mirror of
				https://github.com/Z3Prover/z3
				synced 2025-11-03 21:09:11 +00:00 
			
		
		
		
	nra to nla
Signed-off-by: Lev Nachmanson <levnach@hotmail.com>
This commit is contained in:
		
							parent
							
								
									bd0180925b
								
							
						
					
					
						commit
						7a79397769
					
				
					 6 changed files with 312 additions and 416 deletions
				
			
		| 
						 | 
				
			
			@ -24,6 +24,8 @@
 | 
			
		|||
#include "math/lp/horner.h"
 | 
			
		||||
#include "math/lp/nla_intervals.h"
 | 
			
		||||
#include "math/grobner/pdd_solver.h"
 | 
			
		||||
#include "math/lp/nla_lemma.h"
 | 
			
		||||
#include "nlsat/nlsat_solver.h"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
namespace nla {
 | 
			
		||||
| 
						 | 
				
			
			@ -66,18 +68,6 @@ public:
 | 
			
		|||
    const rational& rs() const { return m_rs; };
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
class lemma {
 | 
			
		||||
    vector<ineq>     m_ineqs;
 | 
			
		||||
    lp::explanation  m_expl;
 | 
			
		||||
public:
 | 
			
		||||
    void push_back(const ineq& i) { m_ineqs.push_back(i);}
 | 
			
		||||
    size_t size() const { return m_ineqs.size() + m_expl.size(); }
 | 
			
		||||
    const vector<ineq>& ineqs() const { return m_ineqs; }
 | 
			
		||||
    vector<ineq>& ineqs() { return m_ineqs; }
 | 
			
		||||
    lp::explanation& expl() { return m_expl; }
 | 
			
		||||
    const lp::explanation& expl() const { return m_expl; }
 | 
			
		||||
    bool is_conflict() const { return m_ineqs.empty() && !m_expl.empty(); }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
class core;
 | 
			
		||||
//
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -12,8 +12,12 @@
 | 
			
		|||
#include "math/lp/var_eqs.h"
 | 
			
		||||
#include "math/lp/factorization.h"
 | 
			
		||||
#include "math/lp/nla_solver.h"
 | 
			
		||||
#include "math/lp/nla_core.h"
 | 
			
		||||
 | 
			
		||||
namespace nla {
 | 
			
		||||
 | 
			
		||||
nla_settings& solver::settings() { return m_core->m_nla_settings; }
 | 
			
		||||
 | 
			
		||||
void solver::add_monic(lpvar v, unsigned sz, lpvar const* vs) {
 | 
			
		||||
    m_core->add_monic(v, sz, vs);
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			@ -36,7 +40,8 @@ void solver::pop(unsigned n) {
 | 
			
		|||
    m_core->pop(n);
 | 
			
		||||
}
 | 
			
		||||
        
 | 
			
		||||
solver::solver(lp::lar_solver& s): m_core(alloc(core, s, m_res_limit))  {
 | 
			
		||||
solver::solver(lp::lar_solver& s): m_core(alloc(core, s, m_res_limit)),
 | 
			
		||||
                                   m_nra(s, m_res_limit, *m_core) {
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
bool solver::influences_nl_var(lpvar j) const {    
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -11,23 +11,27 @@ Author:
 | 
			
		|||
#include "math/lp/lp_settings.h"
 | 
			
		||||
#include "util/rlimit.h"
 | 
			
		||||
#include "util/params.h"
 | 
			
		||||
#include "nlsat/nlsat_solver.h"
 | 
			
		||||
#include "math/lp/lar_solver.h"
 | 
			
		||||
#include "math/lp/monic.h"
 | 
			
		||||
#include "math/lp/nla_core.h"
 | 
			
		||||
#include "math/lp/nla_settings.h"
 | 
			
		||||
#include "math/lp/nla_lemma.h"
 | 
			
		||||
 | 
			
		||||
namespace nra {
 | 
			
		||||
class solver;
 | 
			
		||||
}
 | 
			
		||||
namespace nla {
 | 
			
		||||
 | 
			
		||||
class core;
 | 
			
		||||
// nonlinear integer incremental linear solver
 | 
			
		||||
class solver {
 | 
			
		||||
    reslimit m_res_limit;
 | 
			
		||||
    core* m_core;
 | 
			
		||||
    nra::solver m_nra;
 | 
			
		||||
public:
 | 
			
		||||
    void add_monic(lpvar v, unsigned sz, lpvar const* vs);
 | 
			
		||||
    
 | 
			
		||||
    solver(lp::lar_solver& s);
 | 
			
		||||
    ~solver();
 | 
			
		||||
    nla_settings& settings() { return m_core->m_nla_settings; }
 | 
			
		||||
    nla_settings& settings();
 | 
			
		||||
    void push();
 | 
			
		||||
    void pop(unsigned scopes);
 | 
			
		||||
    bool need_check();
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -9,272 +9,273 @@
 | 
			
		|||
#include "math/polynomial/polynomial.h"
 | 
			
		||||
#include "math/polynomial/algebraic_numbers.h"
 | 
			
		||||
#include "util/map.h"
 | 
			
		||||
#include "math/lp/monic.h"
 | 
			
		||||
#include "math/lp/nla_core.h"
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
namespace nra {
 | 
			
		||||
 | 
			
		||||
typedef nla::mon_eq mon_eq;
 | 
			
		||||
 | 
			
		||||
typedef nla::variable_map_type variable_map_type;
 | 
			
		||||
    struct solver::imp {
 | 
			
		||||
        lp::lar_solver&      s;
 | 
			
		||||
        reslimit&              m_limit;  
 | 
			
		||||
        params_ref             m_params; 
 | 
			
		||||
        u_map<polynomial::var> m_lp2nl;  // map from lar_solver variables to nlsat::solver variables        
 | 
			
		||||
        scoped_ptr<nlsat::solver> m_nlsat;
 | 
			
		||||
        scoped_ptr<scoped_anum>   m_zero;
 | 
			
		||||
        vector<mon_eq>            m_monics;
 | 
			
		||||
        unsigned_vector           m_monics_lim;
 | 
			
		||||
        mutable variable_map_type m_variable_values; // current model        
 | 
			
		||||
struct solver::imp {
 | 
			
		||||
    lp::lar_solver&      s;
 | 
			
		||||
    reslimit&              m_limit;  
 | 
			
		||||
    params_ref             m_params; 
 | 
			
		||||
    u_map<polynomial::var> m_lp2nl;  // map from lar_solver variables to nlsat::solver variables        
 | 
			
		||||
    scoped_ptr<nlsat::solver> m_nlsat;
 | 
			
		||||
    scoped_ptr<scoped_anum>   m_zero;
 | 
			
		||||
    vector<mon_eq>            m_monics;
 | 
			
		||||
    unsigned_vector           m_monics_lim;
 | 
			
		||||
    mutable variable_map_type m_variable_values; // current model        
 | 
			
		||||
    nla::core&                m_nla_core;    
 | 
			
		||||
    imp(lp::lar_solver& s, reslimit& lim, params_ref const& p, nla::core& nla_core): 
 | 
			
		||||
        s(s), 
 | 
			
		||||
        m_limit(lim),
 | 
			
		||||
        m_params(p),
 | 
			
		||||
        m_nla_core(nla_core) {}
 | 
			
		||||
 | 
			
		||||
        imp(lp::lar_solver& s, reslimit& lim, params_ref const& p): 
 | 
			
		||||
            s(s), 
 | 
			
		||||
            m_limit(lim),
 | 
			
		||||
            m_params(p) {
 | 
			
		||||
        }
 | 
			
		||||
    bool need_check() {
 | 
			
		||||
        return !m_monics.empty() && !check_assignments(m_monics, s, m_variable_values);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
        bool need_check() {
 | 
			
		||||
            return !m_monics.empty() && !check_assignments(m_monics, s, m_variable_values);
 | 
			
		||||
        }
 | 
			
		||||
    void add(lp::var_index v, unsigned sz, lp::var_index const* vs) {
 | 
			
		||||
        m_monics.push_back(mon_eq(v, sz, vs));
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
        void add(lp::var_index v, unsigned sz, lp::var_index const* vs) {
 | 
			
		||||
            m_monics.push_back(mon_eq(v, sz, vs));
 | 
			
		||||
        }
 | 
			
		||||
    void push() {
 | 
			
		||||
        m_monics_lim.push_back(m_monics.size());
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
        void push() {
 | 
			
		||||
            m_monics_lim.push_back(m_monics.size());
 | 
			
		||||
        }
 | 
			
		||||
    void pop(unsigned n) {
 | 
			
		||||
        if (n == 0) return;
 | 
			
		||||
        m_monics.shrink(m_monics_lim[m_monics_lim.size() - n]);
 | 
			
		||||
        m_monics_lim.shrink(m_monics_lim.size() - n);       
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
        void pop(unsigned n) {
 | 
			
		||||
            if (n == 0) return;
 | 
			
		||||
            m_monics.shrink(m_monics_lim[m_monics_lim.size() - n]);
 | 
			
		||||
            m_monics_lim.shrink(m_monics_lim.size() - n);       
 | 
			
		||||
        }
 | 
			
		||||
    /*
 | 
			
		||||
      \brief Check if polynomials are well defined.
 | 
			
		||||
      multiply values for vs and check if they are equal to value for v.
 | 
			
		||||
      epsilon has been computed.
 | 
			
		||||
    */
 | 
			
		||||
    /*        bool check_assignment(mon_eq const& m) const {
 | 
			
		||||
              rational r1 = m_variable_values[m.m_v];
 | 
			
		||||
              rational r2(1);
 | 
			
		||||
              for (auto w : m.vars()) {
 | 
			
		||||
              r2 *= m_variable_values[w];
 | 
			
		||||
              }
 | 
			
		||||
              return r1 == r2;
 | 
			
		||||
              }
 | 
			
		||||
 | 
			
		||||
        /*
 | 
			
		||||
          \brief Check if polynomials are well defined.
 | 
			
		||||
          multiply values for vs and check if they are equal to value for v.
 | 
			
		||||
          epsilon has been computed.
 | 
			
		||||
        */
 | 
			
		||||
        /*        bool check_assignment(mon_eq const& m) const {
 | 
			
		||||
            rational r1 = m_variable_values[m.m_v];
 | 
			
		||||
            rational r2(1);
 | 
			
		||||
            for (auto w : m.vars()) {
 | 
			
		||||
                r2 *= m_variable_values[w];
 | 
			
		||||
            }
 | 
			
		||||
            return r1 == r2;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        bool check_assignments() const {
 | 
			
		||||
            s.get_model(m_variable_values);
 | 
			
		||||
            for (auto const& m : m_monics) {
 | 
			
		||||
                if (!check_assignment(m)) return false;
 | 
			
		||||
            }
 | 
			
		||||
            return true;
 | 
			
		||||
        }
 | 
			
		||||
        */
 | 
			
		||||
        /**
 | 
			
		||||
           \brief one-shot nlsat check.
 | 
			
		||||
           A one shot checker is the least functionality that can 
 | 
			
		||||
           enable non-linear reasoning. 
 | 
			
		||||
           In addition to checking satisfiability we would also need
 | 
			
		||||
           to identify equalities in the model that should be assumed
 | 
			
		||||
           with the remaining solver.
 | 
			
		||||
              bool check_assignments() const {
 | 
			
		||||
              s.get_model(m_variable_values);
 | 
			
		||||
              for (auto const& m : m_monics) {
 | 
			
		||||
              if (!check_assignment(m)) return false;
 | 
			
		||||
              }
 | 
			
		||||
              return true;
 | 
			
		||||
              }
 | 
			
		||||
    */
 | 
			
		||||
    /**
 | 
			
		||||
       \brief one-shot nlsat check.
 | 
			
		||||
       A one shot checker is the least functionality that can 
 | 
			
		||||
       enable non-linear reasoning. 
 | 
			
		||||
       In addition to checking satisfiability we would also need
 | 
			
		||||
       to identify equalities in the model that should be assumed
 | 
			
		||||
       with the remaining solver.
 | 
			
		||||
           
 | 
			
		||||
           TBD: use partial model from lra_solver to prime the state of nlsat_solver.
 | 
			
		||||
           TBD: explore more incremental ways of applying nlsat (using assumptions)
 | 
			
		||||
        */
 | 
			
		||||
        lbool check(lp::explanation& ex) {
 | 
			
		||||
            SASSERT(need_check());
 | 
			
		||||
            m_nlsat = alloc(nlsat::solver, m_limit, m_params, false);
 | 
			
		||||
            m_zero = alloc(scoped_anum, am());
 | 
			
		||||
            m_lp2nl.reset();
 | 
			
		||||
            vector<nlsat::assumption, false> core;
 | 
			
		||||
       TBD: use partial model from lra_solver to prime the state of nlsat_solver.
 | 
			
		||||
       TBD: explore more incremental ways of applying nlsat (using assumptions)
 | 
			
		||||
    */
 | 
			
		||||
    lbool check(lp::explanation& ex) {
 | 
			
		||||
        SASSERT(need_check());
 | 
			
		||||
        m_nlsat = alloc(nlsat::solver, m_limit, m_params, false);
 | 
			
		||||
        m_zero = alloc(scoped_anum, am());
 | 
			
		||||
        m_lp2nl.reset();
 | 
			
		||||
        vector<nlsat::assumption, false> core;
 | 
			
		||||
 | 
			
		||||
            // add linear inequalities from lra_solver
 | 
			
		||||
            for (lp::constraint_index ci : s.constraints().indices()) {
 | 
			
		||||
                add_constraint(ci);
 | 
			
		||||
        // add linear inequalities from lra_solver
 | 
			
		||||
        for (lp::constraint_index ci : s.constraints().indices()) {
 | 
			
		||||
            add_constraint(ci);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        // add polynomial definitions.
 | 
			
		||||
        for (auto const& m : m_monics) {
 | 
			
		||||
            add_monic_eq(m);
 | 
			
		||||
        }
 | 
			
		||||
        // TBD: add variable bounds?
 | 
			
		||||
 | 
			
		||||
        lbool r = l_undef;
 | 
			
		||||
        try {
 | 
			
		||||
            r = m_nlsat->check(); 
 | 
			
		||||
        }
 | 
			
		||||
        catch (z3_exception&) {
 | 
			
		||||
            if (m_limit.get_cancel_flag()) {
 | 
			
		||||
                r = l_undef;
 | 
			
		||||
            }
 | 
			
		||||
 | 
			
		||||
            // add polynomial definitions.
 | 
			
		||||
            for (auto const& m : m_monics) {
 | 
			
		||||
                add_monic_eq(m);
 | 
			
		||||
            else {
 | 
			
		||||
                throw;
 | 
			
		||||
            }
 | 
			
		||||
            // TBD: add variable bounds?
 | 
			
		||||
 | 
			
		||||
            lbool r = l_undef;
 | 
			
		||||
            try {
 | 
			
		||||
                r = m_nlsat->check(); 
 | 
			
		||||
        }
 | 
			
		||||
        TRACE("arith", display(tout); m_nlsat->display(tout << r << "\n"););
 | 
			
		||||
        switch (r) {
 | 
			
		||||
        case l_true: 
 | 
			
		||||
            break;
 | 
			
		||||
        case l_false: 
 | 
			
		||||
            ex.clear();
 | 
			
		||||
            m_nlsat->get_core(core);
 | 
			
		||||
            for (auto c : core) {
 | 
			
		||||
                unsigned idx = static_cast<unsigned>(static_cast<imp*>(c) - this);
 | 
			
		||||
                ex.push_justification(idx, rational(1));
 | 
			
		||||
                TRACE("arith", tout << "ex: " << idx << "\n";);
 | 
			
		||||
            }
 | 
			
		||||
            catch (z3_exception&) {
 | 
			
		||||
                if (m_limit.get_cancel_flag()) {
 | 
			
		||||
                    r = l_undef;
 | 
			
		||||
                }
 | 
			
		||||
                else {
 | 
			
		||||
                    throw;
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
            TRACE("arith", display(tout); m_nlsat->display(tout << r << "\n"););
 | 
			
		||||
            switch (r) {
 | 
			
		||||
            case l_true: 
 | 
			
		||||
                break;
 | 
			
		||||
            case l_false: 
 | 
			
		||||
                ex.clear();
 | 
			
		||||
                m_nlsat->get_core(core);
 | 
			
		||||
                for (auto c : core) {
 | 
			
		||||
                    unsigned idx = static_cast<unsigned>(static_cast<imp*>(c) - this);
 | 
			
		||||
                    ex.push_justification(idx, rational(1));
 | 
			
		||||
                    TRACE("arith", tout << "ex: " << idx << "\n";);
 | 
			
		||||
                }
 | 
			
		||||
                break;
 | 
			
		||||
            break;
 | 
			
		||||
 | 
			
		||||
            case l_undef:
 | 
			
		||||
                break;
 | 
			
		||||
            }            
 | 
			
		||||
            return r;
 | 
			
		||||
        }                
 | 
			
		||||
        case l_undef:
 | 
			
		||||
            break;
 | 
			
		||||
        }            
 | 
			
		||||
        return r;
 | 
			
		||||
    }                
 | 
			
		||||
 | 
			
		||||
        void add_monic_eq(mon_eq const& m) {
 | 
			
		||||
            polynomial::manager& pm = m_nlsat->pm();
 | 
			
		||||
            svector<polynomial::var> vars;
 | 
			
		||||
    void add_monic_eq(mon_eq const& m) {
 | 
			
		||||
        polynomial::manager& pm = m_nlsat->pm();
 | 
			
		||||
        svector<polynomial::var> vars;
 | 
			
		||||
        for (auto v : m.vars()) {
 | 
			
		||||
            vars.push_back(lp2nl(v));
 | 
			
		||||
        }
 | 
			
		||||
        polynomial::monomial_ref m1(pm.mk_monomial(vars.size(), vars.c_ptr()), pm);
 | 
			
		||||
        polynomial::monomial_ref m2(pm.mk_monomial(lp2nl(m.var()), 1), pm);
 | 
			
		||||
        polynomial::monomial * mls[2] = { m1, m2 };
 | 
			
		||||
        polynomial::scoped_numeral_vector coeffs(pm.m());
 | 
			
		||||
        coeffs.push_back(mpz(1));
 | 
			
		||||
        coeffs.push_back(mpz(-1));
 | 
			
		||||
        polynomial::polynomial_ref p(pm.mk_polynomial(2, coeffs.c_ptr(), mls),  pm);
 | 
			
		||||
        polynomial::polynomial* ps[1] = { p };
 | 
			
		||||
        bool even[1] = { false };
 | 
			
		||||
        nlsat::literal lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, even);
 | 
			
		||||
        m_nlsat->mk_clause(1, &lit, nullptr);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void add_constraint(unsigned idx) {
 | 
			
		||||
        auto& c = s.constraints()[idx];
 | 
			
		||||
        auto& pm = m_nlsat->pm();
 | 
			
		||||
        auto k = c.kind();
 | 
			
		||||
        auto rhs = c.rhs();
 | 
			
		||||
        auto lhs = c.coeffs();
 | 
			
		||||
        auto sz = lhs.size();
 | 
			
		||||
        svector<polynomial::var> vars;
 | 
			
		||||
        rational den = denominator(rhs);
 | 
			
		||||
        for (auto kv : lhs) {
 | 
			
		||||
            vars.push_back(lp2nl(kv.second));
 | 
			
		||||
            den = lcm(den, denominator(kv.first));
 | 
			
		||||
        }
 | 
			
		||||
        vector<rational> coeffs;
 | 
			
		||||
        for (auto kv : lhs) {
 | 
			
		||||
            coeffs.push_back(den * kv.first);
 | 
			
		||||
        }
 | 
			
		||||
        rhs *= den;
 | 
			
		||||
        polynomial::polynomial_ref p(pm.mk_linear(sz, coeffs.c_ptr(), vars.c_ptr(), -rhs), pm);
 | 
			
		||||
        polynomial::polynomial* ps[1] = { p };
 | 
			
		||||
        bool is_even[1] = { false };
 | 
			
		||||
        nlsat::literal lit;
 | 
			
		||||
        nlsat::assumption a = this + idx;
 | 
			
		||||
        switch (k) {
 | 
			
		||||
        case lp::lconstraint_kind::LE:
 | 
			
		||||
            lit = ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
 | 
			
		||||
            break;
 | 
			
		||||
        case lp::lconstraint_kind::GE:
 | 
			
		||||
            lit = ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
 | 
			
		||||
            break;
 | 
			
		||||
        case lp::lconstraint_kind::LT:
 | 
			
		||||
            lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
 | 
			
		||||
            break;
 | 
			
		||||
        case lp::lconstraint_kind::GT:
 | 
			
		||||
            lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
 | 
			
		||||
            break;
 | 
			
		||||
        case lp::lconstraint_kind::EQ:
 | 
			
		||||
            lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, is_even);                
 | 
			
		||||
            break;
 | 
			
		||||
        default:
 | 
			
		||||
            lp_assert(false); // unreachable
 | 
			
		||||
        }
 | 
			
		||||
        m_nlsat->mk_clause(1, &lit, a);
 | 
			
		||||
    }               
 | 
			
		||||
 | 
			
		||||
    bool is_int(lp::var_index v) {
 | 
			
		||||
        return s.var_is_int(v);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
    polynomial::var lp2nl(lp::var_index v) {
 | 
			
		||||
        polynomial::var r;
 | 
			
		||||
        if (!m_lp2nl.find(v, r)) {
 | 
			
		||||
            r = m_nlsat->mk_var(is_int(v));
 | 
			
		||||
            m_lp2nl.insert(v, r);
 | 
			
		||||
            TRACE("arith", tout << "j" << v << " := x" << r << "\n";);
 | 
			
		||||
        }
 | 
			
		||||
        return r;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    nlsat::anum const& value(lp::var_index v) const {
 | 
			
		||||
        polynomial::var pv;
 | 
			
		||||
        if (m_lp2nl.find(v, pv))
 | 
			
		||||
            return m_nlsat->value(pv);
 | 
			
		||||
        else
 | 
			
		||||
            return *m_zero;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    nlsat::anum_manager& am() {
 | 
			
		||||
        return m_nlsat->am();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    std::ostream& display(std::ostream& out) const {
 | 
			
		||||
        for (auto m : m_monics) {
 | 
			
		||||
            out << "j" << m.var() << " = ";
 | 
			
		||||
            for (auto v : m.vars()) {
 | 
			
		||||
                vars.push_back(lp2nl(v));
 | 
			
		||||
                out << "j" << v << " ";
 | 
			
		||||
            }
 | 
			
		||||
            polynomial::monomial_ref m1(pm.mk_monomial(vars.size(), vars.c_ptr()), pm);
 | 
			
		||||
            polynomial::monomial_ref m2(pm.mk_monomial(lp2nl(m.var()), 1), pm);
 | 
			
		||||
            polynomial::monomial * mls[2] = { m1, m2 };
 | 
			
		||||
            polynomial::scoped_numeral_vector coeffs(pm.m());
 | 
			
		||||
            coeffs.push_back(mpz(1));
 | 
			
		||||
            coeffs.push_back(mpz(-1));
 | 
			
		||||
            polynomial::polynomial_ref p(pm.mk_polynomial(2, coeffs.c_ptr(), mls),  pm);
 | 
			
		||||
            polynomial::polynomial* ps[1] = { p };
 | 
			
		||||
            bool even[1] = { false };
 | 
			
		||||
            nlsat::literal lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, even);
 | 
			
		||||
            m_nlsat->mk_clause(1, &lit, nullptr);
 | 
			
		||||
            out << "\n";
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        void add_constraint(unsigned idx) {
 | 
			
		||||
            auto& c = s.constraints()[idx];
 | 
			
		||||
            auto& pm = m_nlsat->pm();
 | 
			
		||||
            auto k = c.kind();
 | 
			
		||||
            auto rhs = c.rhs();
 | 
			
		||||
            auto lhs = c.coeffs();
 | 
			
		||||
            auto sz = lhs.size();
 | 
			
		||||
            svector<polynomial::var> vars;
 | 
			
		||||
            rational den = denominator(rhs);
 | 
			
		||||
            for (auto kv : lhs) {
 | 
			
		||||
                vars.push_back(lp2nl(kv.second));
 | 
			
		||||
                den = lcm(den, denominator(kv.first));
 | 
			
		||||
            }
 | 
			
		||||
            vector<rational> coeffs;
 | 
			
		||||
            for (auto kv : lhs) {
 | 
			
		||||
                coeffs.push_back(den * kv.first);
 | 
			
		||||
            }
 | 
			
		||||
            rhs *= den;
 | 
			
		||||
            polynomial::polynomial_ref p(pm.mk_linear(sz, coeffs.c_ptr(), vars.c_ptr(), -rhs), pm);
 | 
			
		||||
            polynomial::polynomial* ps[1] = { p };
 | 
			
		||||
            bool is_even[1] = { false };
 | 
			
		||||
            nlsat::literal lit;
 | 
			
		||||
            nlsat::assumption a = this + idx;
 | 
			
		||||
            switch (k) {
 | 
			
		||||
            case lp::lconstraint_kind::LE:
 | 
			
		||||
                lit = ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
 | 
			
		||||
                break;
 | 
			
		||||
            case lp::lconstraint_kind::GE:
 | 
			
		||||
                lit = ~m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
 | 
			
		||||
                break;
 | 
			
		||||
            case lp::lconstraint_kind::LT:
 | 
			
		||||
                lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::LT, 1, ps, is_even);
 | 
			
		||||
                break;
 | 
			
		||||
            case lp::lconstraint_kind::GT:
 | 
			
		||||
                lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::GT, 1, ps, is_even);
 | 
			
		||||
                break;
 | 
			
		||||
            case lp::lconstraint_kind::EQ:
 | 
			
		||||
                lit = m_nlsat->mk_ineq_literal(nlsat::atom::kind::EQ, 1, ps, is_even);                
 | 
			
		||||
                break;
 | 
			
		||||
            default:
 | 
			
		||||
                lp_assert(false); // unreachable
 | 
			
		||||
            }
 | 
			
		||||
            m_nlsat->mk_clause(1, &lit, a);
 | 
			
		||||
        }               
 | 
			
		||||
 | 
			
		||||
        bool is_int(lp::var_index v) {
 | 
			
		||||
            return s.var_is_int(v);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
        polynomial::var lp2nl(lp::var_index v) {
 | 
			
		||||
            polynomial::var r;
 | 
			
		||||
            if (!m_lp2nl.find(v, r)) {
 | 
			
		||||
                r = m_nlsat->mk_var(is_int(v));
 | 
			
		||||
                m_lp2nl.insert(v, r);
 | 
			
		||||
                TRACE("arith", tout << "j" << v << " := x" << r << "\n";);
 | 
			
		||||
            }
 | 
			
		||||
            return r;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        nlsat::anum const& value(lp::var_index v) const {
 | 
			
		||||
            polynomial::var pv;
 | 
			
		||||
            if (m_lp2nl.find(v, pv))
 | 
			
		||||
                return m_nlsat->value(pv);
 | 
			
		||||
            else
 | 
			
		||||
                return *m_zero;
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        nlsat::anum_manager& am() {
 | 
			
		||||
            return m_nlsat->am();
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        std::ostream& display(std::ostream& out) const {
 | 
			
		||||
            for (auto m : m_monics) {
 | 
			
		||||
                out << "j" << m.var() << " = ";
 | 
			
		||||
                for (auto v : m.vars()) {
 | 
			
		||||
                    out << "j" << v << " ";
 | 
			
		||||
                }
 | 
			
		||||
                out << "\n";
 | 
			
		||||
            }
 | 
			
		||||
            return out;
 | 
			
		||||
        }
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    solver::solver(lp::lar_solver& s, reslimit& lim, params_ref const& p) {
 | 
			
		||||
        m_imp = alloc(imp, s, lim, p);
 | 
			
		||||
        return out;
 | 
			
		||||
    }
 | 
			
		||||
};
 | 
			
		||||
 | 
			
		||||
    solver::~solver() {
 | 
			
		||||
        dealloc(m_imp);
 | 
			
		||||
    }
 | 
			
		||||
solver::solver(lp::lar_solver& s, reslimit& lim, nla::core & nla_core, params_ref const& p) {
 | 
			
		||||
    m_imp = alloc(imp, s, lim, p, nla_core);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
    void solver::add_monic(lp::var_index v, unsigned sz, lp::var_index const* vs) {
 | 
			
		||||
        m_imp->add(v, sz, vs);
 | 
			
		||||
    }
 | 
			
		||||
solver::~solver() {
 | 
			
		||||
    dealloc(m_imp);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
    lbool solver::check(lp::explanation& ex) {
 | 
			
		||||
        return m_imp->check(ex);
 | 
			
		||||
    }
 | 
			
		||||
void solver::add_monic(lp::var_index v, unsigned sz, lp::var_index const* vs) {
 | 
			
		||||
    m_imp->add(v, sz, vs);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
    bool solver::need_check() {
 | 
			
		||||
        return m_imp->need_check();
 | 
			
		||||
    }
 | 
			
		||||
lbool solver::check(lp::explanation& ex) {
 | 
			
		||||
    return m_imp->check(ex);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
    void solver::push() {
 | 
			
		||||
        m_imp->push();
 | 
			
		||||
    }
 | 
			
		||||
bool solver::need_check() {
 | 
			
		||||
    return m_imp->need_check();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
    void solver::pop(unsigned n) {
 | 
			
		||||
        m_imp->pop(n);
 | 
			
		||||
    }
 | 
			
		||||
void solver::push() {
 | 
			
		||||
    m_imp->push();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
    std::ostream& solver::display(std::ostream& out) const {
 | 
			
		||||
        return m_imp->display(out);
 | 
			
		||||
    }
 | 
			
		||||
void solver::pop(unsigned n) {
 | 
			
		||||
    m_imp->pop(n);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
    nlsat::anum const& solver::value(lp::var_index v) const {
 | 
			
		||||
        return m_imp->value(v);
 | 
			
		||||
    }
 | 
			
		||||
std::ostream& solver::display(std::ostream& out) const {
 | 
			
		||||
    return m_imp->display(out);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
    nlsat::anum_manager& solver::am() {
 | 
			
		||||
        return m_imp->am();
 | 
			
		||||
    }
 | 
			
		||||
nlsat::anum const& solver::value(lp::var_index v) const {
 | 
			
		||||
    return m_imp->value(v);
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
nlsat::anum_manager& solver::am() {
 | 
			
		||||
    return m_imp->am();
 | 
			
		||||
}
 | 
			
		||||
 | 
			
		||||
}
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -25,7 +25,7 @@ namespace nra {
 | 
			
		|||
 | 
			
		||||
    public:
 | 
			
		||||
 | 
			
		||||
        solver(lp::lar_solver& s, reslimit& lim, params_ref const& p = params_ref());
 | 
			
		||||
        solver(lp::lar_solver& s, reslimit& lim, nla::core & nla_core, params_ref const& p = params_ref());
 | 
			
		||||
        
 | 
			
		||||
        ~solver();
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -24,7 +24,6 @@
 | 
			
		|||
#include "math/lp/lp_dual_simplex.h"
 | 
			
		||||
#include "math/lp/indexed_value.h"
 | 
			
		||||
#include "math/lp/lar_solver.h"
 | 
			
		||||
#include "math/lp/nra_solver.h"
 | 
			
		||||
#include "math/lp/nla_solver.h"
 | 
			
		||||
#include "math/lp/lp_types.h"
 | 
			
		||||
#include "math/polynomial/algebraic_numbers.h"
 | 
			
		||||
| 
						 | 
				
			
			@ -268,57 +267,21 @@ class theory_lra::imp {
 | 
			
		|||
    unsigned                                          m_num_conflicts;
 | 
			
		||||
 | 
			
		||||
    // non-linear arithmetic
 | 
			
		||||
    scoped_ptr<nra::solver>  m_nra;
 | 
			
		||||
    scoped_ptr<nla::solver>  m_nla;
 | 
			
		||||
    bool                     m_use_nra_model;
 | 
			
		||||
    scoped_ptr<scoped_anum>  m_a1, m_a2;
 | 
			
		||||
 | 
			
		||||
    struct switcher {
 | 
			
		||||
        theory_lra::imp& m_th_imp;
 | 
			
		||||
        scoped_ptr<nra::solver>*  m_nra;
 | 
			
		||||
        scoped_ptr<nla::solver>*  m_nla;
 | 
			
		||||
        bool                      m_use_nla;
 | 
			
		||||
        switcher(theory_lra::imp& i): m_th_imp(i), m_nra(nullptr), m_nla(nullptr) {
 | 
			
		||||
        switcher(theory_lra::imp& i): m_th_imp(i), m_nla(nullptr) {
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        
 | 
			
		||||
        bool need_check() {
 | 
			
		||||
            if (m_use_nla) {
 | 
			
		||||
                if (m_nla != nullptr)
 | 
			
		||||
                    return (*m_nla)->need_check();
 | 
			
		||||
            }
 | 
			
		||||
            else {
 | 
			
		||||
                if (m_nra != nullptr)
 | 
			
		||||
                    return (*m_nra)->need_check();
 | 
			
		||||
            }
 | 
			
		||||
            if (m_nla != nullptr)
 | 
			
		||||
                return (*m_nla)->need_check();
 | 
			
		||||
            return false;
 | 
			
		||||
        }
 | 
			
		||||
        
 | 
			
		||||
        void push() {
 | 
			
		||||
            if (m_nla != nullptr)
 | 
			
		||||
                (*m_nla)->push();
 | 
			
		||||
            if (m_nra != nullptr)
 | 
			
		||||
                (*m_nra)->push();
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        void pop(unsigned scopes) {
 | 
			
		||||
            if (m_nla != nullptr)
 | 
			
		||||
                (*m_nla)->pop(scopes);
 | 
			
		||||
            if (m_nra != nullptr)
 | 
			
		||||
                (*m_nra)->pop(scopes);
 | 
			
		||||
        }
 | 
			
		||||
 | 
			
		||||
        
 | 
			
		||||
        void add_monic(lpvar v, unsigned sz, lpvar const* vs) {
 | 
			
		||||
            if (m_use_nla) {
 | 
			
		||||
                m_th_imp.ensure_nla();
 | 
			
		||||
                (*m_nla)->add_monic(v, sz, vs);
 | 
			
		||||
            }
 | 
			
		||||
            else {
 | 
			
		||||
                m_th_imp.ensure_nra();
 | 
			
		||||
                (*m_nra)->add_monic(v, sz, vs);
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
 
 | 
			
		||||
                
 | 
			
		||||
    };
 | 
			
		||||
 | 
			
		||||
    // integer arithmetic
 | 
			
		||||
| 
						 | 
				
			
			@ -339,12 +302,7 @@ class theory_lra::imp {
 | 
			
		|||
        imp & m_th;
 | 
			
		||||
        var_value_hash(imp & th):m_th(th) {}
 | 
			
		||||
        unsigned operator()(theory_var v) const { 
 | 
			
		||||
            if (m_th.m_use_nra_model) {
 | 
			
		||||
                return m_th.is_int(v);
 | 
			
		||||
            }
 | 
			
		||||
            else {
 | 
			
		||||
                return (unsigned)std::hash<lp::impq>()(m_th.get_ivalue(v)); 
 | 
			
		||||
            }
 | 
			
		||||
            return (unsigned)std::hash<lp::impq>()(m_th.get_ivalue(v));             
 | 
			
		||||
        }
 | 
			
		||||
    };
 | 
			
		||||
    int_hashtable<var_value_hash, var_value_eq>   m_model_eqs;
 | 
			
		||||
| 
						 | 
				
			
			@ -373,15 +331,39 @@ class theory_lra::imp {
 | 
			
		|||
    lp::lar_solver& lp(){ return *m_solver.get(); }
 | 
			
		||||
    const lp::lar_solver& lp() const { return *m_solver.get(); }
 | 
			
		||||
    
 | 
			
		||||
    void ensure_nra() {
 | 
			
		||||
        if (!m_nra) {
 | 
			
		||||
            m_nra = alloc(nra::solver, *m_solver.get(), m.limit(), ctx().get_params());
 | 
			
		||||
            m_switcher.m_nra = &m_nra;
 | 
			
		||||
            for (auto const& _s : m_scopes) {
 | 
			
		||||
                (void)_s;
 | 
			
		||||
                m_nra->push();
 | 
			
		||||
            }
 | 
			
		||||
        }
 | 
			
		||||
    void init_solver() {
 | 
			
		||||
        if (m_solver) return;
 | 
			
		||||
 | 
			
		||||
        reset_variable_values();
 | 
			
		||||
        m_solver = alloc(lp::lar_solver); 
 | 
			
		||||
 | 
			
		||||
        // initialize 0, 1 variables:
 | 
			
		||||
        get_one(true);
 | 
			
		||||
        get_one(false);
 | 
			
		||||
        get_zero(true);
 | 
			
		||||
        get_zero(false);
 | 
			
		||||
 | 
			
		||||
        smt_params_helper lpar(ctx().get_params());
 | 
			
		||||
        lp().settings().set_resource_limit(m_resource_limit);
 | 
			
		||||
        lp().settings().simplex_strategy() = static_cast<lp::simplex_strategy_enum>(lpar.arith_simplex_strategy());
 | 
			
		||||
        lp().settings().bound_propagation() = BP_NONE != propagation_mode();
 | 
			
		||||
        lp().settings().m_enable_hnf = lpar.arith_enable_hnf();
 | 
			
		||||
        lp().settings().m_print_external_var_name = lpar.arith_print_ext_var_names();
 | 
			
		||||
        lp().set_track_pivoted_rows(lpar.arith_bprop_on_pivoted_rows());
 | 
			
		||||
        lp().settings().report_frequency = lpar.arith_rep_freq();
 | 
			
		||||
        lp().settings().print_statistics = lpar.arith_print_stats();
 | 
			
		||||
 | 
			
		||||
        // todo : do not use m_arith_branch_cut_ratio for deciding on cheap cuts
 | 
			
		||||
        unsigned branch_cut_ratio = ctx().get_fparams().m_arith_branch_cut_ratio;
 | 
			
		||||
        lp().set_cut_strategy(branch_cut_ratio);
 | 
			
		||||
        
 | 
			
		||||
        lp().settings().m_int_run_gcd_test = ctx().get_fparams().m_arith_gcd_test;
 | 
			
		||||
        lp().settings().set_random_seed(ctx().get_fparams().m_random_seed);
 | 
			
		||||
        m_lia = alloc(lp::int_solver, *m_solver.get());
 | 
			
		||||
        get_one(true);
 | 
			
		||||
        get_zero(true);
 | 
			
		||||
        get_one(false);
 | 
			
		||||
        get_zero(false);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    lpvar add_const(int c, lpvar& var, bool is_int) {
 | 
			
		||||
| 
						 | 
				
			
			@ -410,7 +392,6 @@ class theory_lra::imp {
 | 
			
		|||
    void ensure_nla() {
 | 
			
		||||
        if (!m_nla) {
 | 
			
		||||
            m_nla = alloc(nla::solver, *m_solver.get());
 | 
			
		||||
            m_switcher.m_nla = &m_nla;
 | 
			
		||||
            for (auto const& _s : m_scopes) {
 | 
			
		||||
                (void)_s;
 | 
			
		||||
                m_nla->push();
 | 
			
		||||
| 
						 | 
				
			
			@ -667,7 +648,7 @@ class theory_lra::imp {
 | 
			
		|||
            }
 | 
			
		||||
            TRACE("arith", tout << "v" << v << " := " << mk_pp(t, m) << "\n" << vars << "\n";);
 | 
			
		||||
            m_solver->register_existing_terms();            
 | 
			
		||||
            m_switcher.add_monic(register_theory_var_in_lar_solver(v), vars.size(), vars.c_ptr());
 | 
			
		||||
            m_nla->add_monic(register_theory_var_in_lar_solver(v), vars.size(), vars.c_ptr());
 | 
			
		||||
        }
 | 
			
		||||
        return v;
 | 
			
		||||
    }
 | 
			
		||||
| 
						 | 
				
			
			@ -973,7 +954,6 @@ public:
 | 
			
		|||
        m_asserted_qhead(0), 
 | 
			
		||||
        m_assume_eq_head(0),
 | 
			
		||||
        m_num_conflicts(0),
 | 
			
		||||
        m_use_nra_model(false),
 | 
			
		||||
        m_model_eqs(DEFAULT_HASHTABLE_INITIAL_CAPACITY, var_value_hash(*this), var_value_eq(*this)),
 | 
			
		||||
        m_solver(nullptr),
 | 
			
		||||
        m_resource_limit(*this),
 | 
			
		||||
| 
						 | 
				
			
			@ -1187,7 +1167,9 @@ public:
 | 
			
		|||
        sc.m_not_handled = m_not_handled;
 | 
			
		||||
        sc.m_underspecified_lim = m_underspecified.size();
 | 
			
		||||
        lp().push();
 | 
			
		||||
        m_switcher.push();
 | 
			
		||||
        if (m_nla)
 | 
			
		||||
            m_nla->push();
 | 
			
		||||
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    void pop_scope_eh(unsigned num_scopes) {
 | 
			
		||||
| 
						 | 
				
			
			@ -1207,7 +1189,8 @@ public:
 | 
			
		|||
        // VERIFY(l_false != make_feasible());
 | 
			
		||||
        m_new_bounds.reset();
 | 
			
		||||
        m_to_check.reset();
 | 
			
		||||
        m_switcher.pop(num_scopes);
 | 
			
		||||
        if (m_nla)
 | 
			
		||||
            m_nla->pop(num_scopes);
 | 
			
		||||
        TRACE("arith", tout << "num scopes: " << num_scopes << " new scope level: " << m_scopes.size() << "\n";);
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -1588,7 +1571,7 @@ public:
 | 
			
		|||
    }
 | 
			
		||||
 | 
			
		||||
    void random_update() {
 | 
			
		||||
        if (m_use_nra_model || m_nla)
 | 
			
		||||
        if (m_nla)
 | 
			
		||||
            return;
 | 
			
		||||
        m_tmp_var_set.clear();
 | 
			
		||||
        m_tmp_var_set.resize(th.get_num_vars());
 | 
			
		||||
| 
						 | 
				
			
			@ -1696,13 +1679,7 @@ public:
 | 
			
		|||
    }
 | 
			
		||||
 | 
			
		||||
    bool is_eq(theory_var v1, theory_var v2) {
 | 
			
		||||
        if (m_use_nra_model) {
 | 
			
		||||
            SASSERT(!m_switcher.m_use_nla);
 | 
			
		||||
            return m_nra->am().eq(nl_value(v1, *m_a1), nl_value(v2, *m_a2));
 | 
			
		||||
        }
 | 
			
		||||
        else {
 | 
			
		||||
            return get_ivalue(v1) == get_ivalue(v2); 
 | 
			
		||||
        }
 | 
			
		||||
        return get_ivalue(v1) == get_ivalue(v2); 
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    bool has_delayed_constraints() const {
 | 
			
		||||
| 
						 | 
				
			
			@ -1712,7 +1689,6 @@ public:
 | 
			
		|||
    final_check_status final_check_eh() {
 | 
			
		||||
        reset_variable_values();
 | 
			
		||||
        IF_VERBOSE(12, verbose_stream() << "final-check " << m_solver->get_status() << "\n");
 | 
			
		||||
        m_use_nra_model = false;
 | 
			
		||||
        lbool is_sat = l_true;
 | 
			
		||||
        SASSERT(lp().ax_is_correct());
 | 
			
		||||
        if (lp().get_status() != lp::lp_status::OPTIMAL) {
 | 
			
		||||
| 
						 | 
				
			
			@ -2140,27 +2116,6 @@ public:
 | 
			
		|||
        return lia_check;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    lbool check_aftermath_nra(lbool r) {
 | 
			
		||||
        m_a1 = alloc(scoped_anum, m_nra->am());
 | 
			
		||||
        m_a2 = alloc(scoped_anum, m_nra->am());
 | 
			
		||||
        switch (r) {
 | 
			
		||||
        case l_false:
 | 
			
		||||
            set_conflict();
 | 
			
		||||
            break;
 | 
			
		||||
        case l_true:
 | 
			
		||||
            m_use_nra_model = true;
 | 
			
		||||
            if (assume_eqs()) {
 | 
			
		||||
                return l_false;
 | 
			
		||||
            }
 | 
			
		||||
            break;
 | 
			
		||||
        case l_undef:
 | 
			
		||||
            TRACE("arith", tout << "nra-undef\n";);
 | 
			
		||||
        default:
 | 
			
		||||
            break;
 | 
			
		||||
        }
 | 
			
		||||
        return r;
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    nla::lemma m_lemma;
 | 
			
		||||
 
 | 
			
		||||
    void false_case_of_check_nla(const nla::lemma & l) {
 | 
			
		||||
| 
						 | 
				
			
			@ -2196,7 +2151,10 @@ public:
 | 
			
		|||
        set_conflict_or_lemma(core, false);
 | 
			
		||||
    }
 | 
			
		||||
    
 | 
			
		||||
    lbool check_aftermath_nla(lbool r, const vector<nla::lemma>& lv) {
 | 
			
		||||
    lbool check_nra_continue() {
 | 
			
		||||
        m_a1 = nullptr; m_a2 = nullptr;
 | 
			
		||||
        auto & lv = m_nla_lemma_vector;
 | 
			
		||||
        lbool r = m_nla->check(lv);
 | 
			
		||||
        switch (r) {
 | 
			
		||||
        case l_false: {
 | 
			
		||||
            m_stats.m_nla_lemmas += lv.size();
 | 
			
		||||
| 
						 | 
				
			
			@ -2217,20 +2175,13 @@ public:
 | 
			
		|||
    }
 | 
			
		||||
 | 
			
		||||
    lbool check_nra() {
 | 
			
		||||
        m_use_nra_model = false;
 | 
			
		||||
        if (!m.inc()) {
 | 
			
		||||
            TRACE("arith", tout << "canceled\n";);
 | 
			
		||||
            return l_undef;
 | 
			
		||||
        }
 | 
			
		||||
        if (!m_nra && !m_nla) return l_true;
 | 
			
		||||
        if (!m_nla) return l_true;
 | 
			
		||||
        if (!m_switcher.need_check()) return l_true;
 | 
			
		||||
        m_a1 = nullptr; m_a2 = nullptr;
 | 
			
		||||
        if (m_nra) {
 | 
			
		||||
            m_explanation.clear();
 | 
			
		||||
            return check_aftermath_nra(m_nra->check(m_explanation));
 | 
			
		||||
        }
 | 
			
		||||
        vector<nla::lemma> lv;
 | 
			
		||||
        return check_aftermath_nla(m_nla->check(lv), lv);
 | 
			
		||||
        return check_nra_continue();
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    /**
 | 
			
		||||
| 
						 | 
				
			
			@ -3259,7 +3210,7 @@ public:
 | 
			
		|||
    }
 | 
			
		||||
 
 | 
			
		||||
    lp::explanation     m_explanation;
 | 
			
		||||
    
 | 
			
		||||
    vector<nla::lemma>  m_nla_lemma_vector;
 | 
			
		||||
    literal_vector      m_core;
 | 
			
		||||
    svector<enode_pair> m_eqs;
 | 
			
		||||
    vector<parameter>   m_params;
 | 
			
		||||
| 
						 | 
				
			
			@ -3363,7 +3314,6 @@ public:
 | 
			
		|||
    }
 | 
			
		||||
 | 
			
		||||
    void reset_eh() {
 | 
			
		||||
        m_use_nra_model = false;
 | 
			
		||||
        m_arith_eq_adapter.reset_eh();
 | 
			
		||||
        m_solver = nullptr;
 | 
			
		||||
        m_internalize_head = 0;
 | 
			
		||||
| 
						 | 
				
			
			@ -3385,65 +3335,14 @@ public:
 | 
			
		|||
        TRACE("arith", display(tout););
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    nlsat::anum const& nl_value(theory_var v, scoped_anum& r) {
 | 
			
		||||
        SASSERT(m_nra);
 | 
			
		||||
        SASSERT(m_use_nra_model);
 | 
			
		||||
        auto t = get_tv(v);
 | 
			
		||||
        if (t.is_term()) {
 | 
			
		||||
 | 
			
		||||
            m_todo_terms.push_back(std::make_pair(t, rational::one()));
 | 
			
		||||
 | 
			
		||||
            TRACE("arith", tout << "v" << v << " := w" << t.to_string() << "\n";
 | 
			
		||||
                  lp().print_term(lp().get_term(t), tout) << "\n";);
 | 
			
		||||
 | 
			
		||||
            m_nra->am().set(r, 0);
 | 
			
		||||
            while (!m_todo_terms.empty()) {
 | 
			
		||||
                rational wcoeff = m_todo_terms.back().second;
 | 
			
		||||
                t = m_todo_terms.back().first;
 | 
			
		||||
                m_todo_terms.pop_back();
 | 
			
		||||
                lp::lar_term const& term = lp().get_term(t);
 | 
			
		||||
                TRACE("arith", lp().print_term(term, tout) << "\n";);
 | 
			
		||||
                scoped_anum r1(m_nra->am());
 | 
			
		||||
                rational c1(0);
 | 
			
		||||
                m_nra->am().set(r1, c1.to_mpq());
 | 
			
		||||
                m_nra->am().add(r, r1, r);                
 | 
			
		||||
                for (auto const & arg : term) {
 | 
			
		||||
                    auto wi = lp().column2tv(arg.column());
 | 
			
		||||
                    c1 = arg.coeff() * wcoeff;
 | 
			
		||||
                    if (wi.is_term()) {
 | 
			
		||||
                        m_todo_terms.push_back(std::make_pair(wi, c1));
 | 
			
		||||
                    }
 | 
			
		||||
                    else {
 | 
			
		||||
                        m_nra->am().set(r1, c1.to_mpq());
 | 
			
		||||
                        m_nra->am().mul(m_nra->value(wi.id()), r1, r1);
 | 
			
		||||
                        m_nra->am().add(r1, r, r);
 | 
			
		||||
                    }
 | 
			
		||||
                }
 | 
			
		||||
            }
 | 
			
		||||
            return r;
 | 
			
		||||
        }
 | 
			
		||||
        else {
 | 
			
		||||
            return m_nra->value(t.id());
 | 
			
		||||
        }
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    model_value_proc * mk_value(enode * n, model_generator & mg) {
 | 
			
		||||
        theory_var v = n->get_th_var(get_id());
 | 
			
		||||
        expr* o = n->get_owner();
 | 
			
		||||
        if (m_use_nra_model) {
 | 
			
		||||
            anum const& an = nl_value(v, *m_a1);
 | 
			
		||||
            if (a.is_int(o) && !m_nra->am().is_int(an)) {
 | 
			
		||||
                return alloc(expr_wrapper_proc, a.mk_numeral(rational::zero(), a.is_int(o)));
 | 
			
		||||
            }
 | 
			
		||||
            return alloc(expr_wrapper_proc, a.mk_numeral(nl_value(v, *m_a1), a.is_int(o)));
 | 
			
		||||
        }
 | 
			
		||||
        else {
 | 
			
		||||
            rational r = get_value(v);
 | 
			
		||||
            TRACE("arith", tout << mk_pp(o, m) << " v" << v << " := " << r << "\n";);
 | 
			
		||||
            SASSERT("integer variables should have integer values: " && (!a.is_int(o) || r.is_int() || m.limit().get_cancel_flag()));
 | 
			
		||||
            if (a.is_int(o) && !r.is_int()) r = floor(r);
 | 
			
		||||
            return alloc(expr_wrapper_proc, m_factory->mk_value(r,  m.get_sort(o)));
 | 
			
		||||
        }
 | 
			
		||||
        rational r = get_value(v);
 | 
			
		||||
        TRACE("arith", tout << mk_pp(o, m) << " v" << v << " := " << r << "\n";);
 | 
			
		||||
        SASSERT("integer variables should have integer values: " && (!a.is_int(o) || r.is_int() || m.limit().get_cancel_flag()));
 | 
			
		||||
        if (a.is_int(o) && !r.is_int()) r = floor(r);
 | 
			
		||||
        return alloc(expr_wrapper_proc, m_factory->mk_value(r,  m.get_sort(o)));        
 | 
			
		||||
    }
 | 
			
		||||
 | 
			
		||||
    bool get_value(enode* n, rational& val) {
 | 
			
		||||
| 
						 | 
				
			
			@ -3818,9 +3717,6 @@ public:
 | 
			
		|||
        if (m_nla) {
 | 
			
		||||
            m_nla->display(out);
 | 
			
		||||
        }
 | 
			
		||||
        if (m_nra) {
 | 
			
		||||
            m_nra->display(out);
 | 
			
		||||
        }
 | 
			
		||||
        unsigned nv = th.get_num_vars();
 | 
			
		||||
        for (unsigned v = 0; v < nv; ++v) {
 | 
			
		||||
            auto t = get_tv(v);
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue