.hi = len(soft) # Current upper bound
|
self.hi = len(soft) # Current upper bound
|
||||||
self.Ks = [] # Set of Cores
|
self.Ks = [] # Set of Cores
|
||||||
self.Cs = [] # Set of correction sets
|
self.Cs = [] # Set of correction sets
|
||||||
self.small_set_size = 6
|
self.small_set_size = 6
|
||||||
self.small_set_threshold = 2
|
self.small_set_threshold = 1
|
||||||
self.num_max_res_failures = 0
|
self.num_max_res_failures = 0
|
||||||
|
self.corr_set_enabled = True
|
||||||
|
self.patterns = []
|
||||||
|
|
||||||
def has_many_small_sets(self, sets):
|
def has_many_small_sets(self, sets):
|
||||||
small_count = len([c for c in sets if len(c) <= self.small_set_size])
|
small_count = len([c for c in sets if len(c) <= self.small_set_size])
|
||||||
|
@ -149,7 +161,6 @@ class HsMaxSAT:
|
||||||
self.Ks = []
|
self.Ks = []
|
||||||
self.Cs = []
|
self.Cs = []
|
||||||
self.lo -= num_cores_relaxed
|
self.lo -= num_cores_relaxed
|
||||||
self.hi -= num_cores_relaxed
|
|
||||||
print("New offset", self.soft.offset)
|
print("New offset", self.soft.offset)
|
||||||
|
|
||||||
def maxres(self):
|
def maxres(self):
|
||||||
|
@ -160,26 +171,33 @@ class HsMaxSAT:
|
||||||
if self.has_many_small_sets(self.Ks):
|
if self.has_many_small_sets(self.Ks):
|
||||||
self.num_max_res_failures = 0
|
self.num_max_res_failures = 0
|
||||||
cores = self.get_small_disjoint_sets(self.Ks)
|
cores = self.get_small_disjoint_sets(self.Ks)
|
||||||
self.soft.formulas = set(self.soft.formulas)
|
|
||||||
for core in cores:
|
for core in cores:
|
||||||
self.small_set_size = min(self.small_set_size, len(core) - 2)
|
self.small_set_size = max(4, min(self.small_set_size, len(core) - 2))
|
||||||
relax_core(self.s, core, self.soft.formulas)
|
relax_core(self.s, core, self.soft.formulas)
|
||||||
self.reinit_soft(len(cores))
|
self.reinit_soft(len(cores))
|
||||||
|
self.corr_set_enabled = True
|
||||||
return
|
return
|
||||||
#
|
#
|
||||||
# If there are sufficiently many small correction sets, then
|
# If there are sufficiently many small correction sets, then
|
||||||
# we reduce the soft constraints by dual maxres (IJCAI 2014)
|
# we reduce the soft constraints by dual maxres (IJCAI 2014)
|
||||||
|
#
|
||||||
|
# TODO: the heuristic for when to invoking correction set restriction
|
||||||
|
# needs fine-tuning. For example, the if min(Ks)*optimality_gap < min(Cs)*(max(SS))
|
||||||
|
# we might want to prioritize core relaxation to make progress with less overhead.
|
||||||
|
# here: max(SS) = |Soft|-min(Cs) is the size of the maximal satisfying subset
|
||||||
|
# the optimality gap is self.hi - self.offset
|
||||||
|
# which is a bound on how many cores have to be relaxed before determining optimality.
|
||||||
#
|
#
|
||||||
if self.has_many_small_sets(self.Cs):
|
if self.corr_set_enabled and self.has_many_small_sets(self.Cs):
|
||||||
self.num_max_res_failures = 0
|
self.num_max_res_failures = 0
|
||||||
cs = self.get_small_disjoint_sets(self.Cs)
|
cs = self.get_small_disjoint_sets(self.Cs)
|
||||||
self.soft.formulas = set(self.soft.formulas)
|
|
||||||
for corr_set in cs:
|
for corr_set in cs:
|
||||||
print("restrict cs", len(corr_set))
|
print("restrict cs", len(corr_set))
|
||||||
self.small_set_size = min(self.small_set_size, len(corr_set) - 2)
|
self.small_set_size = max(4, min(self.small_set_size, len(corr_set) - 2))
|
||||||
restrict_cs(self.s, corr_set, self.soft.formulas)
|
restrict_cs(self.s, corr_set, self.soft.formulas)
|
||||||
s.add(Or(corr_set))
|
self.s.add(Or(corr_set))
|
||||||
self.reinit_soft(0)
|
self.reinit_soft(0)
|
||||||
|
self.corr_set_enabled = False
|
||||||
return
|
return
|
||||||
#
|
#
|
||||||
# Increment the failure count. If the failure count reaches a threshold
|
# Increment the failure count. If the failure count reaches a threshold
|
||||||
|
@ -197,34 +215,55 @@ class HsMaxSAT:
|
||||||
def save_model(self):
|
def save_model(self):
|
||||||
#
|
#
|
||||||
# You can save a model here.
|
# You can save a model here.
|
||||||
# For example, add the string: self.mdl.sexpr()
|
# For example, add the string: self.model.sexpr()
|
||||||
# to a file, or print bounds in custom format.
|
# to a file, or print bounds in custom format.
|
||||||
#
|
#
|
||||||
# print(f"Bound: {self.lo}")
|
# print(f"Bound: {self.lo}")
|
||||||
# for f in self.original_soft:
|
# for f in self.soft.original_soft:
|
||||||
# print(f"{f} := {self.mdl.eval(f)}")
|
# print(f"{f} := {self.model.eval(f)}")
|
||||||
pass
|
pass
|
||||||
|
|
||||||
|
def add_pattern(self, orig_cs):
|
||||||
|
named = { f"{f}" : f for f in self.soft.original_soft }
|
||||||
|
sorted_names = sorted(named.keys())
|
||||||
|
sorted_soft = [named[f] for f in sorted_names]
|
||||||
|
bits = [1 if f not in orig_cs else 0 for f in sorted_soft]
|
||||||
|
def eq_bits(b1, b2):
|
||||||
|
return all(b1[i] == b2[i] for i in range(len(b1)))
|
||||||
|
def num_overlaps(b1, b2):
|
||||||
|
return sum(b1[i] == b2[i] for i in range(len(b1)))
|
||||||
|
|
||||||
|
if not any(eq_bits(b, bits) for b in self.patterns):
|
||||||
|
if len(self.patterns) > 0:
|
||||||
|
print(num_overlaps(bits, self.patterns[-1]), len(bits), bits)
|
||||||
|
self.patterns += [bits]
|
||||||
|
counts = [sum(b[i] for b in self.patterns) for i in range(len(bits))]
|
||||||
|
print(counts)
|
||||||
|
|
||||||
|
|
||||||
def improve(self, new_model):
|
def improve(self, new_model):
|
||||||
mss = { f for f in self.soft.formulas if is_true(new_model.eval(f)) }
|
mss = { f for f in self.soft.formulas if is_true(new_model.eval(f)) }
|
||||||
cs = set(self.soft.formulas) - mss
|
cs = self.soft.formulas - mss
|
||||||
self.Cs += [cs]
|
self.Cs += [cs]
|
||||||
cost = len(cs)
|
orig_cs = { f for f in self.soft.original_soft if not is_true(new_model.eval(f)) }
|
||||||
if self.mdl is None:
|
cost = len(orig_cs)
|
||||||
self.mdl = new_model
|
if self.model is None:
|
||||||
|
self.model = new_model
|
||||||
if cost <= self.hi:
|
if cost <= self.hi:
|
||||||
|
self.add_pattern(orig_cs)
|
||||||
print("improve", self.hi, cost)
|
print("improve", self.hi, cost)
|
||||||
self.mdl = new_model
|
self.model = new_model
|
||||||
self.save_model()
|
self.save_model()
|
||||||
if cost < self.hi:
|
if cost < self.hi:
|
||||||
self.hi = cost
|
self.hi = cost
|
||||||
assert self.mdl
|
assert self.model
|
||||||
|
|
||||||
def local_mss(self, hi, new_model):
|
def local_mss(self, new_model):
|
||||||
mss = { f for f in self.soft.formulas if is_true(new_model.eval(f)) }
|
mss = { f for f in self.soft.formulas if is_true(new_model.eval(f)) }
|
||||||
ps = set(self.soft.formulas) - mss
|
ps = self.soft.formulas - mss
|
||||||
backbones = set()
|
backbones = set()
|
||||||
qs = set()
|
qs = set()
|
||||||
|
backbone2core = {}
|
||||||
while len(ps) > 0:
|
while len(ps) > 0:
|
||||||
p = random.choice([p for p in ps])
|
p = random.choice([p for p in ps])
|
||||||
ps = ps - { p }
|
ps = ps - { p }
|
||||||
|
@ -249,30 +288,43 @@ class HsMaxSAT:
|
||||||
qs = qs - rs
|
qs = qs - rs
|
||||||
self.improve(mdl)
|
self.improve(mdl)
|
||||||
elif is_sat == unsat:
|
elif is_sat == unsat:
|
||||||
|
core = set()
|
||||||
|
for c in self.s.unsat_core():
|
||||||
|
if c in backbone2core:
|
||||||
|
core = core | backbone2core[c]
|
||||||
|
elif not p.eq(c):
|
||||||
|
core = core | { c }
|
||||||
|
self.Ks += [core]
|
||||||
|
backbone2core[Not(p)] = core
|
||||||
backbones = backbones | { Not(p) }
|
backbones = backbones | { Not(p) }
|
||||||
else:
|
else:
|
||||||
qs = qs | { p }
|
qs = qs | { p }
|
||||||
if len(qs) > 0:
|
if len(qs) > 0:
|
||||||
print("Number undetermined", len(qs))
|
print("Number undetermined", len(qs))
|
||||||
|
|
||||||
|
|
||||||
def get_cores(self, hs):
|
def get_cores(self, hs):
|
||||||
core = self.s.unsat_core()
|
core = self.s.unsat_core()
|
||||||
remaining = set(self.soft.formulas) - set(core) - set(hs)
|
remaining = self.soft.formulas - hs
|
||||||
num_cores = 0
|
num_cores = 0
|
||||||
cores = [core]
|
cores = [core]
|
||||||
if len(core) == 0:
|
if len(core) == 0:
|
||||||
self.lo = self.hi
|
self.lo = self.hi - self.soft.offset
|
||||||
return []
|
return
|
||||||
print("new core of size", len(core))
|
print("new core of size", len(core))
|
||||||
while True:
|
while True:
|
||||||
is_sat = self.s.check(remaining)
|
is_sat = self.s.check(remaining)
|
||||||
if unsat == is_sat:
|
if unsat == is_sat:
|
||||||
core = self.s.unsat_core()
|
core = self.s.unsat_core()
|
||||||
print("new core of size", len(core))
|
print("new core of size", len(core))
|
||||||
|
if len(core) == 0:
|
||||||
|
self.lo = self.hi - self.soft.offset
|
||||||
|
return
|
||||||
cores += [core]
|
cores += [core]
|
||||||
remaining = remaining - set(core)
|
h = random.choice([c for c in core])
|
||||||
|
remaining = remaining - { h }
|
||||||
elif sat == is_sat and num_cores == len(cores):
|
elif sat == is_sat and num_cores == len(cores):
|
||||||
self.local_mss(self.hi, self.s.model())
|
self.local_mss(self.s.model())
|
||||||
break
|
break
|
||||||
elif sat == is_sat:
|
elif sat == is_sat:
|
||||||
self.improve(self.s.model())
|
self.improve(self.s.model())
|
||||||
|
@ -283,37 +335,33 @@ class HsMaxSAT:
|
||||||
# The new hitting set contains at least one new element
|
# The new hitting set contains at least one new element
|
||||||
# from the original cores
|
# from the original cores
|
||||||
#
|
#
|
||||||
hs = set(hs)
|
hs = hs | { random.choice([c for c in cores[i]]) for i in range(num_cores, len(cores)) }
|
||||||
for i in range(num_cores, len(cores)):
|
remaining = self.soft.formulas - hs
|
||||||
h = random.choice([c for c in cores[i]])
|
|
||||||
hs = hs | { h }
|
|
||||||
remaining = set(self.soft.formulas) - set(core) - set(hs)
|
|
||||||
num_cores = len(cores)
|
num_cores = len(cores)
|
||||||
else:
|
else:
|
||||||
print(is_sat)
|
print(is_sat)
|
||||||
break
|
break
|
||||||
return cores
|
self.Ks += [set(core) for core in cores]
|
||||||
|
print("total number of cores", len(self.Ks))
|
||||||
|
print("total number of correction sets", len(self.Cs))
|
||||||
|
|
||||||
def step(self):
|
def step(self):
|
||||||
soft = self.soft
|
soft = self.soft
|
||||||
hs = self.pick_hs()
|
hs = self.pick_hs()
|
||||||
is_sat = self.s.check(set(soft.formulas) - set(hs))
|
is_sat = self.s.check(soft.formulas - set(hs))
|
||||||
if is_sat == sat:
|
if is_sat == sat:
|
||||||
self.improve(self.s.model())
|
self.improve(self.s.model())
|
||||||
elif is_sat == unsat:
|
elif is_sat == unsat:
|
||||||
cores = self.get_cores(hs)
|
self.get_cores(hs)
|
||||||
self.Ks += [set(core) for core in cores]
|
|
||||||
print("total number of cores", len(self.Ks))
|
|
||||||
print("total number of correction sets", len(self.Cs))
|
|
||||||
else:
|
else:
|
||||||
print("unknown")
|
print("unknown")
|
||||||
print("maxsat [", self.lo + soft.offset, ", ", self.hi + soft.offset, "]","offset", soft.offset)
|
print("maxsat [", self.lo + soft.offset, ", ", self.hi, "]","offset", soft.offset)
|
||||||
count_sets_by_size(self.Ks)
|
count_sets_by_size(self.Ks)
|
||||||
count_sets_by_size(self.Cs)
|
count_sets_by_size(self.Cs)
|
||||||
self.maxres()
|
self.maxres()
|
||||||
|
|
||||||
def run(self):
|
def run(self):
|
||||||
while self.lo < self.hi:
|
while self.lo + self.soft.offset < self.hi:
|
||||||
self.step()
|
self.step()
|
||||||
|
|
||||||
|
|
||||||
|
|
|
@ -79,7 +79,6 @@ namespace seq {
|
||||||
|
|
||||||
|
|
||||||
bool branch_unit_variable(eqr const& e);
|
bool branch_unit_variable(eqr const& e);
|
||||||
bool branch_unit_variable(expr* X, expr_ref_vector const& units);
|
|
||||||
|
|
||||||
|
|
||||||
/**
|
/**
|
||||||
|
@ -156,6 +155,8 @@ namespace seq {
|
||||||
|
|
||||||
bool can_align_from_lhs_aux(expr_ref_vector const& ls, expr_ref_vector const& rs);
|
bool can_align_from_lhs_aux(expr_ref_vector const& ls, expr_ref_vector const& rs);
|
||||||
bool can_align_from_rhs_aux(expr_ref_vector const& ls, expr_ref_vector const& rs);
|
bool can_align_from_rhs_aux(expr_ref_vector const& ls, expr_ref_vector const& rs);
|
||||||
|
|
||||||
|
bool branch_unit_variable(expr* X, expr_ref_vector const& units);
|
||||||
|
|
||||||
};
|
};
|
||||||
|
|
||||||
|
|
|
@ -125,145 +125,6 @@ expr* theory_seq::expr2rep(expr* e) {
|
||||||
return ctx.get_enode(e)->get_root()->get_expr();
|
return ctx.get_enode(e)->get_root()->get_expr();
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
#if 0
|
|
||||||
|
|
||||||
/**
|
|
||||||
\brief
|
|
||||||
|
|
||||||
This step performs destructive superposition
|
|
||||||
|
|
||||||
Based on the implementation it would do the following:
|
|
||||||
|
|
||||||
e: l1 + l2 + l3 + l = r1 + r2 + r
|
|
||||||
G |- len(l1) = len(l2) = len(r1) = 0
|
|
||||||
e': l1 + l2 + l3 + l = r3 + r' occurs prior to e among equations
|
|
||||||
G |- len(r3) = len(r2)
|
|
||||||
r2, r3 are not identical
|
|
||||||
----------------------------------
|
|
||||||
e'' : r3 + r' = r1 + r2 + r
|
|
||||||
|
|
||||||
e: l1 + l2 + l3 + l = r1 + r2 + r
|
|
||||||
G |- len(l1) = len(l2) = len(r1) = 0
|
|
||||||
e': l1 + l2 + l3 + l = r3 + r' occurs prior to e among equations
|
|
||||||
G |- len(r3) = len(r2) + offset
|
|
||||||
r2, r3 are not identical
|
|
||||||
----------------------------------
|
|
||||||
e'' : r3 + r' = r1 + r2 + r
|
|
||||||
|
|
||||||
NB, this doesn't make sense because e'' is just e', which already occurs.
|
|
||||||
It doesn't inherit the constraints from e either, which would get lost.
|
|
||||||
|
|
||||||
NB, if len(r3) = len(r2) would be used, then the justification for the equality
|
|
||||||
needs to be tracked in dependencies.
|
|
||||||
|
|
||||||
TODO: propagate length offsets for last vars
|
|
||||||
|
|
||||||
*/
|
|
||||||
bool theory_seq::find_better_rep(expr_ref_vector const& ls, expr_ref_vector const& rs, unsigned idx,
|
|
||||||
dependency*& deps, expr_ref_vector & res) {
|
|
||||||
|
|
||||||
// disabled until functionality is clarified
|
|
||||||
return false;
|
|
||||||
|
|
||||||
if (ls.empty() || rs.empty())
|
|
||||||
return false;
|
|
||||||
expr* l_fst = find_fst_non_empty_var(ls);
|
|
||||||
expr* r_fst = find_fst_non_empty_var(rs);
|
|
||||||
if (!r_fst) return false;
|
|
||||||
expr_ref len_r_fst = mk_len(r_fst);
|
|
||||||
expr_ref len_l_fst(m);
|
|
||||||
enode * root2;
|
|
||||||
if (!ctx.e_internalized(len_r_fst)) {
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
if (l_fst) {
|
|
||||||
len_l_fst = mk_len(l_fst);
|
|
||||||
}
|
|
||||||
|
|
||||||
root2 = get_root(len_r_fst);
|
|
||||||
|
|
||||||
// Offset = 0, No change
|
|
||||||
if (l_fst && get_root(len_l_fst) == root2) {
|
|
||||||
TRACE("seq", tout << "(" << mk_pp(l_fst, m) << ", " << mk_pp(r_fst, m) << ")\n";);
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
// Offset = 0, Changed
|
|
||||||
|
|
||||||
for (unsigned i = 0; i < idx; ++i) {
|
|
||||||
depeq const& e = m_eqs[i];
|
|
||||||
if (e.ls != ls) continue;
|
|
||||||
expr* nl_fst = nullptr;
|
|
||||||
if (e.rs.size() > 1 && is_var(e.rs.get(0)))
|
|
||||||
nl_fst = e.rs.get(0);
|
|
||||||
if (nl_fst && nl_fst != r_fst && root2 == get_root(mk_len(nl_fst))) {
|
|
||||||
res.reset();
|
|
||||||
res.append(e.rs);
|
|
||||||
deps = m_dm.mk_join(e.dep(), deps);
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// Offset != 0, No change
|
|
||||||
if (l_fst && ctx.e_internalized(len_l_fst)) {
|
|
||||||
enode * root1 = get_root(len_l_fst);
|
|
||||||
if (m_offset_eq.contains(root1, root2)) {
|
|
||||||
TRACE("seq", tout << "(" << mk_pp(l_fst, m) << ", " << mk_pp(r_fst,m) << ")\n";);
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
// Offset != 0, Changed
|
|
||||||
if (m_offset_eq.contains(root2)) {
|
|
||||||
for (unsigned i = 0; i < idx; ++i) {
|
|
||||||
depeq const& e = m_eqs[i];
|
|
||||||
if (e.ls != ls) continue;
|
|
||||||
expr* nl_fst = nullptr;
|
|
||||||
if (e.rs.size() > 1 && is_var(e.rs.get(0)))
|
|
||||||
nl_fst = e.rs.get(0);
|
|
||||||
if (nl_fst && nl_fst != r_fst) {
|
|
||||||
expr_ref len_nl_fst = mk_len(nl_fst);
|
|
||||||
if (ctx.e_internalized(len_nl_fst)) {
|
|
||||||
enode * root1 = get_root(len_nl_fst);
|
|
||||||
if (m_offset_eq.contains(root2, root1)) {
|
|
||||||
res.reset();
|
|
||||||
res.append(e.rs);
|
|
||||||
deps = m_dm.mk_join(e.dep(), deps);
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
|
|
||||||
int theory_seq::find_fst_non_empty_idx(expr_ref_vector const& xs) {
|
|
||||||
for (unsigned i = 0; i < xs.size(); ++i) {
|
|
||||||
expr* x = xs[i];
|
|
||||||
if (!is_var(x))
|
|
||||||
return -1;
|
|
||||||
expr_ref e = mk_len(x);
|
|
||||||
if (ctx.e_internalized(e)) {
|
|
||||||
enode* root = ctx.get_enode(e)->get_root();
|
|
||||||
rational val;
|
|
||||||
if (m_autil.is_numeral(root->get_expr(), val) && val.is_zero()) {
|
|
||||||
continue;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
return i;
|
|
||||||
}
|
|
||||||
return -1;
|
|
||||||
}
|
|
||||||
|
|
||||||
expr* theory_seq::find_fst_non_empty_var(expr_ref_vector const& x) {
|
|
||||||
int i = find_fst_non_empty_idx(x);
|
|
||||||
if (i >= 0)
|
|
||||||
return x[i];
|
|
||||||
return nullptr;
|
|
||||||
}
|
|
||||||
|
|
||||||
#endif
|
|
||||||
|
|
||||||
bool theory_seq::has_len_offset(expr_ref_vector const& ls, expr_ref_vector const& rs, int & offset) {
|
bool theory_seq::has_len_offset(expr_ref_vector const& ls, expr_ref_vector const& rs, int & offset) {
|
||||||
|
|
||||||
if (ls.empty() || rs.empty())
|
if (ls.empty() || rs.empty())
|
||||||
|
@ -597,7 +458,8 @@ bool theory_seq::branch_binary_variable(depeq const& e) {
|
||||||
if (lenX <= rational(ys.size())) {
|
if (lenX <= rational(ys.size())) {
|
||||||
expr_ref_vector Ys(m);
|
expr_ref_vector Ys(m);
|
||||||
Ys.append(ys.size(), ys.c_ptr());
|
Ys.append(ys.size(), ys.c_ptr());
|
||||||
if (branch_unit_variable(e.dep(), x, Ys))
|
m_eq_deps = e.dep();
|
||||||
|
if (m_eq.branch_unit_variable(x, Ys))
|
||||||
return true;
|
return true;
|
||||||
}
|
}
|
||||||
expr_ref le(m_autil.mk_le(mk_len(x), m_autil.mk_int(ys.size())), m);
|
expr_ref le(m_autil.mk_le(mk_len(x), m_autil.mk_int(ys.size())), m);
|
||||||
|
@ -625,67 +487,17 @@ bool theory_seq::branch_binary_variable(depeq const& e) {
|
||||||
bool theory_seq::branch_unit_variable() {
|
bool theory_seq::branch_unit_variable() {
|
||||||
bool result = false;
|
bool result = false;
|
||||||
for (auto const& e : m_eqs) {
|
for (auto const& e : m_eqs) {
|
||||||
#if 0
|
seq::eqr er(e.ls, e.rs);
|
||||||
eqr er(e.ls, e.rs);
|
m_eq_deps = e.dep();
|
||||||
m_eq_deps = e.deps;
|
|
||||||
if (m_eq.branch(0, er)) {
|
if (m_eq.branch(0, er)) {
|
||||||
result = true;
|
result = true;
|
||||||
break;
|
break;
|
||||||
}
|
}
|
||||||
#else
|
|
||||||
if (is_unit_eq(e.ls, e.rs) &&
|
|
||||||
branch_unit_variable(e.dep(), e.ls[0], e.rs)) {
|
|
||||||
result = true;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
if (is_unit_eq(e.rs, e.ls) &&
|
|
||||||
branch_unit_variable(e.dep(), e.rs[0], e.ls)) {
|
|
||||||
result = true;
|
|
||||||
break;
|
|
||||||
}
|
|
||||||
#endif
|
|
||||||
}
|
}
|
||||||
CTRACE("seq", result, tout << "branch unit variable\n";);
|
CTRACE("seq", result, tout << "branch unit variable\n";);
|
||||||
return result;
|
return result;
|
||||||
}
|
}
|
||||||
|
|
||||||
bool theory_seq::branch_unit_variable(dependency* dep, expr* X, expr_ref_vector const& units) {
|
|
||||||
SASSERT(is_var(X));
|
|
||||||
rational lenX;
|
|
||||||
if (!get_length(X, lenX)) {
|
|
||||||
TRACE("seq", tout << "enforce length on " << mk_bounded_pp(X, m, 2) << "\n";);
|
|
||||||
add_length_to_eqc(X);
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
if (lenX > rational(units.size())) {
|
|
||||||
expr_ref le(m_autil.mk_le(mk_len(X), m_autil.mk_int(units.size())), m);
|
|
||||||
TRACE("seq", tout << "propagate length on " << mk_bounded_pp(X, m, 2) << "\n";);
|
|
||||||
propagate_lit(dep, 0, nullptr, mk_literal(le));
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
SASSERT(lenX.is_unsigned());
|
|
||||||
unsigned lX = lenX.get_unsigned();
|
|
||||||
if (lX == 0) {
|
|
||||||
TRACE("seq", tout << "set empty length " << mk_bounded_pp(X, m, 2) << "\n";);
|
|
||||||
set_empty(X);
|
|
||||||
return true;
|
|
||||||
}
|
|
||||||
|
|
||||||
literal lit = mk_eq(m_autil.mk_int(lX), mk_len(X), false);
|
|
||||||
switch (ctx.get_assignment(lit)) {
|
|
||||||
case l_true: {
|
|
||||||
expr_ref R = mk_concat(lX, units.c_ptr(), X->get_sort());
|
|
||||||
return propagate_eq(dep, lit, X, R);
|
|
||||||
}
|
|
||||||
case l_undef:
|
|
||||||
TRACE("seq", tout << "set phase " << mk_pp(X, m) << "\n";);
|
|
||||||
ctx.mark_as_relevant(lit);
|
|
||||||
ctx.force_phase(lit);
|
|
||||||
return true;
|
|
||||||
default:
|
|
||||||
return false;
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
bool theory_seq::branch_ternary_variable() {
|
bool theory_seq::branch_ternary_variable() {
|
||||||
for (auto const& e : m_eqs) {
|
for (auto const& e : m_eqs) {
|
||||||
|
@ -1337,3 +1149,143 @@ bool theory_seq::solve_nth_eq(expr_ref_vector const& ls, expr_ref_vector const&
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
#if 0
|
||||||
|
|
||||||
|
/**
|
||||||
|
\brief
|
||||||
|
|
||||||
|
This step performs destructive superposition
|
||||||
|
|
||||||
|
Based on the implementation it would do the following:
|
||||||
|
|
||||||
|
e: l1 + l2 + l3 + l = r1 + r2 + r
|
||||||
|
G |- len(l1) = len(l2) = len(r1) = 0
|
||||||
|
e': l1 + l2 + l3 + l = r3 + r' occurs prior to e among equations
|
||||||
|
G |- len(r3) = len(r2)
|
||||||
|
r2, r3 are not identical
|
||||||
|
----------------------------------
|
||||||
|
e'' : r3 + r' = r1 + r2 + r
|
||||||
|
|
||||||
|
e: l1 + l2 + l3 + l = r1 + r2 + r
|
||||||
|
G |- len(l1) = len(l2) = len(r1) = 0
|
||||||
|
e': l1 + l2 + l3 + l = r3 + r' occurs prior to e among equations
|
||||||
|
G |- len(r3) = len(r2) + offset
|
||||||
|
r2, r3 are not identical
|
||||||
|
----------------------------------
|
||||||
|
e'' : r3 + r' = r1 + r2 + r
|
||||||
|
|
||||||
|
NB, this doesn't make sense because e'' is just e', which already occurs.
|
||||||
|
It doesn't inherit the constraints from e either, which would get lost.
|
||||||
|
|
||||||
|
NB, if len(r3) = len(r2) would be used, then the justification for the equality
|
||||||
|
needs to be tracked in dependencies.
|
||||||
|
|
||||||
|
TODO: propagate length offsets for last vars
|
||||||
|
|
||||||
|
*/
|
||||||
|
bool theory_seq::find_better_rep(expr_ref_vector const& ls, expr_ref_vector const& rs, unsigned idx,
|
||||||
|
dependency*& deps, expr_ref_vector & res) {
|
||||||
|
|
||||||
|
// disabled until functionality is clarified
|
||||||
|
return false;
|
||||||
|
|
||||||
|
if (ls.empty() || rs.empty())
|
||||||
|
return false;
|
||||||
|
expr* l_fst = find_fst_non_empty_var(ls);
|
||||||
|
expr* r_fst = find_fst_non_empty_var(rs);
|
||||||
|
if (!r_fst) return false;
|
||||||
|
expr_ref len_r_fst = mk_len(r_fst);
|
||||||
|
expr_ref len_l_fst(m);
|
||||||
|
enode * root2;
|
||||||
|
if (!ctx.e_internalized(len_r_fst)) {
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
if (l_fst) {
|
||||||
|
len_l_fst = mk_len(l_fst);
|
||||||
|
}
|
||||||
|
|
||||||
|
root2 = get_root(len_r_fst);
|
||||||
|
|
||||||
|
// Offset = 0, No change
|
||||||
|
if (l_fst && get_root(len_l_fst) == root2) {
|
||||||
|
TRACE("seq", tout << "(" << mk_pp(l_fst, m) << ", " << mk_pp(r_fst, m) << ")\n";);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
// Offset = 0, Changed
|
||||||
|
|
||||||
|
for (unsigned i = 0; i < idx; ++i) {
|
||||||
|
depeq const& e = m_eqs[i];
|
||||||
|
if (e.ls != ls) continue;
|
||||||
|
expr* nl_fst = nullptr;
|
||||||
|
if (e.rs.size() > 1 && is_var(e.rs.get(0)))
|
||||||
|
nl_fst = e.rs.get(0);
|
||||||
|
if (nl_fst && nl_fst != r_fst && root2 == get_root(mk_len(nl_fst))) {
|
||||||
|
res.reset();
|
||||||
|
res.append(e.rs);
|
||||||
|
deps = m_dm.mk_join(e.dep(), deps);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// Offset != 0, No change
|
||||||
|
if (l_fst && ctx.e_internalized(len_l_fst)) {
|
||||||
|
enode * root1 = get_root(len_l_fst);
|
||||||
|
if (m_offset_eq.contains(root1, root2)) {
|
||||||
|
TRACE("seq", tout << "(" << mk_pp(l_fst, m) << ", " << mk_pp(r_fst,m) << ")\n";);
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
// Offset != 0, Changed
|
||||||
|
if (m_offset_eq.contains(root2)) {
|
||||||
|
for (unsigned i = 0; i < idx; ++i) {
|
||||||
|
depeq const& e = m_eqs[i];
|
||||||
|
if (e.ls != ls) continue;
|
||||||
|
expr* nl_fst = nullptr;
|
||||||
|
if (e.rs.size() > 1 && is_var(e.rs.get(0)))
|
||||||
|
nl_fst = e.rs.get(0);
|
||||||
|
if (nl_fst && nl_fst != r_fst) {
|
||||||
|
expr_ref len_nl_fst = mk_len(nl_fst);
|
||||||
|
if (ctx.e_internalized(len_nl_fst)) {
|
||||||
|
enode * root1 = get_root(len_nl_fst);
|
||||||
|
if (m_offset_eq.contains(root2, root1)) {
|
||||||
|
res.reset();
|
||||||
|
res.append(e.rs);
|
||||||
|
deps = m_dm.mk_join(e.dep(), deps);
|
||||||
|
return true;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return false;
|
||||||
|
}
|
||||||
|
|
||||||
|
int theory_seq::find_fst_non_empty_idx(expr_ref_vector const& xs) {
|
||||||
|
for (unsigned i = 0; i < xs.size(); ++i) {
|
||||||
|
expr* x = xs[i];
|
||||||
|
if (!is_var(x))
|
||||||
|
return -1;
|
||||||
|
expr_ref e = mk_len(x);
|
||||||
|
if (ctx.e_internalized(e)) {
|
||||||
|
enode* root = ctx.get_enode(e)->get_root();
|
||||||
|
rational val;
|
||||||
|
if (m_autil.is_numeral(root->get_expr(), val) && val.is_zero()) {
|
||||||
|
continue;
|
||||||
|
}
|
||||||
|
}
|
||||||
|
return i;
|
||||||
|
}
|
||||||
|
return -1;
|
||||||
|
}
|
||||||
|
|
||||||
|
expr* theory_seq::find_fst_non_empty_var(expr_ref_vector const& x) {
|
||||||
|
int i = find_fst_non_empty_idx(x);
|
||||||
|
if (i >= 0)
|
||||||
|
return x[i];
|
||||||
|
return nullptr;
|
||||||
|
}
|
||||||
|
|
||||||
|
#endif
|
||||||
|
|
|
@ -436,7 +436,6 @@ namespace smt {
|
||||||
bool check_length_coherence(expr* e);
|
bool check_length_coherence(expr* e);
|
||||||
bool fixed_length(bool is_zero = false);
|
bool fixed_length(bool is_zero = false);
|
||||||
bool fixed_length(expr* e, bool is_zero);
|
bool fixed_length(expr* e, bool is_zero);
|
||||||
bool branch_unit_variable(dependency* dep, expr* X, expr_ref_vector const& units);
|
|
||||||
bool branch_variable_eq(depeq const& e);
|
bool branch_variable_eq(depeq const& e);
|
||||||
bool branch_binary_variable(depeq const& e);
|
bool branch_binary_variable(depeq const& e);
|
||||||
bool can_align_from_lhs(expr_ref_vector const& ls, expr_ref_vector const& rs);
|
bool can_align_from_lhs(expr_ref_vector const& ls, expr_ref_vector const& rs);
|
||||||
|
|
Loading…
Reference in a new issue