3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-23 17:15:31 +00:00

nra to nla

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2020-05-07 17:12:38 -07:00
parent bd0180925b
commit 7a79397769
6 changed files with 312 additions and 416 deletions

View file

@ -24,6 +24,8 @@
#include "math/lp/horner.h"
#include "math/lp/nla_intervals.h"
#include "math/grobner/pdd_solver.h"
#include "math/lp/nla_lemma.h"
#include "nlsat/nlsat_solver.h"
namespace nla {
@ -66,18 +68,6 @@ public:
const rational& rs() const { return m_rs; };
};
class lemma {
vector<ineq> m_ineqs;
lp::explanation m_expl;
public:
void push_back(const ineq& i) { m_ineqs.push_back(i);}
size_t size() const { return m_ineqs.size() + m_expl.size(); }
const vector<ineq>& ineqs() const { return m_ineqs; }
vector<ineq>& ineqs() { return m_ineqs; }
lp::explanation& expl() { return m_expl; }
const lp::explanation& expl() const { return m_expl; }
bool is_conflict() const { return m_ineqs.empty() && !m_expl.empty(); }
};
class core;
//

View file

@ -12,8 +12,12 @@
#include "math/lp/var_eqs.h"
#include "math/lp/factorization.h"
#include "math/lp/nla_solver.h"
#include "math/lp/nla_core.h"
namespace nla {
nla_settings& solver::settings() { return m_core->m_nla_settings; }
void solver::add_monic(lpvar v, unsigned sz, lpvar const* vs) {
m_core->add_monic(v, sz, vs);
}
@ -36,7 +40,8 @@ void solver::pop(unsigned n) {
m_core->pop(n);
}
solver::solver(lp::lar_solver& s): m_core(alloc(core, s, m_res_limit)) {
solver::solver(lp::lar_solver& s): m_core(alloc(core, s, m_res_limit)),
m_nra(s, m_res_limit, *m_core) {
}
bool solver::influences_nl_var(lpvar j) const {

View file

@ -11,23 +11,27 @@ Author:
#include "math/lp/lp_settings.h"
#include "util/rlimit.h"
#include "util/params.h"
#include "nlsat/nlsat_solver.h"
#include "math/lp/lar_solver.h"
#include "math/lp/monic.h"
#include "math/lp/nla_core.h"
#include "math/lp/nla_settings.h"
#include "math/lp/nla_lemma.h"
namespace nra {
class solver;
}
namespace nla {
class core;
// nonlinear integer incremental linear solver
class solver {
reslimit m_res_limit;
core* m_core;
nra::solver m_nra;
public:
void add_monic(lpvar v, unsigned sz, lpvar const* vs);
solver(lp::lar_solver& s);
~solver();
nla_settings& settings() { return m_core->m_nla_settings; }
nla_settings& settings();
void push();
void pop(unsigned scopes);
bool need_check();

View file

@ -9,272 +9,273 @@
#include "math/polynomial/polynomial.h"
#include "math/polynomial/algebraic_numbers.h"
#include "util/map.h"
#include "math/lp/monic.h"
#include "math/lp/nla_core.h"
namespace nra {
typedef nla::mon_eq mon_eq;
typedef nla::variable_map_type variable_map_type;
struct solver::imp {
lp::lar_solver& s;
reslimit& m_limit;
params_ref m_params;
u_map<polynomial::var> m_lp2nl; // map from lar_solver variables to nlsat::solver variables
scoped_ptr<nlsat::solver> m_nlsat;
scoped_ptr<scoped_anum> m_zero;
vector<mon_eq> m_monics;
unsigned_vector m_monics_lim;
mutable variable_map_type m_variable_values; // current model
struct solver::imp {
lp::lar_solver& s;
reslimit& m_limit;
params_ref m_params;
u_map<polynomial::var> m_lp2nl; // map from lar_solver variables to nlsat::solver variables
scoped_ptr<nlsat::solver> m_nlsat;
scoped_ptr<scoped_anum> m_zero;
vector<mon_eq> m_monics;
unsigned_vector m_monics_lim;
mutable variable_map_type m_variable_values; // current model
nla::core& m_nla_core;
imp(lp::lar_solver& s, reslimit& lim, params_ref const& p, nla::core& nla_core):
s(s),
m_limit(lim),
m_params(p),
m_nla_core(nla_core) {}
imp(lp::lar_solver& s, reslimit& lim, params_ref const& p):
s(s),
m_limit(lim),
m_params(p) {
}
bool need_check() {
return !m_monics.empty() && !check_assignments(m_monics, s, m_variable_values);
}
bool need_check() {
return !m_monics.empty() && !check_assignments(m_monics, s, m_variable_values);
}
void add(lp::var_index v, unsigned sz, lp::var_index const* vs) {
m_monics.push_back(mon_eq(v, sz, vs));
}
void add(lp::var_index v, unsigned sz, lp::var_index const* vs) {
m_monics.push_back(mon_eq(v, sz, vs));
}
void push() {
m_monics_lim.push_back(m_monics.size());
}
void push() {
m_monics_lim.push_back(m_monics.size());
}
void pop(unsigned n) {
if (n == 0) return;
m_monics.shrink(m_monics_lim[m_monics_lim.size() - n]);
m_monics_lim.shrink(m_monics_lim.size() - n);
}
void pop(unsigned n) {
if (n == 0) return;
m_monics.shrink(m_monics_lim[m_monics_lim.size() - n]);
m_monics_lim.shrink(m_monics_lim.size() - n);
}
/*
\brief Check if polynomials are well defined.
multiply values for vs and check if they are equal to value for v.
epsilon has been computed.
*/
/* bool check_assignment(mon_eq const& m) const {
rational r1 = m_variable_values[m.m_v];
rational r2(1);
for (auto w : m.vars()) {
r2 *= m_variable_values[w];
}
return r1 == r2;
}
/*
\brief Check if polynomials are well defined.
multiply values for vs and check if they are equal to value for v.
epsilon has been computed.
*/
/* bool check_assignment(mon_eq const& m) const {
rational r1 = m_variable_values[m.m_v];
rational r2(1);
for (auto w : m.vars()) {
r2 *= m_variable_values[w];
}
return r1 == r2;
}
bool check_assignments() const {
s.get_model(m_variable_values);
for (auto const& m : m_monics) {
if (!check_assignment(m)) return false;
}
return true;
}
*/
/**
\brief one-shot nlsat check.
A one shot checker is the least functionality that can
enable non-linear reasoning.
In addition to checking satisfiability we would also need
to identify equalities in the model that should be assumed
with the remaining solver.
bool check_assignments() const {
s.get_model(m_variable_values);
for (auto const& m : m_monics) {
if (!check_assignment(m)) return false;
}
return true;
}
*/
/**
\brief one-shot nlsat check.
A one shot checker is the least functionality that can
enable non-linear reasoning.
In addition to checking satisfiability we would also need
to identify equalities in the model that should be assumed
with the remaining solver.
TBD: use partial model from lra_solver to prime the state of nlsat_solver.
TBD: explore more incremental ways of applying nlsat (using assumptions)
*/
lbool check(lp::explanation& ex) {
SASSERT(need_check());
m_nlsat = alloc(nlsat::solver, m_limit, m_params, false);
m_zero = alloc(scoped_anum, am());
m_lp2nl.reset();
vector<nlsat::assumption, false> core;
TBD: use partial model from lra_solver to prime the state of nlsat_solver.
TBD: explore more incremental ways of applying nlsat (using assumptions)
*/
lbool check(lp::explanation& ex) {
SASSERT(need_check());
m_nlsat = alloc(nlsat::solver, m_limit, m_params, false);
m_zero = alloc(scoped_anum, am());
m_lp2nl.reset();
vector<nlsat::assumption, false> core;
// add linear inequalities from lra_solver
for (lp::constraint_index ci : s.constraints().indices()) {
add_constraint(ci);
// add linear inequalities from lra_solver
for (lp::constraint_index ci : s.constraints().indices()) {
add_constraint(ci);
}
// add polynomial definitions.
for (auto const& m : m_monics) {
add_monic_eq(m);
}
// TBD: add variable bounds?
lbool r = l_undef;
try {
r = m_nlsat->check();
}
catch (z3_exception&) {
if (m_limit.get_cancel_flag()) {
r = l_undef;
}
// add polynomial definitions.
for (auto const& m : m_monics) {
add_monic_eq(m);
else {
throw;
}
// TBD: add variable bounds?
lbool r = l_undef;
try {
r = m_nlsat->check();
}
TRACE("arith", display(tout); m_nlsat->display(tout << r << "\n"););
switch (r) {
case l_true:
break;
case l_false:
ex.clear();
m_nlsat->get_core(core);
for (auto c : core) {
unsigned idx = static_cast<unsigned>(static_cast<imp*>(c) - this);
ex.push_justification(idx, rational(1));
TRACE("arith", tout << "ex: " << idx << "\n";);
}
catch (z3_exception&) {
if (m_limit.get_cancel_flag()) {
r = l_undef;
}
else {
throw;
}
}
TRACE("arith", display(tout); m_nlsat->display(tout << r << "\n"););
switch (r) {
case l_true:
break;
case l_false:
ex.clear();
m_nlsat->get_core(core);
for (auto c : core) {
unsigned idx = static_cast<unsigned>(static_cast<imp*>(c) - this);
ex.push_justification(idx, rational(1));
TRACE("arith", tout << "ex: " << idx << "\n";);
}
break;
break;
case l_undef:
break;
}
return r;
}
case l_undef:
break;
}
return r;
}
void add_monic_eq(mon_eq const& m) {
polynomial::manager& pm = m_nlsat->pm();
svector<polynomial::var> vars;
void add_monic_eq(mon_eq const& m) {
polynomial::manager& pm = m_nlsat->pm();
svector<polynomial::var> vars;
for (auto v : m.vars()) {
vars.push_back(lp2nl(v));
}
polynomial::monomial_ref m1(pm.mk_monomial(vars.size(), vars.c_ptr()), pm);
polynomial::monomial_ref m2(pm.mk_monomial(lp2nl(m.var()), 1), pm);
polynomial::monomial * mls[2] = { m1, m2 };
polynomial::scoped_numeral_vector coeffs(pm.m());
coeffs.push_back(mpz(1));
coeffs.push_back(mpz(-1));
polynomial::polynomial_ref p(pm.mk_polynomial(2, coeffs.c_ptr(), mls), pm);
polynomial::polynomial* ps[1] = { p };
bool even[1] = { false };
nlsat::literal lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, even);
m_nlsat->mk_clause(1, &lit, nullptr);
}
void add_constraint(unsigned idx) {
auto& c = s.constraints()[idx];
auto& pm = m_nlsat->pm();
auto k = c.kind();
auto rhs = c.rhs();
auto lhs = c.coeffs();
auto sz = lhs.size();
svector<polynomial::var> vars;
rational den = denominator(rhs);
for (auto kv : lhs) {
vars.push_back(lp2nl(kv.second));
den = lcm(den, denominator(kv.first));
}
vector<rational> coeffs;
for (auto kv : lhs) {
coeffs.push_back(den * kv.first);
}
rhs *= den;
polynomial::polynomial_ref p(pm.mk_linear(sz, coeffs.c_ptr(), vars.c_ptr(), -rhs), pm);
polynomial::polynomial* ps[1] = { p };
bool is_even[1] = { false };
nlsat::literal lit;
nlsat::assumption a = this + idx;
switch (k) {
case lp::lconstraint_kind::LE:
lit = ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
break;
case lp::lconstraint_kind::GE:
lit = ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
break;
case lp::lconstraint_kind::LT:
lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
break;
case lp::lconstraint_kind::GT:
lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
break;
case lp::lconstraint_kind::EQ:
lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, is_even);
break;
default:
lp_assert(false); // unreachable
}
m_nlsat->mk_clause(1, &lit, a);
}
bool is_int(lp::var_index v) {
return s.var_is_int(v);
}
polynomial::var lp2nl(lp::var_index v) {
polynomial::var r;
if (!m_lp2nl.find(v, r)) {
r = m_nlsat->mk_var(is_int(v));
m_lp2nl.insert(v, r);
TRACE("arith", tout << "j" << v << " := x" << r << "\n";);
}
return r;
}
nlsat::anum const& value(lp::var_index v) const {
polynomial::var pv;
if (m_lp2nl.find(v, pv))
return m_nlsat->value(pv);
else
return *m_zero;
}
nlsat::anum_manager& am() {
return m_nlsat->am();
}
std::ostream& display(std::ostream& out) const {
for (auto m : m_monics) {
out << "j" << m.var() << " = ";
for (auto v : m.vars()) {
vars.push_back(lp2nl(v));
out << "j" << v << " ";
}
polynomial::monomial_ref m1(pm.mk_monomial(vars.size(), vars.c_ptr()), pm);
polynomial::monomial_ref m2(pm.mk_monomial(lp2nl(m.var()), 1), pm);
polynomial::monomial * mls[2] = { m1, m2 };
polynomial::scoped_numeral_vector coeffs(pm.m());
coeffs.push_back(mpz(1));
coeffs.push_back(mpz(-1));
polynomial::polynomial_ref p(pm.mk_polynomial(2, coeffs.c_ptr(), mls), pm);
polynomial::polynomial* ps[1] = { p };
bool even[1] = { false };
nlsat::literal lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, even);
m_nlsat->mk_clause(1, &lit, nullptr);
out << "\n";
}
void add_constraint(unsigned idx) {
auto& c = s.constraints()[idx];
auto& pm = m_nlsat->pm();
auto k = c.kind();
auto rhs = c.rhs();
auto lhs = c.coeffs();
auto sz = lhs.size();
svector<polynomial::var> vars;
rational den = denominator(rhs);
for (auto kv : lhs) {
vars.push_back(lp2nl(kv.second));
den = lcm(den, denominator(kv.first));
}
vector<rational> coeffs;
for (auto kv : lhs) {
coeffs.push_back(den * kv.first);
}
rhs *= den;
polynomial::polynomial_ref p(pm.mk_linear(sz, coeffs.c_ptr(), vars.c_ptr(), -rhs), pm);
polynomial::polynomial* ps[1] = { p };
bool is_even[1] = { false };
nlsat::literal lit;
nlsat::assumption a = this + idx;
switch (k) {
case lp::lconstraint_kind::LE:
lit = ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
break;
case lp::lconstraint_kind::GE:
lit = ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
break;
case lp::lconstraint_kind::LT:
lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
break;
case lp::lconstraint_kind::GT:
lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
break;
case lp::lconstraint_kind::EQ:
lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, is_even);
break;
default:
lp_assert(false); // unreachable
}
m_nlsat->mk_clause(1, &lit, a);
}
bool is_int(lp::var_index v) {
return s.var_is_int(v);
}
polynomial::var lp2nl(lp::var_index v) {
polynomial::var r;
if (!m_lp2nl.find(v, r)) {
r = m_nlsat->mk_var(is_int(v));
m_lp2nl.insert(v, r);
TRACE("arith", tout << "j" << v << " := x" << r << "\n";);
}
return r;
}
nlsat::anum const& value(lp::var_index v) const {
polynomial::var pv;
if (m_lp2nl.find(v, pv))
return m_nlsat->value(pv);
else
return *m_zero;
}
nlsat::anum_manager& am() {
return m_nlsat->am();
}
std::ostream& display(std::ostream& out) const {
for (auto m : m_monics) {
out << "j" << m.var() << " = ";
for (auto v : m.vars()) {
out << "j" << v << " ";
}
out << "\n";
}
return out;
}
};
solver::solver(lp::lar_solver& s, reslimit& lim, params_ref const& p) {
m_imp = alloc(imp, s, lim, p);
return out;
}
};
solver::~solver() {
dealloc(m_imp);
}
solver::solver(lp::lar_solver& s, reslimit& lim, nla::core & nla_core, params_ref const& p) {
m_imp = alloc(imp, s, lim, p, nla_core);
}
void solver::add_monic(lp::var_index v, unsigned sz, lp::var_index const* vs) {
m_imp->add(v, sz, vs);
}
solver::~solver() {
dealloc(m_imp);
}
lbool solver::check(lp::explanation& ex) {
return m_imp->check(ex);
}
void solver::add_monic(lp::var_index v, unsigned sz, lp::var_index const* vs) {
m_imp->add(v, sz, vs);
}
bool solver::need_check() {
return m_imp->need_check();
}
lbool solver::check(lp::explanation& ex) {
return m_imp->check(ex);
}
void solver::push() {
m_imp->push();
}
bool solver::need_check() {
return m_imp->need_check();
}
void solver::pop(unsigned n) {
m_imp->pop(n);
}
void solver::push() {
m_imp->push();
}
std::ostream& solver::display(std::ostream& out) const {
return m_imp->display(out);
}
void solver::pop(unsigned n) {
m_imp->pop(n);
}
nlsat::anum const& solver::value(lp::var_index v) const {
return m_imp->value(v);
}
std::ostream& solver::display(std::ostream& out) const {
return m_imp->display(out);
}
nlsat::anum_manager& solver::am() {
return m_imp->am();
}
nlsat::anum const& solver::value(lp::var_index v) const {
return m_imp->value(v);
}
nlsat::anum_manager& solver::am() {
return m_imp->am();
}
}

View file

@ -25,7 +25,7 @@ namespace nra {
public:
solver(lp::lar_solver& s, reslimit& lim, params_ref const& p = params_ref());
solver(lp::lar_solver& s, reslimit& lim, nla::core & nla_core, params_ref const& p = params_ref());
~solver();