3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-06 09:34:08 +00:00

nra to nla

Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
Lev Nachmanson 2020-05-07 17:12:38 -07:00
parent bd0180925b
commit 7a79397769
6 changed files with 312 additions and 416 deletions

View file

@ -24,6 +24,8 @@
#include "math/lp/horner.h"
#include "math/lp/nla_intervals.h"
#include "math/grobner/pdd_solver.h"
#include "math/lp/nla_lemma.h"
#include "nlsat/nlsat_solver.h"
namespace nla {
@ -66,18 +68,6 @@ public:
const rational& rs() const { return m_rs; };
};
class lemma {
vector<ineq> m_ineqs;
lp::explanation m_expl;
public:
void push_back(const ineq& i) { m_ineqs.push_back(i);}
size_t size() const { return m_ineqs.size() + m_expl.size(); }
const vector<ineq>& ineqs() const { return m_ineqs; }
vector<ineq>& ineqs() { return m_ineqs; }
lp::explanation& expl() { return m_expl; }
const lp::explanation& expl() const { return m_expl; }
bool is_conflict() const { return m_ineqs.empty() && !m_expl.empty(); }
};
class core;
//

View file

@ -12,8 +12,12 @@
#include "math/lp/var_eqs.h"
#include "math/lp/factorization.h"
#include "math/lp/nla_solver.h"
#include "math/lp/nla_core.h"
namespace nla {
nla_settings& solver::settings() { return m_core->m_nla_settings; }
void solver::add_monic(lpvar v, unsigned sz, lpvar const* vs) {
m_core->add_monic(v, sz, vs);
}
@ -36,7 +40,8 @@ void solver::pop(unsigned n) {
m_core->pop(n);
}
solver::solver(lp::lar_solver& s): m_core(alloc(core, s, m_res_limit)) {
solver::solver(lp::lar_solver& s): m_core(alloc(core, s, m_res_limit)),
m_nra(s, m_res_limit, *m_core) {
}
bool solver::influences_nl_var(lpvar j) const {

View file

@ -11,23 +11,27 @@ Author:
#include "math/lp/lp_settings.h"
#include "util/rlimit.h"
#include "util/params.h"
#include "nlsat/nlsat_solver.h"
#include "math/lp/lar_solver.h"
#include "math/lp/monic.h"
#include "math/lp/nla_core.h"
#include "math/lp/nla_settings.h"
#include "math/lp/nla_lemma.h"
namespace nra {
class solver;
}
namespace nla {
class core;
// nonlinear integer incremental linear solver
class solver {
reslimit m_res_limit;
core* m_core;
nra::solver m_nra;
public:
void add_monic(lpvar v, unsigned sz, lpvar const* vs);
solver(lp::lar_solver& s);
~solver();
nla_settings& settings() { return m_core->m_nla_settings; }
nla_settings& settings();
void push();
void pop(unsigned scopes);
bool need_check();

View file

@ -9,272 +9,273 @@
#include "math/polynomial/polynomial.h"
#include "math/polynomial/algebraic_numbers.h"
#include "util/map.h"
#include "math/lp/monic.h"
#include "math/lp/nla_core.h"
namespace nra {
typedef nla::mon_eq mon_eq;
typedef nla::variable_map_type variable_map_type;
struct solver::imp {
lp::lar_solver& s;
reslimit& m_limit;
params_ref m_params;
u_map<polynomial::var> m_lp2nl; // map from lar_solver variables to nlsat::solver variables
scoped_ptr<nlsat::solver> m_nlsat;
scoped_ptr<scoped_anum> m_zero;
vector<mon_eq> m_monics;
unsigned_vector m_monics_lim;
mutable variable_map_type m_variable_values; // current model
struct solver::imp {
lp::lar_solver& s;
reslimit& m_limit;
params_ref m_params;
u_map<polynomial::var> m_lp2nl; // map from lar_solver variables to nlsat::solver variables
scoped_ptr<nlsat::solver> m_nlsat;
scoped_ptr<scoped_anum> m_zero;
vector<mon_eq> m_monics;
unsigned_vector m_monics_lim;
mutable variable_map_type m_variable_values; // current model
nla::core& m_nla_core;
imp(lp::lar_solver& s, reslimit& lim, params_ref const& p, nla::core& nla_core):
s(s),
m_limit(lim),
m_params(p),
m_nla_core(nla_core) {}
imp(lp::lar_solver& s, reslimit& lim, params_ref const& p):
s(s),
m_limit(lim),
m_params(p) {
}
bool need_check() {
return !m_monics.empty() && !check_assignments(m_monics, s, m_variable_values);
}
bool need_check() {
return !m_monics.empty() && !check_assignments(m_monics, s, m_variable_values);
}
void add(lp::var_index v, unsigned sz, lp::var_index const* vs) {
m_monics.push_back(mon_eq(v, sz, vs));
}
void add(lp::var_index v, unsigned sz, lp::var_index const* vs) {
m_monics.push_back(mon_eq(v, sz, vs));
}
void push() {
m_monics_lim.push_back(m_monics.size());
}
void push() {
m_monics_lim.push_back(m_monics.size());
}
void pop(unsigned n) {
if (n == 0) return;
m_monics.shrink(m_monics_lim[m_monics_lim.size() - n]);
m_monics_lim.shrink(m_monics_lim.size() - n);
}
void pop(unsigned n) {
if (n == 0) return;
m_monics.shrink(m_monics_lim[m_monics_lim.size() - n]);
m_monics_lim.shrink(m_monics_lim.size() - n);
}
/*
\brief Check if polynomials are well defined.
multiply values for vs and check if they are equal to value for v.
epsilon has been computed.
*/
/* bool check_assignment(mon_eq const& m) const {
rational r1 = m_variable_values[m.m_v];
rational r2(1);
for (auto w : m.vars()) {
r2 *= m_variable_values[w];
}
return r1 == r2;
}
/*
\brief Check if polynomials are well defined.
multiply values for vs and check if they are equal to value for v.
epsilon has been computed.
*/
/* bool check_assignment(mon_eq const& m) const {
rational r1 = m_variable_values[m.m_v];
rational r2(1);
for (auto w : m.vars()) {
r2 *= m_variable_values[w];
}
return r1 == r2;
}
bool check_assignments() const {
s.get_model(m_variable_values);
for (auto const& m : m_monics) {
if (!check_assignment(m)) return false;
}
return true;
}
*/
/**
\brief one-shot nlsat check.
A one shot checker is the least functionality that can
enable non-linear reasoning.
In addition to checking satisfiability we would also need
to identify equalities in the model that should be assumed
with the remaining solver.
bool check_assignments() const {
s.get_model(m_variable_values);
for (auto const& m : m_monics) {
if (!check_assignment(m)) return false;
}
return true;
}
*/
/**
\brief one-shot nlsat check.
A one shot checker is the least functionality that can
enable non-linear reasoning.
In addition to checking satisfiability we would also need
to identify equalities in the model that should be assumed
with the remaining solver.
TBD: use partial model from lra_solver to prime the state of nlsat_solver.
TBD: explore more incremental ways of applying nlsat (using assumptions)
*/
lbool check(lp::explanation& ex) {
SASSERT(need_check());
m_nlsat = alloc(nlsat::solver, m_limit, m_params, false);
m_zero = alloc(scoped_anum, am());
m_lp2nl.reset();
vector<nlsat::assumption, false> core;
TBD: use partial model from lra_solver to prime the state of nlsat_solver.
TBD: explore more incremental ways of applying nlsat (using assumptions)
*/
lbool check(lp::explanation& ex) {
SASSERT(need_check());
m_nlsat = alloc(nlsat::solver, m_limit, m_params, false);
m_zero = alloc(scoped_anum, am());
m_lp2nl.reset();
vector<nlsat::assumption, false> core;
// add linear inequalities from lra_solver
for (lp::constraint_index ci : s.constraints().indices()) {
add_constraint(ci);
// add linear inequalities from lra_solver
for (lp::constraint_index ci : s.constraints().indices()) {
add_constraint(ci);
}
// add polynomial definitions.
for (auto const& m : m_monics) {
add_monic_eq(m);
}
// TBD: add variable bounds?
lbool r = l_undef;
try {
r = m_nlsat->check();
}
catch (z3_exception&) {
if (m_limit.get_cancel_flag()) {
r = l_undef;
}
// add polynomial definitions.
for (auto const& m : m_monics) {
add_monic_eq(m);
else {
throw;
}
// TBD: add variable bounds?
lbool r = l_undef;
try {
r = m_nlsat->check();
}
TRACE("arith", display(tout); m_nlsat->display(tout << r << "\n"););
switch (r) {
case l_true:
break;
case l_false:
ex.clear();
m_nlsat->get_core(core);
for (auto c : core) {
unsigned idx = static_cast<unsigned>(static_cast<imp*>(c) - this);
ex.push_justification(idx, rational(1));
TRACE("arith", tout << "ex: " << idx << "\n";);
}
catch (z3_exception&) {
if (m_limit.get_cancel_flag()) {
r = l_undef;
}
else {
throw;
}
}
TRACE("arith", display(tout); m_nlsat->display(tout << r << "\n"););
switch (r) {
case l_true:
break;
case l_false:
ex.clear();
m_nlsat->get_core(core);
for (auto c : core) {
unsigned idx = static_cast<unsigned>(static_cast<imp*>(c) - this);
ex.push_justification(idx, rational(1));
TRACE("arith", tout << "ex: " << idx << "\n";);
}
break;
break;
case l_undef:
break;
}
return r;
}
case l_undef:
break;
}
return r;
}
void add_monic_eq(mon_eq const& m) {
polynomial::manager& pm = m_nlsat->pm();
svector<polynomial::var> vars;
void add_monic_eq(mon_eq const& m) {
polynomial::manager& pm = m_nlsat->pm();
svector<polynomial::var> vars;
for (auto v : m.vars()) {
vars.push_back(lp2nl(v));
}
polynomial::monomial_ref m1(pm.mk_monomial(vars.size(), vars.c_ptr()), pm);
polynomial::monomial_ref m2(pm.mk_monomial(lp2nl(m.var()), 1), pm);
polynomial::monomial * mls[2] = { m1, m2 };
polynomial::scoped_numeral_vector coeffs(pm.m());
coeffs.push_back(mpz(1));
coeffs.push_back(mpz(-1));
polynomial::polynomial_ref p(pm.mk_polynomial(2, coeffs.c_ptr(), mls), pm);
polynomial::polynomial* ps[1] = { p };
bool even[1] = { false };
nlsat::literal lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, even);
m_nlsat->mk_clause(1, &lit, nullptr);
}
void add_constraint(unsigned idx) {
auto& c = s.constraints()[idx];
auto& pm = m_nlsat->pm();
auto k = c.kind();
auto rhs = c.rhs();
auto lhs = c.coeffs();
auto sz = lhs.size();
svector<polynomial::var> vars;
rational den = denominator(rhs);
for (auto kv : lhs) {
vars.push_back(lp2nl(kv.second));
den = lcm(den, denominator(kv.first));
}
vector<rational> coeffs;
for (auto kv : lhs) {
coeffs.push_back(den * kv.first);
}
rhs *= den;
polynomial::polynomial_ref p(pm.mk_linear(sz, coeffs.c_ptr(), vars.c_ptr(), -rhs), pm);
polynomial::polynomial* ps[1] = { p };
bool is_even[1] = { false };
nlsat::literal lit;
nlsat::assumption a = this + idx;
switch (k) {
case lp::lconstraint_kind::LE:
lit = ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
break;
case lp::lconstraint_kind::GE:
lit = ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
break;
case lp::lconstraint_kind::LT:
lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
break;
case lp::lconstraint_kind::GT:
lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
break;
case lp::lconstraint_kind::EQ:
lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, is_even);
break;
default:
lp_assert(false); // unreachable
}
m_nlsat->mk_clause(1, &lit, a);
}
bool is_int(lp::var_index v) {
return s.var_is_int(v);
}
polynomial::var lp2nl(lp::var_index v) {
polynomial::var r;
if (!m_lp2nl.find(v, r)) {
r = m_nlsat->mk_var(is_int(v));
m_lp2nl.insert(v, r);
TRACE("arith", tout << "j" << v << " := x" << r << "\n";);
}
return r;
}
nlsat::anum const& value(lp::var_index v) const {
polynomial::var pv;
if (m_lp2nl.find(v, pv))
return m_nlsat->value(pv);
else
return *m_zero;
}
nlsat::anum_manager& am() {
return m_nlsat->am();
}
std::ostream& display(std::ostream& out) const {
for (auto m : m_monics) {
out << "j" << m.var() << " = ";
for (auto v : m.vars()) {
vars.push_back(lp2nl(v));
out << "j" << v << " ";
}
polynomial::monomial_ref m1(pm.mk_monomial(vars.size(), vars.c_ptr()), pm);
polynomial::monomial_ref m2(pm.mk_monomial(lp2nl(m.var()), 1), pm);
polynomial::monomial * mls[2] = { m1, m2 };
polynomial::scoped_numeral_vector coeffs(pm.m());
coeffs.push_back(mpz(1));
coeffs.push_back(mpz(-1));
polynomial::polynomial_ref p(pm.mk_polynomial(2, coeffs.c_ptr(), mls), pm);
polynomial::polynomial* ps[1] = { p };
bool even[1] = { false };
nlsat::literal lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, even);
m_nlsat->mk_clause(1, &lit, nullptr);
out << "\n";
}
void add_constraint(unsigned idx) {
auto& c = s.constraints()[idx];
auto& pm = m_nlsat->pm();
auto k = c.kind();
auto rhs = c.rhs();
auto lhs = c.coeffs();
auto sz = lhs.size();
svector<polynomial::var> vars;
rational den = denominator(rhs);
for (auto kv : lhs) {
vars.push_back(lp2nl(kv.second));
den = lcm(den, denominator(kv.first));
}
vector<rational> coeffs;
for (auto kv : lhs) {
coeffs.push_back(den * kv.first);
}
rhs *= den;
polynomial::polynomial_ref p(pm.mk_linear(sz, coeffs.c_ptr(), vars.c_ptr(), -rhs), pm);
polynomial::polynomial* ps[1] = { p };
bool is_even[1] = { false };
nlsat::literal lit;
nlsat::assumption a = this + idx;
switch (k) {
case lp::lconstraint_kind::LE:
lit = ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
break;
case lp::lconstraint_kind::GE:
lit = ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
break;
case lp::lconstraint_kind::LT:
lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
break;
case lp::lconstraint_kind::GT:
lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
break;
case lp::lconstraint_kind::EQ:
lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, is_even);
break;
default:
lp_assert(false); // unreachable
}
m_nlsat->mk_clause(1, &lit, a);
}
bool is_int(lp::var_index v) {
return s.var_is_int(v);
}
polynomial::var lp2nl(lp::var_index v) {
polynomial::var r;
if (!m_lp2nl.find(v, r)) {
r = m_nlsat->mk_var(is_int(v));
m_lp2nl.insert(v, r);
TRACE("arith", tout << "j" << v << " := x" << r << "\n";);
}
return r;
}
nlsat::anum const& value(lp::var_index v) const {
polynomial::var pv;
if (m_lp2nl.find(v, pv))
return m_nlsat->value(pv);
else
return *m_zero;
}
nlsat::anum_manager& am() {
return m_nlsat->am();
}
std::ostream& display(std::ostream& out) const {
for (auto m : m_monics) {
out << "j" << m.var() << " = ";
for (auto v : m.vars()) {
out << "j" << v << " ";
}
out << "\n";
}
return out;
}
};
solver::solver(lp::lar_solver& s, reslimit& lim, params_ref const& p) {
m_imp = alloc(imp, s, lim, p);
return out;
}
};
solver::~solver() {
dealloc(m_imp);
}
solver::solver(lp::lar_solver& s, reslimit& lim, nla::core & nla_core, params_ref const& p) {
m_imp = alloc(imp, s, lim, p, nla_core);
}
void solver::add_monic(lp::var_index v, unsigned sz, lp::var_index const* vs) {
m_imp->add(v, sz, vs);
}
solver::~solver() {
dealloc(m_imp);
}
lbool solver::check(lp::explanation& ex) {
return m_imp->check(ex);
}
void solver::add_monic(lp::var_index v, unsigned sz, lp::var_index const* vs) {
m_imp->add(v, sz, vs);
}
bool solver::need_check() {
return m_imp->need_check();
}
lbool solver::check(lp::explanation& ex) {
return m_imp->check(ex);
}
void solver::push() {
m_imp->push();
}
bool solver::need_check() {
return m_imp->need_check();
}
void solver::pop(unsigned n) {
m_imp->pop(n);
}
void solver::push() {
m_imp->push();
}
std::ostream& solver::display(std::ostream& out) const {
return m_imp->display(out);
}
void solver::pop(unsigned n) {
m_imp->pop(n);
}
nlsat::anum const& solver::value(lp::var_index v) const {
return m_imp->value(v);
}
std::ostream& solver::display(std::ostream& out) const {
return m_imp->display(out);
}
nlsat::anum_manager& solver::am() {
return m_imp->am();
}
nlsat::anum const& solver::value(lp::var_index v) const {
return m_imp->value(v);
}
nlsat::anum_manager& solver::am() {
return m_imp->am();
}
}

View file

@ -25,7 +25,7 @@ namespace nra {
public:
solver(lp::lar_solver& s, reslimit& lim, params_ref const& p = params_ref());
solver(lp::lar_solver& s, reslimit& lim, nla::core & nla_core, params_ref const& p = params_ref());
~solver();

View file

@ -24,7 +24,6 @@
#include "math/lp/lp_dual_simplex.h"
#include "math/lp/indexed_value.h"
#include "math/lp/lar_solver.h"
#include "math/lp/nra_solver.h"
#include "math/lp/nla_solver.h"
#include "math/lp/lp_types.h"
#include "math/polynomial/algebraic_numbers.h"
@ -268,57 +267,21 @@ class theory_lra::imp {
unsigned m_num_conflicts;
// non-linear arithmetic
scoped_ptr<nra::solver> m_nra;
scoped_ptr<nla::solver> m_nla;
bool m_use_nra_model;
scoped_ptr<scoped_anum> m_a1, m_a2;
struct switcher {
theory_lra::imp& m_th_imp;
scoped_ptr<nra::solver>* m_nra;
scoped_ptr<nla::solver>* m_nla;
bool m_use_nla;
switcher(theory_lra::imp& i): m_th_imp(i), m_nra(nullptr), m_nla(nullptr) {
switcher(theory_lra::imp& i): m_th_imp(i), m_nla(nullptr) {
}
bool need_check() {
if (m_use_nla) {
if (m_nla != nullptr)
return (*m_nla)->need_check();
}
else {
if (m_nra != nullptr)
return (*m_nra)->need_check();
}
if (m_nla != nullptr)
return (*m_nla)->need_check();
return false;
}
void push() {
if (m_nla != nullptr)
(*m_nla)->push();
if (m_nra != nullptr)
(*m_nra)->push();
}
void pop(unsigned scopes) {
if (m_nla != nullptr)
(*m_nla)->pop(scopes);
if (m_nra != nullptr)
(*m_nra)->pop(scopes);
}
void add_monic(lpvar v, unsigned sz, lpvar const* vs) {
if (m_use_nla) {
m_th_imp.ensure_nla();
(*m_nla)->add_monic(v, sz, vs);
}
else {
m_th_imp.ensure_nra();
(*m_nra)->add_monic(v, sz, vs);
}
}
};
// integer arithmetic
@ -339,12 +302,7 @@ class theory_lra::imp {
imp & m_th;
var_value_hash(imp & th):m_th(th) {}
unsigned operator()(theory_var v) const {
if (m_th.m_use_nra_model) {
return m_th.is_int(v);
}
else {
return (unsigned)std::hash<lp::impq>()(m_th.get_ivalue(v));
}
return (unsigned)std::hash<lp::impq>()(m_th.get_ivalue(v));
}
};
int_hashtable<var_value_hash, var_value_eq> m_model_eqs;
@ -373,15 +331,39 @@ class theory_lra::imp {
lp::lar_solver& lp(){ return *m_solver.get(); }
const lp::lar_solver& lp() const { return *m_solver.get(); }
void ensure_nra() {
if (!m_nra) {
m_nra = alloc(nra::solver, *m_solver.get(), m.limit(), ctx().get_params());
m_switcher.m_nra = &m_nra;
for (auto const& _s : m_scopes) {
(void)_s;
m_nra->push();
}
}
void init_solver() {
if (m_solver) return;
reset_variable_values();
m_solver = alloc(lp::lar_solver);
// initialize 0, 1 variables:
get_one(true);
get_one(false);
get_zero(true);
get_zero(false);
smt_params_helper lpar(ctx().get_params());
lp().settings().set_resource_limit(m_resource_limit);
lp().settings().simplex_strategy() = static_cast<lp::simplex_strategy_enum>(lpar.arith_simplex_strategy());
lp().settings().bound_propagation() = BP_NONE != propagation_mode();
lp().settings().m_enable_hnf = lpar.arith_enable_hnf();
lp().settings().m_print_external_var_name = lpar.arith_print_ext_var_names();
lp().set_track_pivoted_rows(lpar.arith_bprop_on_pivoted_rows());
lp().settings().report_frequency = lpar.arith_rep_freq();
lp().settings().print_statistics = lpar.arith_print_stats();
// todo : do not use m_arith_branch_cut_ratio for deciding on cheap cuts
unsigned branch_cut_ratio = ctx().get_fparams().m_arith_branch_cut_ratio;
lp().set_cut_strategy(branch_cut_ratio);
lp().settings().m_int_run_gcd_test = ctx().get_fparams().m_arith_gcd_test;
lp().settings().set_random_seed(ctx().get_fparams().m_random_seed);
m_lia = alloc(lp::int_solver, *m_solver.get());
get_one(true);
get_zero(true);
get_one(false);
get_zero(false);
}
lpvar add_const(int c, lpvar& var, bool is_int) {
@ -410,7 +392,6 @@ class theory_lra::imp {
void ensure_nla() {
if (!m_nla) {
m_nla = alloc(nla::solver, *m_solver.get());
m_switcher.m_nla = &m_nla;
for (auto const& _s : m_scopes) {
(void)_s;
m_nla->push();
@ -667,7 +648,7 @@ class theory_lra::imp {
}
TRACE("arith", tout << "v" << v << " := " << mk_pp(t, m) << "\n" << vars << "\n";);
m_solver->register_existing_terms();
m_switcher.add_monic(register_theory_var_in_lar_solver(v), vars.size(), vars.c_ptr());
m_nla->add_monic(register_theory_var_in_lar_solver(v), vars.size(), vars.c_ptr());
}
return v;
}
@ -973,7 +954,6 @@ public:
m_asserted_qhead(0),
m_assume_eq_head(0),
m_num_conflicts(0),
m_use_nra_model(false),
m_model_eqs(DEFAULT_HASHTABLE_INITIAL_CAPACITY, var_value_hash(*this), var_value_eq(*this)),
m_solver(nullptr),
m_resource_limit(*this),
@ -1187,7 +1167,9 @@ public:
sc.m_not_handled = m_not_handled;
sc.m_underspecified_lim = m_underspecified.size();
lp().push();
m_switcher.push();
if (m_nla)
m_nla->push();
}
void pop_scope_eh(unsigned num_scopes) {
@ -1207,7 +1189,8 @@ public:
// VERIFY(l_false != make_feasible());
m_new_bounds.reset();
m_to_check.reset();
m_switcher.pop(num_scopes);
if (m_nla)
m_nla->pop(num_scopes);
TRACE("arith", tout << "num scopes: " << num_scopes << " new scope level: " << m_scopes.size() << "\n";);
}
@ -1588,7 +1571,7 @@ public:
}
void random_update() {
if (m_use_nra_model || m_nla)
if (m_nla)
return;
m_tmp_var_set.clear();
m_tmp_var_set.resize(th.get_num_vars());
@ -1696,13 +1679,7 @@ public:
}
bool is_eq(theory_var v1, theory_var v2) {
if (m_use_nra_model) {
SASSERT(!m_switcher.m_use_nla);
return m_nra->am().eq(nl_value(v1, *m_a1), nl_value(v2, *m_a2));
}
else {
return get_ivalue(v1) == get_ivalue(v2);
}
return get_ivalue(v1) == get_ivalue(v2);
}
bool has_delayed_constraints() const {
@ -1712,7 +1689,6 @@ public:
final_check_status final_check_eh() {
reset_variable_values();
IF_VERBOSE(12, verbose_stream() << "final-check " << m_solver->get_status() << "\n");
m_use_nra_model = false;
lbool is_sat = l_true;
SASSERT(lp().ax_is_correct());
if (lp().get_status() != lp::lp_status::OPTIMAL) {
@ -2140,27 +2116,6 @@ public:
return lia_check;
}
lbool check_aftermath_nra(lbool r) {
m_a1 = alloc(scoped_anum, m_nra->am());
m_a2 = alloc(scoped_anum, m_nra->am());
switch (r) {
case l_false:
set_conflict();
break;
case l_true:
m_use_nra_model = true;
if (assume_eqs()) {
return l_false;
}
break;
case l_undef:
TRACE("arith", tout << "nra-undef\n";);
default:
break;
}
return r;
}
nla::lemma m_lemma;
void false_case_of_check_nla(const nla::lemma & l) {
@ -2196,7 +2151,10 @@ public:
set_conflict_or_lemma(core, false);
}
lbool check_aftermath_nla(lbool r, const vector<nla::lemma>& lv) {
lbool check_nra_continue() {
m_a1 = nullptr; m_a2 = nullptr;
auto & lv = m_nla_lemma_vector;
lbool r = m_nla->check(lv);
switch (r) {
case l_false: {
m_stats.m_nla_lemmas += lv.size();
@ -2217,20 +2175,13 @@ public:
}
lbool check_nra() {
m_use_nra_model = false;
if (!m.inc()) {
TRACE("arith", tout << "canceled\n";);
return l_undef;
}
if (!m_nra && !m_nla) return l_true;
if (!m_nla) return l_true;
if (!m_switcher.need_check()) return l_true;
m_a1 = nullptr; m_a2 = nullptr;
if (m_nra) {
m_explanation.clear();
return check_aftermath_nra(m_nra->check(m_explanation));
}
vector<nla::lemma> lv;
return check_aftermath_nla(m_nla->check(lv), lv);
return check_nra_continue();
}
/**
@ -3259,7 +3210,7 @@ public:
}
lp::explanation m_explanation;
vector<nla::lemma> m_nla_lemma_vector;
literal_vector m_core;
svector<enode_pair> m_eqs;
vector<parameter> m_params;
@ -3363,7 +3314,6 @@ public:
}
void reset_eh() {
m_use_nra_model = false;
m_arith_eq_adapter.reset_eh();
m_solver = nullptr;
m_internalize_head = 0;
@ -3385,65 +3335,14 @@ public:
TRACE("arith", display(tout););
}
nlsat::anum const& nl_value(theory_var v, scoped_anum& r) {
SASSERT(m_nra);
SASSERT(m_use_nra_model);
auto t = get_tv(v);
if (t.is_term()) {
m_todo_terms.push_back(std::make_pair(t, rational::one()));
TRACE("arith", tout << "v" << v << " := w" << t.to_string() << "\n";
lp().print_term(lp().get_term(t), tout) << "\n";);
m_nra->am().set(r, 0);
while (!m_todo_terms.empty()) {
rational wcoeff = m_todo_terms.back().second;
t = m_todo_terms.back().first;
m_todo_terms.pop_back();
lp::lar_term const& term = lp().get_term(t);
TRACE("arith", lp().print_term(term, tout) << "\n";);
scoped_anum r1(m_nra->am());
rational c1(0);
m_nra->am().set(r1, c1.to_mpq());
m_nra->am().add(r, r1, r);
for (auto const & arg : term) {
auto wi = lp().column2tv(arg.column());
c1 = arg.coeff() * wcoeff;
if (wi.is_term()) {
m_todo_terms.push_back(std::make_pair(wi, c1));
}
else {
m_nra->am().set(r1, c1.to_mpq());
m_nra->am().mul(m_nra->value(wi.id()), r1, r1);
m_nra->am().add(r1, r, r);
}
}
}
return r;
}
else {
return m_nra->value(t.id());
}
}
model_value_proc * mk_value(enode * n, model_generator & mg) {
theory_var v = n->get_th_var(get_id());
expr* o = n->get_owner();
if (m_use_nra_model) {
anum const& an = nl_value(v, *m_a1);
if (a.is_int(o) && !m_nra->am().is_int(an)) {
return alloc(expr_wrapper_proc, a.mk_numeral(rational::zero(), a.is_int(o)));
}
return alloc(expr_wrapper_proc, a.mk_numeral(nl_value(v, *m_a1), a.is_int(o)));
}
else {
rational r = get_value(v);
TRACE("arith", tout << mk_pp(o, m) << " v" << v << " := " << r << "\n";);
SASSERT("integer variables should have integer values: " && (!a.is_int(o) || r.is_int() || m.limit().get_cancel_flag()));
if (a.is_int(o) && !r.is_int()) r = floor(r);
return alloc(expr_wrapper_proc, m_factory->mk_value(r, m.get_sort(o)));
}
rational r = get_value(v);
TRACE("arith", tout << mk_pp(o, m) << " v" << v << " := " << r << "\n";);
SASSERT("integer variables should have integer values: " && (!a.is_int(o) || r.is_int() || m.limit().get_cancel_flag()));
if (a.is_int(o) && !r.is_int()) r = floor(r);
return alloc(expr_wrapper_proc, m_factory->mk_value(r, m.get_sort(o)));
}
bool get_value(enode* n, rational& val) {
@ -3818,9 +3717,6 @@ public:
if (m_nla) {
m_nla->display(out);
}
if (m_nra) {
m_nra->display(out);
}
unsigned nv = th.get_num_vars();
for (unsigned v = 0; v < nv; ++v) {
auto t = get_tv(v);