mirror of
https://github.com/Z3Prover/z3
synced 2025-11-08 07:15:07 +00:00
parent
f9b6e4e247
commit
7c10fb83a0
4 changed files with 90 additions and 76 deletions
|
|
@ -1375,7 +1375,7 @@ namespace upolynomial {
|
|||
}
|
||||
return sign_changes(Q.size(), Q.c_ptr());
|
||||
#endif
|
||||
int prev_sign = 0;
|
||||
polynomial::sign prev_sign = polynomial::sign_zero;
|
||||
unsigned num_vars = 0;
|
||||
// a0 a1 a2 a3
|
||||
// a0 a0+a1 a0+a1+a2 a0+a1+a2+a3
|
||||
|
|
@ -1388,10 +1388,10 @@ namespace upolynomial {
|
|||
for (k = 1; k < sz - i; k++) {
|
||||
m().add(Q[k], Q[k-1], Q[k]);
|
||||
}
|
||||
int sign = sign_of(Q[k-1]);
|
||||
if (sign == 0)
|
||||
auto sign = sign_of(Q[k-1]);
|
||||
if (polynomial::is_zero(sign))
|
||||
continue;
|
||||
if (sign != prev_sign && prev_sign != 0) {
|
||||
if (sign != prev_sign && !polynomial::is_zero(prev_sign)) {
|
||||
num_vars++;
|
||||
if (num_vars > 1)
|
||||
return num_vars;
|
||||
|
|
@ -2342,7 +2342,6 @@ namespace upolynomial {
|
|||
#else
|
||||
scoped_numeral U(m());
|
||||
root_upper_bound(p1.size(), p1.c_ptr(), U);
|
||||
std::cout << "U: " << U << "\n";
|
||||
unsigned pos_k = m().log2(U) + 1;
|
||||
unsigned neg_k = pos_k;
|
||||
#endif
|
||||
|
|
@ -2752,18 +2751,15 @@ namespace upolynomial {
|
|||
The arguments sign_a and sign_b must contain the values returned by
|
||||
eval_sign_at(sz, p, a) and eval_sign_at(sz, p, b).
|
||||
*/
|
||||
bool manager::refine_core(unsigned sz, numeral const * p, int sign_a, mpbq_manager & bqm, mpbq & a, mpbq & b) {
|
||||
bool manager::refine_core(unsigned sz, numeral const * p, polynomial::sign sign_a, mpbq_manager & bqm, mpbq & a, mpbq & b) {
|
||||
SASSERT(sign_a == eval_sign_at(sz, p, a));
|
||||
int sign_b = -sign_a;
|
||||
(void)sign_b;
|
||||
SASSERT(sign_b == eval_sign_at(sz, p, b));
|
||||
SASSERT(sign_a == -sign_b);
|
||||
SASSERT(sign_a != 0 && sign_b != 0);
|
||||
SASSERT(-sign_a == eval_sign_at(sz, p, b));
|
||||
SASSERT(sign_a != 0);
|
||||
scoped_mpbq mid(bqm);
|
||||
bqm.add(a, b, mid);
|
||||
bqm.div2(mid);
|
||||
int sign_mid = eval_sign_at(sz, p, mid);
|
||||
if (sign_mid == 0) {
|
||||
auto sign_mid = eval_sign_at(sz, p, mid);
|
||||
if (polynomial::is_zero(sign_mid)) {
|
||||
swap(mid, a);
|
||||
return false;
|
||||
}
|
||||
|
|
@ -2771,15 +2767,15 @@ namespace upolynomial {
|
|||
swap(mid, a);
|
||||
return true;
|
||||
}
|
||||
SASSERT(sign_mid == sign_b);
|
||||
SASSERT(sign_mid == -sign_a);
|
||||
swap(mid, b);
|
||||
return true;
|
||||
}
|
||||
|
||||
// See refine_core
|
||||
bool manager::refine(unsigned sz, numeral const * p, mpbq_manager & bqm, mpbq & a, mpbq & b) {
|
||||
int sign_a = eval_sign_at(sz, p, a);
|
||||
SASSERT(sign_a != 0);
|
||||
polynomial::sign sign_a = eval_sign_at(sz, p, a);
|
||||
SASSERT(!polynomial::is_zero(sign_a));
|
||||
return refine_core(sz, p, sign_a, bqm, a, b);
|
||||
}
|
||||
|
||||
|
|
@ -2788,8 +2784,8 @@ namespace upolynomial {
|
|||
//
|
||||
// Return TRUE, if interval was squeezed, and new interval is stored in (a,b).
|
||||
// Return FALSE, if the actual root was found, it is stored in a.
|
||||
bool manager::refine_core(unsigned sz, numeral const * p, int sign_a, mpbq_manager & bqm, mpbq & a, mpbq & b, unsigned prec_k) {
|
||||
SASSERT(sign_a != 0);
|
||||
bool manager::refine_core(unsigned sz, numeral const * p, polynomial::sign sign_a, mpbq_manager & bqm, mpbq & a, mpbq & b, unsigned prec_k) {
|
||||
SASSERT(sign_a != polynomial::sign_zero);
|
||||
SASSERT(sign_a == eval_sign_at(sz, p, a));
|
||||
SASSERT(-sign_a == eval_sign_at(sz, p, b));
|
||||
scoped_mpbq w(bqm);
|
||||
|
|
@ -2806,16 +2802,16 @@ namespace upolynomial {
|
|||
}
|
||||
|
||||
bool manager::refine(unsigned sz, numeral const * p, mpbq_manager & bqm, mpbq & a, mpbq & b, unsigned prec_k) {
|
||||
int sign_a = eval_sign_at(sz, p, a);
|
||||
polynomial::sign sign_a = eval_sign_at(sz, p, a);
|
||||
SASSERT(eval_sign_at(sz, p, b) == -sign_a);
|
||||
SASSERT(sign_a != 0);
|
||||
return refine_core(sz, p, sign_a, bqm, a, b, prec_k);
|
||||
}
|
||||
|
||||
bool manager::convert_q2bq_interval(unsigned sz, numeral const * p, mpq const & a, mpq const & b, mpbq_manager & bqm, mpbq & c, mpbq & d) {
|
||||
int sign_a = eval_sign_at(sz, p, a);
|
||||
int sign_b = eval_sign_at(sz, p, b);
|
||||
SASSERT(sign_a != 0 && sign_b != 0);
|
||||
polynomial::sign sign_a = eval_sign_at(sz, p, a);
|
||||
polynomial::sign sign_b = eval_sign_at(sz, p, b);
|
||||
SASSERT(!polynomial::is_zero(sign_a) && !polynomial::is_zero(sign_b));
|
||||
SASSERT(sign_a == -sign_b);
|
||||
bool found_d = false;
|
||||
TRACE("convert_bug",
|
||||
|
|
@ -2846,8 +2842,8 @@ namespace upolynomial {
|
|||
}
|
||||
SASSERT(bqm.lt(upper, b));
|
||||
while (true) {
|
||||
int sign_upper = eval_sign_at(sz, p, upper);
|
||||
if (sign_upper == 0) {
|
||||
auto sign_upper = eval_sign_at(sz, p, upper);
|
||||
if (polynomial::is_zero(sign_upper)) {
|
||||
// found root
|
||||
bqm.swap(c, upper);
|
||||
bqm.del(lower); bqm.del(upper);
|
||||
|
|
@ -2891,8 +2887,8 @@ namespace upolynomial {
|
|||
SASSERT(bqm.lt(lower, upper));
|
||||
SASSERT(bqm.lt(lower, b));
|
||||
while (true) {
|
||||
int sign_lower = eval_sign_at(sz, p, lower);
|
||||
if (sign_lower == 0) {
|
||||
polynomial::sign sign_lower = eval_sign_at(sz, p, lower);
|
||||
if (polynomial::is_zero(sign_lower)) {
|
||||
// found root
|
||||
bqm.swap(c, lower);
|
||||
bqm.del(lower); bqm.del(upper);
|
||||
|
|
@ -2923,14 +2919,12 @@ namespace upolynomial {
|
|||
else {
|
||||
SASSERT(sign_a == eval_sign_at(sz, p, a));
|
||||
}
|
||||
int sign_b = -sign_a;
|
||||
(void) sign_b;
|
||||
SASSERT(sign_b == eval_sign_at(sz, p, b));
|
||||
SASSERT(sign_a != 0 && sign_b != 0);
|
||||
SASSERT(-sign_a == eval_sign_at(sz, p, b));
|
||||
SASSERT(sign_a != 0);
|
||||
if (has_zero_roots(sz, p)) {
|
||||
return false; // zero is the root
|
||||
}
|
||||
int sign_zero = eval_sign_at_zero(sz, p);
|
||||
auto sign_zero = eval_sign_at_zero(sz, p);
|
||||
if (sign_a == sign_zero) {
|
||||
m.reset(a);
|
||||
}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue