3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-23 17:15:31 +00:00
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2023-12-13 20:28:03 -08:00
parent 187ee334a9
commit 7c5996c2f0

View file

@ -0,0 +1,526 @@
/*++
Copyright (c) 2022 Microsoft Corporation
Module Name:
polysat_internalize.cpp
Abstract:
PolySAT internalize
Author:
Nikolaj Bjorner (nbjorner) 2022-01-26
--*/
#include "params/bv_rewriter_params.hpp"
#include "sat/smt/polysat_solver.h"
#include "sat/smt/euf_solver.h"
namespace polysat {
euf::theory_var solver::mk_var(euf::enode* n) {
theory_var v = euf::th_euf_solver::mk_var(n);
ctx.attach_th_var(n, this, v);
return v;
}
sat::literal solver::internalize(expr* e, bool sign, bool root) {
force_push();
SASSERT(m.is_bool(e));
if (!visit_rec(m, e, sign, root))
return sat::null_literal;
sat::literal lit = expr2literal(e);
if (sign)
lit.neg();
return lit;
}
void solver::internalize(expr* e) {
force_push();
visit_rec(m, e, false, false);
}
bool solver::visit(expr* e) {
force_push();
if (!is_app(e) || to_app(e)->get_family_id() != get_id()) {
ctx.internalize(e);
return true;
}
m_stack.push_back(sat::eframe(e));
return false;
}
bool solver::visited(expr* e) {
euf::enode* n = expr2enode(e);
return n && n->is_attached_to(get_id());
}
bool solver::post_visit(expr* e, bool sign, bool root) {
euf::enode* n = expr2enode(e);
app* a = to_app(e);
if (visited(e))
return true;
SASSERT(!n || !n->is_attached_to(get_id()));
if (!n)
n = mk_enode(e, false);
SASSERT(!n->is_attached_to(get_id()));
mk_var(n);
SASSERT(n->is_attached_to(get_id()));
internalize_polysat(a);
return true;
}
void solver::internalize_polysat(app* a) {
#define if_unary(F) if (a->get_num_args() == 1) { internalize_unary(a, [&](pdd const& p) { return F(p); }); break; }
switch (a->get_decl_kind()) {
case OP_BMUL: internalize_binary(a, [&](pdd const& p, pdd const& q) { return p * q; }); break;
case OP_BADD: internalize_binary(a, [&](pdd const& p, pdd const& q) { return p + q; }); break;
case OP_BSUB: internalize_binary(a, [&](pdd const& p, pdd const& q) { return p - q; }); break;
case OP_BLSHR: internalize_lshr(a); break;
case OP_BSHL: internalize_shl(a); break;
case OP_BASHR: internalize_ashr(a); break;
case OP_BAND: internalize_band(a); break;
case OP_BOR: internalize_bor(a); break;
case OP_BXOR: internalize_bxor(a); break;
case OP_BNAND: if_unary(m_core.bnot); internalize_bnand(a); break;
case OP_BNOR: if_unary(m_core.bnot); internalize_bnor(a); break;
case OP_BXNOR: if_unary(m_core.bnot); internalize_bxnor(a); break;
case OP_BNOT: internalize_unary(a, [&](pdd const& p) { return m_core.bnot(p); }); break;
case OP_BNEG: internalize_unary(a, [&](pdd const& p) { return -p; }); break;
case OP_MKBV: internalize_mkbv(a); break;
case OP_BV_NUM: internalize_num(a); break;
case OP_ULEQ: internalize_le<false, false, false>(a); break;
case OP_SLEQ: internalize_le<true, false, false>(a); break;
case OP_UGEQ: internalize_le<false, true, false>(a); break;
case OP_SGEQ: internalize_le<true, true, false>(a); break;
case OP_ULT: internalize_le<false, true, true>(a); break;
case OP_SLT: internalize_le<true, true, true>(a); break;
case OP_UGT: internalize_le<false, false, true>(a); break;
case OP_SGT: internalize_le<true, false, true>(a); break;
case OP_BUMUL_NO_OVFL: internalize_binaryc(a, [&](pdd const& p, pdd const& q) { return m_core.umul_ovfl(p, q); }); break;
case OP_BSMUL_NO_OVFL: internalize_binaryc(a, [&](pdd const& p, pdd const& q) { return m_core.smul_ovfl(p, q); }); break;
case OP_BSMUL_NO_UDFL: internalize_binaryc(a, [&](pdd const& p, pdd const& q) { return m_core.smul_udfl(p, q); }); break;
case OP_BUMUL_OVFL:
case OP_BSMUL_OVFL:
case OP_BSDIV_OVFL:
case OP_BNEG_OVFL:
case OP_BUADD_OVFL:
case OP_BSADD_OVFL:
case OP_BUSUB_OVFL:
case OP_BSSUB_OVFL:
verbose_stream() << mk_pp(a, m) << "\n";
// handled by bv_rewriter for now
UNREACHABLE();
break;
case OP_BUDIV_I: internalize_udiv_i(a); break;
case OP_BUREM_I: internalize_urem_i(a); break;
case OP_BUDIV: internalize_div_rem(a, true); break;
case OP_BUREM: internalize_div_rem(a, false); break;
case OP_BSDIV0: UNREACHABLE(); break;
case OP_BUDIV0: UNREACHABLE(); break;
case OP_BSREM0: UNREACHABLE(); break;
case OP_BUREM0: UNREACHABLE(); break;
case OP_BSMOD0: UNREACHABLE(); break;
case OP_EXTRACT: internalize_extract(a); break;
case OP_CONCAT: internalize_concat(a); break;
case OP_ZERO_EXT: internalize_zero_extend(a); break;
case OP_SIGN_EXT: internalize_sign_extend(a); break;
// polysat::solver should also support at least:
case OP_BREDAND: // x == 2^K - 1 unary, return single bit, 1 if all input bits are set.
case OP_BREDOR: // x > 0 unary, return single bit, 1 if at least one input bit is set.
case OP_BCOMP: // x == y binary, return single bit, 1 if the arguments are equal.
case OP_BSDIV:
case OP_BSREM:
case OP_BSMOD:
case OP_BSDIV_I:
case OP_BSREM_I:
case OP_BSMOD_I:
IF_VERBOSE(0, verbose_stream() << mk_pp(a, m) << "\n");
NOT_IMPLEMENTED_YET();
return;
default:
IF_VERBOSE(0, verbose_stream() << mk_pp(a, m) << "\n");
NOT_IMPLEMENTED_YET();
return;
}
#undef if_unary
}
class solver::mk_atom_trail : public trail {
solver& th;
sat::bool_var m_var;
public:
mk_atom_trail(sat::bool_var v, solver& th) : th(th), m_var(v) {}
void undo() override {
th.erase_bv2a(m_var);
}
};
void solver::mk_atom(sat::bool_var bv, signed_constraint& sc) {
if (get_bv2a(bv))
return;
sat::literal lit(bv, false);
auto index = m_core.register_constraint(sc, dependency(lit, 0));
auto a = new (get_region()) atom(bv, index);
insert_bv2a(bv, a);
ctx.push(mk_atom_trail(bv, *this));
}
void solver::internalize_binaryc(app* e, std::function<polysat::signed_constraint(pdd, pdd)> const& fn) {
auto p = expr2pdd(e->get_arg(0));
auto q = expr2pdd(e->get_arg(1));
auto sc = ~fn(p, q);
sat::literal lit = expr2literal(e);
if (lit.sign())
sc = ~sc;
mk_atom(lit.var(), sc);
}
void solver::internalize_udiv_i(app* e) {
expr* x, *y;
expr_ref rm(m);
if (bv.is_bv_udivi(e, x, y))
rm = bv.mk_bv_urem_i(x, y);
else if (bv.is_bv_udiv(e, x, y))
rm = bv.mk_bv_urem(x, y);
else
UNREACHABLE();
internalize(rm);
}
// From "Hacker's Delight", section 2-2. Addition Combined with Logical Operations;
// found via Int-Blasting paper; see https://doi.org/10.1007/978-3-030-94583-1_24
// (p + q) - band(p, q);
void solver::internalize_bor(app* n) {
internalize_binary(n, [&](expr* const& x, expr* const& y) { return bv.mk_bv_sub(bv.mk_bv_add(x, y), bv.mk_bv_and(x, y)); });
}
// From "Hacker's Delight", section 2-2. Addition Combined with Logical Operations;
// found via Int-Blasting paper; see https://doi.org/10.1007/978-3-030-94583-1_24
// (p + q) - 2*band(p, q);
void solver::internalize_bxor(app* n) {
internalize_binary(n, [&](expr* const& x, expr* const& y) {
return bv.mk_bv_sub(bv.mk_bv_add(x, y), bv.mk_bv_add(bv.mk_bv_and(x, y), bv.mk_bv_and(x, y)));
});
}
void solver::internalize_bnor(app* n) {
internalize_binary(n, [&](expr* const& x, expr* const& y) { return bv.mk_bv_not(bv.mk_bv_or(x, y)); });
}
void solver::internalize_bnand(app* n) {
internalize_binary(n, [&](expr* const& x, expr* const& y) { return bv.mk_bv_not(bv.mk_bv_and(x, y)); });
}
void solver::internalize_bxnor(app* n) {
internalize_binary(n, [&](expr* const& x, expr* const& y) { return bv.mk_bv_not(bv.mk_bv_xor(x, y)); });
}
void solver::internalize_band(app* n) {
if (n->get_num_args() == 2) {
expr* x, * y;
VERIFY(bv.is_bv_and(n, x, y));
m_core.band(expr2pdd(x), expr2pdd(y), expr2pdd(n));
}
else {
expr_ref z(n->get_arg(0), m);
for (unsigned i = 1; i < n->get_num_args(); ++i) {
z = bv.mk_bv_and(z, n->get_arg(i));
ctx.internalize(z);
}
internalize_set(n, expr2pdd(z));
}
}
void solver::internalize_lshr(app* n) {
expr* x, * y;
VERIFY(bv.is_bv_lshr(n, x, y));
m_core.lshr(expr2pdd(x), expr2pdd(y), expr2pdd(n));
}
void solver::internalize_ashr(app* n) {
expr* x, * y;
VERIFY(bv.is_bv_ashr(n, x, y));
m_core.ashr(expr2pdd(x), expr2pdd(y), expr2pdd(n));
}
void solver::internalize_shl(app* n) {
expr* x, * y;
VERIFY(bv.is_bv_shl(n, x, y));
m_core.shl(expr2pdd(x), expr2pdd(y), expr2pdd(n));
}
void solver::internalize_urem_i(app* rem) {
expr* x, *y;
euf::enode* n = expr2enode(rem);
SASSERT(n && n->is_attached_to(get_id()));
theory_var v = n->get_th_var(get_id());
if (m_var2pdd_valid.get(v, false))
return;
expr_ref quot(m);
if (bv.is_bv_uremi(rem, x, y))
quot = bv.mk_bv_udiv_i(x, y);
else if (bv.is_bv_urem(rem, x, y))
quot = bv.mk_bv_udiv(x, y);
else
UNREACHABLE();
m_var2pdd_valid.setx(v, true, false);
ctx.internalize(quot);
m_var2pdd_valid.setx(v, false, false);
quot_rem(quot, rem, x, y);
}
void solver::quot_rem(expr* quot, expr* rem, expr* x, expr* y) {
pdd a = expr2pdd(x);
pdd b = expr2pdd(y);
euf::enode* qn = expr2enode(quot);
euf::enode* rn = expr2enode(rem);
auto& m = a.manager();
unsigned sz = m.power_of_2();
if (b.is_zero()) {
// By SMT-LIB specification, b = 0 ==> q = -1, r = a.
internalize_set(quot, m.mk_val(m.max_value()));
internalize_set(rem, a);
return;
}
if (b.is_one()) {
internalize_set(quot, a);
internalize_set(rem, m.zero());
return;
}
if (a.is_val() && b.is_val()) {
rational const av = a.val();
rational const bv = b.val();
SASSERT(!bv.is_zero());
rational rv;
rational qv = machine_div_rem(av, bv, rv);
pdd q = m.mk_val(qv);
pdd r = m.mk_val(rv);
SASSERT_EQ(a, b * q + r);
SASSERT(b.val() * q.val() + r.val() <= m.max_value());
SASSERT(r.val() <= (b * q + r).val());
SASSERT(r.val() < b.val());
internalize_set(quot, q);
internalize_set(rem, r);
return;
}
pdd r = var2pdd(rn->get_th_var(get_id()));
pdd q = var2pdd(qn->get_th_var(get_id()));
// Axioms for quotient/remainder
//
// a = b*q + r
// multiplication does not overflow in b*q
// addition does not overflow in (b*q) + r; for now expressed as: r <= bq+r
// b ≠ 0 ==> r < b
// b = 0 ==> q = -1
// TODO: when a,b become evaluable, can we actually propagate q,r? doesn't seem like it.
// Maybe we need something like an op_constraint for better propagation.
add_polysat_clause("[axiom] quot_rem 1", { m_core.eq(b * q + r - a) }, false);
add_polysat_clause("[axiom] quot_rem 2", { ~m_core.umul_ovfl(b, q) }, false);
// r <= b*q+r
// { apply equivalence: p <= q <=> q-p <= -p-1 }
// b*q <= -r-1
add_polysat_clause("[axiom] quot_rem 3", { m_core.ule(b * q, -r - 1) }, false);
auto c_eq = m_core.eq(b);
if (!c_eq.is_always_true())
add_polysat_clause("[axiom] quot_rem 4", { c_eq, ~m_core.ule(b, r) }, false);
if (!c_eq.is_always_false())
add_polysat_clause("[axiom] quot_rem 5", { ~c_eq, m_core.eq(q + 1) }, false);
}
void solver::internalize_sign_extend(app* e) {
expr* arg = e->get_arg(0);
unsigned sz = bv.get_bv_size(e);
unsigned arg_sz = bv.get_bv_size(arg);
unsigned sz2 = sz - arg_sz;
var2pdd(expr2enode(e)->get_th_var(get_id()));
if (arg_sz == sz)
add_clause(eq_internalize(e, arg), nullptr);
else {
sat::literal lt0 = ctx.mk_literal(bv.mk_slt(arg, bv.mk_numeral(0, arg_sz)));
// arg < 0 ==> e = concat(arg, 1...1)
// arg >= 0 ==> e = concat(arg, 0...0)
add_clause(lt0, eq_internalize(e, bv.mk_concat(arg, bv.mk_numeral(rational::power_of_two(sz2) - 1, sz2))), nullptr);
add_clause(~lt0, eq_internalize(e, bv.mk_concat(arg, bv.mk_numeral(0, sz2))), nullptr);
}
}
void solver::internalize_zero_extend(app* e) {
expr* arg = e->get_arg(0);
unsigned sz = bv.get_bv_size(e);
unsigned arg_sz = bv.get_bv_size(arg);
unsigned sz2 = sz - arg_sz;
var2pdd(expr2enode(e)->get_th_var(get_id()));
if (arg_sz == sz)
add_clause(eq_internalize(e, arg), nullptr);
else
// e = concat(arg, 0...0)
add_clause(eq_internalize(e, bv.mk_concat(arg, bv.mk_numeral(0, sz2))), nullptr);
}
void solver::internalize_div_rem(app* e, bool is_div) {
bv_rewriter_params p(s().params());
if (p.hi_div0()) {
if (is_div)
internalize_udiv_i(e);
else
internalize_urem_i(e);
return;
}
expr* arg1 = e->get_arg(0);
expr* arg2 = e->get_arg(1);
unsigned sz = bv.get_bv_size(e);
expr_ref zero(bv.mk_numeral(0, sz), m);
sat::literal eqZ = eq_internalize(arg2, zero);
sat::literal eqU = eq_internalize(e, is_div ? bv.mk_bv_udiv0(arg1) : bv.mk_bv_urem0(arg1));
sat::literal eqI = eq_internalize(e, is_div ? bv.mk_bv_udiv_i(arg1, arg2) : bv.mk_bv_urem_i(arg1, arg2));
add_clause(~eqZ, eqU);
add_clause(eqZ, eqI);
ctx.add_aux(~eqZ, eqU);
ctx.add_aux(eqZ, eqI);
}
void solver::internalize_num(app* a) {
rational val;
unsigned sz = 0;
VERIFY(bv.is_numeral(a, val, sz));
auto p = m_core.value(val, sz);
internalize_set(a, p);
}
// TODO - test that internalize works with recursive call on bit2bool
void solver::internalize_mkbv(app* a) {
unsigned i = 0;
for (expr* arg : *a) {
expr_ref b2b(m);
b2b = bv.mk_bit2bool(a, i);
sat::literal bit_i = ctx.internalize(b2b, false, false);
sat::literal lit = expr2literal(arg);
add_equiv(lit, bit_i);
#if 0
ctx.add_aux_equiv(lit, bit_i);
#endif
++i;
}
}
void solver::internalize_extract(app* e) {
var2pdd(expr2enode(e)->get_th_var(get_id()));
}
void solver::internalize_concat(app* e) {
SASSERT(bv.is_concat(e));
var2pdd(expr2enode(e)->get_th_var(get_id()));
}
void solver::internalize_par_unary(app* e, std::function<pdd(pdd,unsigned)> const& fn) {
pdd const p = expr2pdd(e->get_arg(0));
unsigned const par = e->get_parameter(0).get_int();
internalize_set(e, fn(p, par));
}
void solver::internalize_binary(app* e, std::function<pdd(pdd, pdd)> const& fn) {
SASSERT(e->get_num_args() >= 1);
auto p = expr2pdd(e->get_arg(0));
for (unsigned i = 1; i < e->get_num_args(); ++i)
p = fn(p, expr2pdd(e->get_arg(i)));
internalize_set(e, p);
}
void solver::internalize_binary(app* e, std::function<expr* (expr*, expr*)> const& fn) {
SASSERT(e->get_num_args() >= 1);
expr* r = e->get_arg(0);
for (unsigned i = 1; i < e->get_num_args(); ++i)
r = fn(r, e->get_arg(i));
ctx.internalize(r);
internalize_set(e, var2pdd(expr2enode(r)->get_th_var(get_id())));
}
void solver::internalize_unary(app* e, std::function<pdd(pdd)> const& fn) {
SASSERT(e->get_num_args() == 1);
auto p = expr2pdd(e->get_arg(0));
internalize_set(e, fn(p));
}
template<bool Signed, bool Rev, bool Negated>
void solver::internalize_le(app* e) {
SASSERT(e->get_num_args() == 2);
auto p = expr2pdd(e->get_arg(0));
auto q = expr2pdd(e->get_arg(1));
if (Rev)
std::swap(p, q);
auto sc = Signed ? m_core.sle(p, q) : m_core.ule(p, q);
if (Negated)
sc = ~sc;
sat::literal lit = expr2literal(e);
if (lit.sign())
sc = ~sc;
mk_atom(lit.var(), sc);
}
dd::pdd solver::expr2pdd(expr* e) {
return var2pdd(get_th_var(e));
}
dd::pdd solver::var2pdd(euf::theory_var v) {
if (!m_var2pdd_valid.get(v, false)) {
unsigned bv_size = get_bv_size(v);
pvar pv = m_core.add_var(bv_size);
m_pddvar2var.setx(pv, v, UINT_MAX);
pdd p = m_core.var(pv);
internalize_set(v, p);
return p;
}
return m_var2pdd[v];
}
void solver::apply_sort_cnstr(euf::enode* n, sort* s) {
if (!bv.is_bv(n->get_expr()))
return;
theory_var v = n->get_th_var(get_id());
if (v == euf::null_theory_var)
v = mk_var(n);
var2pdd(v);
}
void solver::internalize_set(expr* e, pdd const& p) {
internalize_set(get_th_var(e), p);
}
void solver::internalize_set(euf::theory_var v, pdd const& p) {
SASSERT_EQ(get_bv_size(v), p.power_of_2());
m_var2pdd.reserve(get_num_vars(), p);
m_var2pdd_valid.reserve(get_num_vars(), false);
ctx.push(set_bitvector_trail(m_var2pdd_valid, v));
#if 0
m_var2pdd[v].reset(p.manager());
#endif
m_var2pdd[v] = p;
}
void solver::eq_internalized(euf::enode* n) {
SASSERT(m.is_eq(n->get_expr()));
}
}