3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-14 12:58:44 +00:00

missing hnf

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2013-03-23 16:56:47 -07:00
parent fb5d2cae17
commit 7c3ca302f0
6 changed files with 537 additions and 30 deletions

View file

@ -66,7 +66,7 @@ public:
Return index of maximal variable.
*/
unsigned pull_quantifier(bool is_forall, expr_ref& fml, svector<symbol>* names);
unsigned pull_quantifier(bool is_forall, expr_ref& fml, ptr_vector<sort>* sorts, svector<symbol>* names);
};

View file

@ -431,8 +431,6 @@ namespace datalog {
}
}
<<<<<<< HEAD
=======
void rule_counter::count_rule_vars(ast_manager & m, const rule * r, int coef) {
count_vars(m, r->get_head(), 1);
@ -453,7 +451,6 @@ namespace datalog {
}
return get_max_var(has_var);
}
>>>>>>> 26f4d3be202606ff0189aefc103de187caf06d5d
void del_rule(horn_subsume_model_converter* mc, rule& r) {
if (mc) {

487
src/muz_qe/hnf.cpp Normal file
View file

@ -0,0 +1,487 @@
/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
hnf.cpp
Abstract:
Horn normal form conversion.
Author:
Nikolaj Bjorner (nbjorner) 3-20-2013
Notes:
Convert formula
(forall x f(x))
into conjunction
(f1 xy) (f2 xy) (f3 xy)
such that
(forall x f(x)) ~ /\ (forall xy (f_i xy))
modulo definitions that are introduced.
Convert proof with
asserted (forall xy (f' xy))
To:
(forall xy (f' xy)) by mp~ 1, 2
1. asserted/def-intro (forall xy (f xy))
2. (forall xy (f xy)) ~ (forall xy (f' xy)) by trans, 3, 4
3. (forall xy (f xy)) ~ (forall xy (f1 xy)) by pull quantifiers (rewrite)
4. (forall xy (f1 xy)) ~ (forall xy (f' xy)) by oeq_quant_intro 5
5. f1 xy ~ f' xy by sub-proof.
--*/
#include"hnf.h"
#include"warning.h"
#include"used_vars.h"
#include"well_sorted.h"
#include"var_subst.h"
#include"name_exprs.h"
#include"act_cache.h"
#include"cooperate.h"
#include"ast_pp.h"
#include"quant_hoist.h"
#include"dl_util.h"
#include"for_each_ast.h"
#include"for_each_expr.h"
class hnf::imp {
ast_manager& m;
bool m_produce_proofs;
volatile bool m_cancel;
expr_ref_vector m_todo;
proof_ref_vector m_proofs;
expr_ref_vector m_refs;
symbol m_name;
svector<symbol> m_names;
ptr_vector<sort> m_sorts;
quantifier_hoister m_qh;
obj_map<expr, app*> m_memoize_disj;
obj_map<expr, proof*> m_memoize_proof;
func_decl_ref_vector m_fresh_predicates;
public:
imp(ast_manager & m):
m(m),
m_produce_proofs(false),
m_cancel(false),
m_todo(m),
m_proofs(m),
m_refs(m),
m_qh(m),
m_name("P"),
m_fresh_predicates(m) {
}
void operator()(expr * n,
proof* p,
expr_ref_vector& result,
proof_ref_vector& ps) {
expr_ref fml(m);
proof_ref pr(m);
m_todo.reset();
m_proofs.reset();
m_refs.reset();
m_memoize_disj.reset();
m_memoize_proof.reset();
m_fresh_predicates.reset();
m_todo.push_back(n);
m_proofs.push_back(p);
m_produce_proofs = p != 0;
while (!m_todo.empty() && !m_cancel) {
fml = m_todo.back();
pr = m_proofs.back();
m_todo.pop_back();
m_proofs.pop_back();
mk_horn(fml, pr);
if (fml) {
result.push_back(fml);
ps.push_back(pr);
}
}
TRACE("hnf",
tout << mk_pp(n, m) << "\n==>\n";
for (unsigned i = 0; i < result.size(); ++i) {
tout << mk_pp(result[i].get(), m) << "\n";
});
}
void set_cancel(bool f) {
m_cancel = f;
}
void set_name(symbol const& n) {
m_name = n;
}
func_decl_ref_vector const& get_fresh_predicates() {
return m_fresh_predicates;
}
void reset() {
m_cancel = false;
m_todo.reset();
m_proofs.reset();
m_refs.reset();
m_memoize_disj.reset();
m_memoize_proof.reset();
m_fresh_predicates.reset();
}
ast_manager& get_manager() { return m; }
private:
bool produce_proofs() const {
return m_produce_proofs;
}
bool is_predicate(expr* p) const {
return is_app(p) && is_predicate(to_app(p)->get_decl());
}
bool is_predicate(func_decl* f) const {
return m.is_bool(f->get_range()) && f->get_family_id() == null_family_id;
}
class contains_predicate_proc {
imp const& m;
public:
struct found {};
contains_predicate_proc(imp const& m): m(m) {}
void operator()(var * n) {}
void operator()(quantifier * n) {}
void operator()(app* n) {
if (m.is_predicate(n)) throw found();
}
};
bool contains_predicate(expr* fml) const {
contains_predicate_proc proc(*this);
try {
quick_for_each_expr(proc, fml);
}
catch (contains_predicate_proc::found) {
return true;
}
return false;
}
void mk_horn(expr_ref& fml, proof_ref& premise) {
expr* e1, *e2;
expr_ref_vector body(m);
proof_ref_vector defs(m);
expr_ref fml0(m), fml1(m), fml2(m), head(m);
proof_ref p(m);
fml0 = fml;
m_names.reset();
m_sorts.reset();
m_qh.pull_quantifier(true, fml0, &m_sorts, &m_names);
if (premise){
fml1 = bind_variables(fml0);
if (!m_sorts.empty()) {
proof* p1 = m.mk_pull_quant(fml, to_quantifier(fml1));
premise = mk_modus_ponens(premise, p1);
}
}
head = fml0;
while (m.is_implies(head, e1, e2)) {
body.push_back(e1);
head = e2;
}
datalog::flatten_and(body);
if (premise) {
p = m.mk_rewrite(fml0, mk_implies(body, head));
}
//
// Case:
// A \/ B -> C
// =>
// A -> C
// B -> C
//
if (body.size() == 1 && m.is_or(body[0].get()) && contains_predicate(body[0].get())) {
app* _or = to_app(body[0].get());
unsigned sz = _or->get_num_args();
expr* const* args = _or->get_args();
for (unsigned i = 0; i < sz; ++i) {
m_todo.push_back(bind_variables(m.mk_implies(args[i], head)));
m_proofs.push_back(0);
}
if (premise) {
expr_ref f1 = bind_variables(mk_implies(body, head));
expr* f2 = m.mk_and(sz, m_todo.c_ptr()+m_todo.size()-sz);
proof_ref p2(m), p3(m);
p2 = m.mk_def_axiom(m.mk_iff(f1, f2));
p3 = mk_quant_intro(fml, f1, p);
p2 = mk_transitivity(p3, p2);
p2 = mk_modus_ponens(premise, p2);
for (unsigned i = 0; i < sz; ++i) {
m_proofs[m_proofs.size()-sz+i] = m.mk_and_elim(p2, i);
}
}
fml = 0;
return;
}
eliminate_disjunctions(body, defs);
p = mk_congruence(p, body, head, defs);
eliminate_quantifier_body(body, defs);
p = mk_congruence(p, body, head, defs);
fml2 = mk_implies(body, head);
fml = bind_variables(fml2);
if (premise) {
SASSERT(p);
p = mk_quant_intro(fml1, fml, p);
premise = mk_modus_ponens(premise, p);
}
}
proof* mk_quant_intro(expr* e1, expr* e2, proof* p) {
if (m_sorts.empty()) {
return p;
}
quantifier* q1 = to_quantifier(e1);
quantifier* q2 = to_quantifier(e2);
if (m.is_iff(m.get_fact(p))) {
return m.mk_quant_intro(q1, q2, p);
}
if (m.is_oeq(m.get_fact(p))) {
return m.mk_oeq_quant_intro(q1, q2, p);
}
UNREACHABLE();
return p;
}
void eliminate_disjunctions(expr_ref_vector::element_ref& body, proof_ref_vector& proofs) {
expr* b = body.get();
expr* e1;
bool negate_args = false;
bool is_disj = false;
unsigned num_disj = 0;
expr* const* disjs = 0;
if (!contains_predicate(b)) {
return;
}
TRACE("hnf", tout << mk_pp(b, m) << "\n";);
if (m.is_or(b)) {
is_disj = true;
negate_args = false;
num_disj = to_app(b)->get_num_args();
disjs = to_app(b)->get_args();
}
if (m.is_not(b, e1) && m.is_and(e1)) {
is_disj = true;
negate_args = true;
num_disj = to_app(e1)->get_num_args();
disjs = to_app(e1)->get_args();
}
if (is_disj) {
app* old_head = 0;
if (m_memoize_disj.find(b, old_head)) {
body = old_head;
}
else {
app_ref head = mk_fresh_head(b);
proof_ref_vector defs(m);
for (unsigned i = 0; i < num_disj; ++i) {
expr* e = disjs[i];
if (negate_args) {
e = m.mk_not(e);
}
m_todo.push_back(bind_variables(m.mk_implies(e, head)));
m_proofs.push_back(0);
if (produce_proofs()) {
defs.push_back(m.mk_def_intro(m_todo.back()));
m_proofs[m_proofs.size()-1] = defs.back();
}
}
if (produce_proofs()) {
proof* p = m.mk_apply_defs(body.get(), head, defs.size(), defs.c_ptr());
m_refs.push_back(p);
m_memoize_proof.insert(b, p);
}
m_memoize_disj.insert(b, head);
m_refs.push_back(b);
m_refs.push_back(head);
// update the body to be the newly introduced head relation
body = head;
}
if (produce_proofs()) {
proofs.push_back(m_memoize_proof.find(b));
}
}
}
app_ref mk_fresh_head(expr* e) {
ptr_vector<sort> sorts0, sorts1;
get_free_vars(e, sorts0);
expr_ref_vector args(m);
for (unsigned i = 0; i < sorts0.size(); ++i) {
if (sorts0[i]) {
args.push_back(m.mk_var(i, sorts0[i]));
sorts1.push_back(sorts0[i]);
}
}
func_decl_ref f(m);
f = m.mk_fresh_func_decl(m_name.str().c_str(), "", sorts1.size(), sorts1.c_ptr(), m.mk_bool_sort());
m_fresh_predicates.push_back(f);
return app_ref(m.mk_app(f, args.size(), args.c_ptr()), m);
}
void eliminate_disjunctions(expr_ref_vector& body, proof_ref_vector& proofs) {
for (unsigned i = 0; i < body.size(); ++i) {
eliminate_disjunctions(body[i], proofs);
}
}
void eliminate_quantifier_body(expr_ref_vector::element_ref& body, proof_ref_vector& proofs) {
if (is_forall(body.get()) && contains_predicate(body.get())) {
quantifier* q = to_quantifier(body.get());
expr* e = q->get_expr();
if (!is_predicate(e)) {
app_ref head = mk_fresh_head(e);
m_todo.push_back(bind_variables(m.mk_implies(e, head)));
m_proofs.push_back(0);
body = m.update_quantifier(q, head);
if (produce_proofs()) {
proof* def_intro = m.mk_def_intro(m_todo.back());
proof* def_proof = m.mk_apply_def(e, head, def_intro);
proofs.push_back(m.mk_nnf_neg(q, body.get(), 1, &def_proof));
m_proofs[m_proofs.size()-1] = def_intro;
}
}
}
}
void eliminate_quantifier_body(expr_ref_vector& body, proof_ref_vector& proofs) {
for (unsigned i = 0; i < body.size(); ++i) {
eliminate_quantifier_body(body[i], proofs);
}
}
app_ref mk_implies(expr_ref_vector const& body, expr* head) {
switch (body.size()) {
case 0:
return app_ref(to_app(head), m);
case 1:
return app_ref(m.mk_implies(body[0], head), m);
default:
return app_ref(m.mk_implies(m.mk_and(body.size(), body.c_ptr()), head), m);
}
}
proof_ref mk_congruence(proof* p1, expr_ref_vector const& body, expr* head, proof_ref_vector& defs) {
if (defs.empty()) {
return proof_ref(p1, m);
}
else {
SASSERT(p1);
proof_ref p2(m), p3(m);
app_ref fml = mk_implies(body, head);
expr* fact = m.get_fact(p1);
if (m.is_iff(fact)) {
p1 = m.mk_iff_oeq(p1);
fact = m.get_fact(p1);
}
VERIFY (m.is_oeq(fact) || m.is_eq(fact));
app* e2 = to_app(to_app(fact)->get_arg(1));
p2 = m.mk_oeq_congruence(e2, fml, defs.size(), defs.c_ptr());
p3 = mk_transitivity(p1, p2);
defs.reset();
return proof_ref(p3, m);
}
}
proof_ref mk_modus_ponens(proof* premise, proof* eq) {
proof_ref result(m);
result = m.mk_modus_ponens(premise, eq);
if (m.get_fact(premise) == m.get_fact(result)) {
result = premise;
}
return result;
}
proof* mk_transitivity(proof* p1, proof* p2) {
if (p1) {
app* f = to_app(m.get_fact(p1));
if (f->get_arg(0) == f->get_arg(1)) {
return p2;
}
}
if (p2) {
app* f = to_app(m.get_fact(p2));
if (f->get_arg(0) == f->get_arg(1)) {
return p1;
}
}
return m.mk_transitivity(p1, p2);
}
expr_ref bind_variables(expr* e) {
SASSERT(m_sorts.size() == m_names.size());
if (m_sorts.empty()) {
return expr_ref(e, m);
}
return expr_ref(m.mk_forall(m_sorts.size(), m_sorts.c_ptr(), m_names.c_ptr(), e), m);
}
};
hnf::hnf(ast_manager & m) {
m_imp = alloc(imp, m);
}
hnf::~hnf() {
dealloc(m_imp);
}
void hnf::operator()(expr * n, proof* p, expr_ref_vector & rs, proof_ref_vector& ps) {
m_imp->operator()(n, p, rs, ps);
TRACE("hnf",
ast_manager& m = rs.get_manager();
tout << mk_ismt2_pp(n, m) << "\nHNF result:\n";
for (unsigned i = 0; i < rs.size(); ++i) {
tout << mk_pp(rs[i].get(), m) << "\n";
}
);
}
void hnf::set_cancel(bool f) {
m_imp->set_cancel(f);
}
void hnf::set_name(symbol const& n) {
m_imp->set_name(n);
}
void hnf::reset() {
m_imp->reset();
}
func_decl_ref_vector const& hnf::get_fresh_predicates() {
return m_imp->get_fresh_predicates();
}

49
src/muz_qe/hnf.h Normal file
View file

@ -0,0 +1,49 @@
/*++
Copyright (c) 2013 Microsoft Corporation
Module Name:
hnf.h
Abstract:
Horn normal form convertion.
Author:
Notes:
Very similar to NNF.
--*/
#ifndef _HNF_H_
#define _HNF_H_
#include"ast.h"
#include"params.h"
#include"defined_names.h"
#include"proof_converter.h"
class hnf {
class imp;
imp * m_imp;
public:
hnf(ast_manager & m);
~hnf();
void operator()(expr * n, // [IN] expression that should be put into Horn NF
proof* p, // [IN] proof of n
expr_ref_vector & rs, // [OUT] resultant (conjunction) of expressions
proof_ref_vector& ps // [OUT] proofs of rs
);
void cancel() { set_cancel(true); }
void reset_cancel() { set_cancel(false); }
void set_cancel(bool f);
void set_name(symbol const& name);
void reset();
func_decl_ref_vector const& get_fresh_predicates();
};
#endif /* _HNF_H_ */

View file

@ -275,11 +275,6 @@ class horn_tactic : public tactic {
func_decl* query_pred = to_app(q)->get_decl();
m_ctx.set_output_predicate(query_pred);
m_ctx.get_rules(); // flush adding rules.
<<<<<<< HEAD
m_ctx.set_model_converter(mc);
m_ctx.set_proof_converter(pc);
=======
>>>>>>> 26f4d3be202606ff0189aefc103de187caf06d5d
m_ctx.apply_default_transformation();
if (m_ctx.get_params().slice()) {

View file

@ -90,13 +90,6 @@ lbool dl_interface::query(expr * query) {
func_decl_ref query_pred(m);
datalog::rule_ref_vector query_rules(rule_manager);
datalog::rule_ref query_rule(rule_manager);
model_converter_ref mc = datalog::mk_skip_model_converter();
proof_converter_ref pc;
if (m_ctx.get_params().generate_proof_trace()) {
pc = datalog::mk_skip_proof_converter();
}
m_ctx.set_model_converter(mc);
m_ctx.set_proof_converter(pc);
rule_manager.mk_query(query, query_pred, query_rules, query_rule);
m_ctx.add_rules(query_rules);
expr_ref bg_assertion = m_ctx.get_background_assertion();
@ -113,13 +106,8 @@ lbool dl_interface::query(expr * query) {
m_ctx.display_rules(tout);
);
<<<<<<< HEAD
m_ctx.set_output_predicate(query_pred);
=======
m_ctx.set_output_predicate(query_pred);
>>>>>>> 26f4d3be202606ff0189aefc103de187caf06d5d
m_ctx.apply_default_transformation();
if (m_ctx.get_params().slice()) {
@ -147,19 +135,10 @@ lbool dl_interface::query(expr * query) {
transf1.register_plugin(alloc(datalog::mk_coalesce, m_ctx));
transf2.register_plugin(alloc(datalog::mk_unfold, m_ctx));
if (m_ctx.get_params().coalesce_rules()) {
<<<<<<< HEAD
m_ctx.transform_rules(transf1);
=======
transformer1.register_plugin(alloc(datalog::mk_coalesce, m_ctx));
m_ctx.transform_rules(transformer1);
>>>>>>> 26f4d3be202606ff0189aefc103de187caf06d5d
}
while (num_unfolds > 0) {
<<<<<<< HEAD
m_ctx.transform_rules(transf2);
=======
m_ctx.transform_rules(transformer2);
>>>>>>> 26f4d3be202606ff0189aefc103de187caf06d5d
--num_unfolds;
}
}