mirror of
https://github.com/Z3Prover/z3
synced 2025-04-22 16:45:31 +00:00
Pseudo-inverse op_constraint
This commit is contained in:
parent
84a5ec221f
commit
79e7380ffc
10 changed files with 144 additions and 47 deletions
|
@ -509,4 +509,10 @@ namespace polysat {
|
|||
pdd constraint_manager::bnor(pdd const& p, pdd const& q) {
|
||||
return bnot(bor(p, q));
|
||||
}
|
||||
|
||||
pdd constraint_manager::pseudo_inv(pdd const& p) {
|
||||
if (p.is_val())
|
||||
return p.manager().mk_val(p.val().pseudo_inverse(p.power_of_2()));
|
||||
return mk_op_term(op_constraint::code::inv_op, p, p.manager().zero());
|
||||
}
|
||||
}
|
||||
|
|
|
@ -126,6 +126,7 @@ namespace polysat {
|
|||
pdd bxor(pdd const& p, pdd const& q);
|
||||
pdd bnand(pdd const& p, pdd const& q);
|
||||
pdd bnor(pdd const& p, pdd const& q);
|
||||
pdd pseudo_inv(pdd const& p);
|
||||
|
||||
constraint* const* begin() const { return m_constraints.data(); }
|
||||
constraint* const* end() const { return m_constraints.data() + m_constraints.size(); }
|
||||
|
|
|
@ -40,6 +40,8 @@ namespace polysat {
|
|||
if (p.index() > q.index())
|
||||
std::swap(m_p, m_q);
|
||||
break;
|
||||
case code::inv_op:
|
||||
SASSERT(q.is_zero());
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
@ -61,6 +63,8 @@ namespace polysat {
|
|||
return eval_shl(p, q, r);
|
||||
case code::and_op:
|
||||
return eval_and(p, q, r);
|
||||
case code::inv_op:
|
||||
return eval_inv(p, r);
|
||||
default:
|
||||
return l_undef;
|
||||
}
|
||||
|
@ -84,6 +88,8 @@ namespace polysat {
|
|||
return out << "<<";
|
||||
case op_constraint::code::and_op:
|
||||
return out << "&";
|
||||
case op_constraint::code::inv_op:
|
||||
return out << "inv";
|
||||
default:
|
||||
UNREACHABLE();
|
||||
return out;
|
||||
|
@ -96,6 +102,9 @@ namespace polysat {
|
|||
}
|
||||
|
||||
std::ostream& op_constraint::display(std::ostream& out, char const* eq) const {
|
||||
if (m_op == code::inv_op)
|
||||
return out << r() << " " << eq << " " << m_op << " " << p();
|
||||
|
||||
return out << r() << " " << eq << " " << p() << " " << m_op << " " << q();
|
||||
}
|
||||
|
||||
|
@ -161,6 +170,8 @@ namespace polysat {
|
|||
return lemma_shl(s, a);
|
||||
case code::and_op:
|
||||
return lemma_and(s, a);
|
||||
case code::inv_op:
|
||||
return lemma_inv(s, a);
|
||||
default:
|
||||
NOT_IMPLEMENTED_YET();
|
||||
return {};
|
||||
|
@ -178,6 +189,8 @@ namespace polysat {
|
|||
// handle masking of high order bits
|
||||
activate_and(s);
|
||||
break;
|
||||
case code::inv_op:
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
}
|
||||
|
@ -571,6 +584,73 @@ namespace polysat {
|
|||
return true;
|
||||
}
|
||||
|
||||
/**
|
||||
* Produce lemmas for constraint: r == inv p
|
||||
* p = 0 => r = 0
|
||||
* r = 0 => p = 0
|
||||
* odd(r) -- for now we are looking for the smallest pseudo-inverse (there are 2^parity(p) of them)
|
||||
* parity(p) >= k && p * r < 2^k => p * r >= 2^k
|
||||
* parity(p) < k && p * r >= 2^k => p * r < 2^k
|
||||
*/
|
||||
clause_ref op_constraint::lemma_inv(solver& s, assignment const& a) {
|
||||
auto& m = p().manager();
|
||||
auto pv = a.apply_to(p());
|
||||
auto rv = a.apply_to(r());
|
||||
|
||||
if (!pv.is_val() || !rv.is_val() || eval_inv(pv, rv) == l_true)
|
||||
return {};
|
||||
|
||||
unsigned parity_pv = pv.val().trailing_zeros();
|
||||
unsigned parity_rv = rv.val().trailing_zeros();
|
||||
|
||||
signed_constraint const invc(this, true);
|
||||
|
||||
// p = 0 => r = 0
|
||||
if (pv.is_zero())
|
||||
return s.mk_clause(~invc, ~s.eq(p()), s.eq(r()), true);
|
||||
// r = 0 => p = 0
|
||||
if (rv.is_zero())
|
||||
return s.mk_clause(~invc, ~s.eq(r()), s.eq(p()), true);
|
||||
// odd(r)
|
||||
if (parity_rv != 0)
|
||||
return s.mk_clause(~invc, s.odd(r()), true);
|
||||
// parity(p) >= k && p * r < 2^k => p * r >= 2^k
|
||||
// parity(p) < k && p * r >= 2^k => p * r < 2^k
|
||||
rational prod = (p() * r()).val();
|
||||
SASSERT(prod != rational::power_of_two(parity_pv)); // Why did it evaluate to false in this case?
|
||||
unsigned lower = 0, upper = p().power_of_2();
|
||||
// binary search for the parity
|
||||
while (lower + 1 < upper) {
|
||||
unsigned middle = (upper + lower) / 2;
|
||||
LOG("Splitting on " << middle);
|
||||
if (parity_pv >= middle) {
|
||||
lower = middle;
|
||||
LOG("Its in [" << lower << "; " << upper << ")");
|
||||
if (prod < rational::power_of_two(middle))
|
||||
return s.mk_clause(~invc, ~s.parity_at_least(p(), middle), s.uge(p() * r(), rational::power_of_two(middle)), false);
|
||||
}
|
||||
else {
|
||||
upper = middle;
|
||||
LOG("Its in [" << lower << "; " << upper << ")");
|
||||
if (prod >= rational::power_of_two(middle))
|
||||
return s.mk_clause(~invc, s.parity_at_least(p(), middle), s.ult(p() * r(), rational::power_of_two(middle)), false);
|
||||
}
|
||||
}
|
||||
UNREACHABLE();
|
||||
return {};
|
||||
}
|
||||
|
||||
/** Evaluate constraint: r == inv p */
|
||||
lbool op_constraint::eval_inv(pdd const& p, pdd const& r) {
|
||||
if (!p.is_val() || !r.is_val())
|
||||
return l_undef;
|
||||
|
||||
if (p.is_zero() || r.is_zero()) // the inverse of 0 is 0 (by arbitrary definition). Just to have some unique value
|
||||
return p.is_zero() && r.is_zero() ? l_true : l_false;
|
||||
|
||||
return p.val().pseudo_inverse(p.power_of_2()) == r.val() ? l_true : l_false;
|
||||
}
|
||||
|
||||
void op_constraint::add_to_univariate_solver(pvar v, solver& s, univariate_solver& us, unsigned dep, bool is_positive) const {
|
||||
pdd pv = s.subst(p());
|
||||
if (!pv.is_univariate_in(v))
|
||||
|
|
|
@ -26,7 +26,7 @@ namespace polysat {
|
|||
|
||||
class op_constraint final : public constraint {
|
||||
public:
|
||||
enum class code { lshr_op, ashr_op, shl_op, and_op };
|
||||
enum class code { lshr_op, ashr_op, shl_op, and_op, inv_op };
|
||||
protected:
|
||||
friend class constraint_manager;
|
||||
|
||||
|
@ -51,6 +51,9 @@ namespace polysat {
|
|||
static lbool eval_and(pdd const& p, pdd const& q, pdd const& r);
|
||||
bool propagate_bits_and(solver& s, bool is_positive);
|
||||
|
||||
clause_ref lemma_inv(solver& s, assignment const& a);
|
||||
static lbool eval_inv(pdd const& p, pdd const& r);
|
||||
|
||||
std::ostream& display(std::ostream& out, char const* eq) const;
|
||||
|
||||
void activate(solver& s);
|
||||
|
|
|
@ -1245,34 +1245,26 @@ namespace polysat {
|
|||
if (c->is_ule()) {
|
||||
// If both are equalities this boils down to polynomial superposition => Might generate the same lemma twice
|
||||
auto const& ule = c->to_ule();
|
||||
auto [lhs_new, changed_lhs, side_condition_lhs] = m_parity_tracker.eliminate_variable(*this, x, a, b, ule.lhs());
|
||||
auto [rhs_new, changed_rhs, side_condition_rhs] = m_parity_tracker.eliminate_variable(*this, x, a, b, ule.rhs());
|
||||
m_lemma.reset();
|
||||
auto [lhs_new, changed_lhs] = m_parity_tracker.eliminate_variable(*this, x, a, b, ule.lhs(), m_lemma);
|
||||
auto [rhs_new, changed_rhs] = m_parity_tracker.eliminate_variable(*this, x, a, b, ule.rhs(), m_lemma);
|
||||
if (!changed_lhs && !changed_rhs)
|
||||
continue; // nothing changed - no reason for propagating lemmas
|
||||
m_lemma.reset();
|
||||
m_lemma.insert(~c);
|
||||
m_lemma.insert_eval(~s.eq(y));
|
||||
for (auto& sc_lhs : side_condition_lhs) // the "path to get the parities"
|
||||
m_lemma.insert(sc_lhs);
|
||||
for (auto& sc_rhs : side_condition_rhs)
|
||||
m_lemma.insert(sc_rhs);
|
||||
|
||||
if (propagate(x, core, a_l_b, c.is_positive() ? s.ule(lhs_new, rhs_new) : ~s.ule(lhs_new, rhs_new)))
|
||||
prop = true;
|
||||
}
|
||||
else if (c->is_umul_ovfl()) {
|
||||
auto const& ovf = c->to_umul_ovfl();
|
||||
auto [lhs_new, changed_lhs, side_condition_lhs] = m_parity_tracker.eliminate_variable(*this, x, a, b, ovf.p());
|
||||
auto [rhs_new, changed_rhs, side_condition_rhs] = m_parity_tracker.eliminate_variable(*this, x, a, b, ovf.q());
|
||||
auto [lhs_new, changed_lhs] = m_parity_tracker.eliminate_variable(*this, x, a, b, ovf.p(), m_lemma);
|
||||
auto [rhs_new, changed_rhs] = m_parity_tracker.eliminate_variable(*this, x, a, b, ovf.q(), m_lemma);
|
||||
if (!changed_lhs && !changed_rhs)
|
||||
continue;
|
||||
m_lemma.reset();
|
||||
m_lemma.insert(~c);
|
||||
m_lemma.insert_eval(~s.eq(y));
|
||||
for (auto& sc_lhs : side_condition_lhs)
|
||||
m_lemma.insert(sc_lhs);
|
||||
for (auto& sc_rhs : side_condition_rhs)
|
||||
m_lemma.insert(sc_rhs);
|
||||
|
||||
if (propagate(x, core, a_l_b, c.is_positive() ? s.umul_ovfl(lhs_new, rhs_new) : ~s.umul_ovfl(lhs_new, rhs_new)))
|
||||
prop = true;
|
||||
|
|
|
@ -132,7 +132,7 @@ namespace polysat {
|
|||
auto const eq_it = std::find(cl.begin(), cl.end(), eq.blit());
|
||||
if (eq_it == cl.end())
|
||||
continue;
|
||||
unsigned const eq_idx = std::distance(cl.begin(), eq_it);
|
||||
unsigned eq_idx = (unsigned)std::distance(cl.begin(), eq_it);
|
||||
any_removed = true;
|
||||
should_remove[eq_idx] = true;
|
||||
if (c.is_positive()) {
|
||||
|
|
|
@ -405,6 +405,9 @@ namespace polysat {
|
|||
/** Create expression for bit-wise nor of p, q. */
|
||||
pdd bnor(pdd const& p, pdd const& q) { return m_constraints.bnor(p, q); }
|
||||
|
||||
/** Create expression for the smallest pseudo-inverse of p. */
|
||||
pdd pseudo_inv(pdd const& p) { return m_constraints.pseudo_inv(p); }
|
||||
|
||||
/**
|
||||
* Create polynomial constant.
|
||||
*/
|
||||
|
|
|
@ -583,7 +583,7 @@ namespace polysat {
|
|||
return inv_pdd;
|
||||
}
|
||||
|
||||
pdd parity_tracker::get_odd(const pdd& p, unsigned parity, svector<signed_constraint>& path) {
|
||||
pdd parity_tracker::get_odd(const pdd& p, unsigned parity, clause_builder& precondition) {
|
||||
LOG("Getting odd part of " << p);
|
||||
if (p.is_val()) {
|
||||
SASSERT(!p.val().is_zero());
|
||||
|
@ -618,14 +618,14 @@ namespace polysat {
|
|||
LOG("Splitting on " << middle << " with " << parity);
|
||||
if (parity >= middle) {
|
||||
lower = middle;
|
||||
path.push_back(~c);
|
||||
precondition.insert(~c);
|
||||
if (needs_propagate)
|
||||
m_builder.insert(~c);
|
||||
verbose_stream() << "Side-condition: " << ~c << "\n";
|
||||
}
|
||||
else {
|
||||
upper = middle;
|
||||
path.push_back(c);
|
||||
precondition.insert(c);
|
||||
if (needs_propagate)
|
||||
m_builder.insert(c);
|
||||
verbose_stream() << "Side-condition: " << c << "\n";
|
||||
|
@ -643,40 +643,40 @@ namespace polysat {
|
|||
}
|
||||
|
||||
// a * x + b = 0 (x not in a or b; i.e., the equation is linear in x)
|
||||
// C[p, ...] resp., C[..., p]
|
||||
std::tuple<pdd, bool, svector<signed_constraint>> parity_tracker::eliminate_variable(saturation& saturation, pvar x, const pdd& a, const pdd& b, const pdd& p) {
|
||||
// C[x, ...] resp., C[..., x]
|
||||
std::tuple<pdd, bool> parity_tracker::eliminate_variable(saturation& saturation, pvar x, const pdd& a, const pdd& b, const pdd& p, clause_builder& precondition) {
|
||||
|
||||
unsigned p_degree = p.degree(x);
|
||||
if (p_degree == 0)
|
||||
return { p, false, {} };
|
||||
return { p, false };
|
||||
if (a.is_val() && a.val().is_odd()) { // just invert and plug it in
|
||||
rational a_inv;
|
||||
VERIFY(a.val().mult_inverse(a.power_of_2(), a_inv));
|
||||
// this works as well if the degree of "p" is not 1: 3 x = a (mod 4) && x^2 <= b => (3a)^2 <= b
|
||||
return { p.subst_pdd(x, -b * a_inv), true, {} };
|
||||
return { p.subst_pdd(x, -b * a_inv), true, };
|
||||
}
|
||||
// from now on we require linear factors
|
||||
if (p_degree != 1)
|
||||
return { p, false, {} }; // TODO: Maybe fallback to brute-force
|
||||
return { p, false }; // TODO: Maybe fallback to brute-force
|
||||
|
||||
pdd a1 = a.manager().zero(), b1 = a1, mul_fac = a1;
|
||||
|
||||
p.factor(x, 1, a1, b1);
|
||||
lbool is_multiple = saturation.get_multiple(a1, a, mul_fac);
|
||||
if (is_multiple == l_false)
|
||||
return { p, false, {} }; // there is no chance to invert
|
||||
return { p, false }; // there is no chance to invert
|
||||
if (is_multiple == l_true) // we multiply with a factor to make them equal
|
||||
return { b1 - b * mul_fac, true, {} };
|
||||
return { b1 - b * mul_fac, true };
|
||||
|
||||
#if 1
|
||||
return { p, false, {} };
|
||||
#if 0
|
||||
return { p, false };
|
||||
#else
|
||||
|
||||
if (!a.is_monomial() || !a1.is_monomial())
|
||||
return { p , false, {} };
|
||||
return { p , false };
|
||||
|
||||
if (!a1.is_var() && !a1.is_val()) {
|
||||
// TODO: Compromise: Maybe only monomials...? Does this make sense?
|
||||
// TODO: Compromise: Maybe only monomials...?
|
||||
//return { p, false, {} };
|
||||
LOG("Warning: Inverting " << a1 << " although it is not a single variable - might not be a good idea");
|
||||
}
|
||||
|
@ -685,37 +685,49 @@ namespace polysat {
|
|||
LOG("Warning: Inverting " << a << " although it is not a single variable - might not be a good idea");
|
||||
}
|
||||
|
||||
// We don't know whether it will work. Use the parity of the assignment
|
||||
|
||||
#if 1
|
||||
unsigned a_parity;
|
||||
if ((a_parity = saturation.min_parity(a)) != saturation.max_parity(a) || saturation.min_parity(a1) < a_parity)
|
||||
return { p, false, {} }; // We need the parity of a and this has to be for sure less than the parity of a1
|
||||
return { p, false }; // We need the parity of a and this has to be for sure less than the parity of a1
|
||||
|
||||
if (b.is_zero())
|
||||
return { b1, true };
|
||||
|
||||
svector<signed_constraint> precondition;
|
||||
#if 0
|
||||
pdd a_pi = get_pseudo_inverse(a, a_parity);
|
||||
#else
|
||||
pdd a_pi = s.pseudo_inv(a);
|
||||
//precondition.insert(~s.eq(a_pi * a, rational::power_of_two(a_parity))); // TODO: This is unfortunately not a justification as the inverse might not be set yet (Can we make it to one?)
|
||||
precondition.insert(~s.parity_at_most(a, a_parity));
|
||||
#endif
|
||||
|
||||
pdd shift = a;
|
||||
|
||||
if (a_parity > 0) {
|
||||
pdd shift = s.lshr(a1, a1.manager().mk_val(a_parity));
|
||||
precondition.push_back(s.eq(rational::power_of_two(a_parity) * shift, a1)); // TODO: Or s.parity_at_least(a1, a_parity) but we want to reuse the variable introduced by the shift
|
||||
return { a_pi * (-b) * shift + b1, true, {std::move(precondition)} };
|
||||
shift = s.lshr(a1, a1.manager().mk_val(a_parity));
|
||||
precondition.insert(~s.eq(rational::power_of_two(a_parity) * shift, a1)); // TODO: Or s.parity_at_least(a1, a_parity) but we want to reuse the variable introduced by the shift
|
||||
}
|
||||
// Special case: If it is already odd we can directly use the pseudo inverse (as it is the inverse in this case!)
|
||||
return { a_pi * (-b) * a + b1, true, {std::move(precondition)} };
|
||||
LOG("Forced elimination: " << a_pi * (-b) * shift + b1);
|
||||
LOG("a: " << a);
|
||||
LOG("a1: " << a1);
|
||||
LOG("parity of a: " << a_parity);
|
||||
LOG("pseudo inverse: " << a_pi);
|
||||
LOG("-b: " << (-b));
|
||||
LOG("shifted a" << shift);
|
||||
LOG("Forced elimination: " << a_pi * (-b) * shift + b1);
|
||||
return { a_pi * (-b) * shift + b1, true };
|
||||
#else
|
||||
unsigned a_parity;
|
||||
unsigned a1_parity;
|
||||
|
||||
if ((a_parity = saturation.min_parity(a)) != saturation.max_parity(a) || (a1_parity = saturation.min_parity(a1)) != saturation.max_parity(a1))
|
||||
return { p, false, {} }; // We need the parity, but we failed to get it precisely
|
||||
return { p, false }; // We need the parity, but we failed to get it precisely
|
||||
|
||||
if (a_parity > a1_parity) {
|
||||
SASSERT(false); // get_multiple should have excluded this case already
|
||||
return { p, false, {} };
|
||||
return { p, false };
|
||||
}
|
||||
|
||||
svector<signed_constraint> precondition;
|
||||
|
||||
auto odd_a = get_odd(a, a_parity, precondition);
|
||||
auto odd_a1 = get_odd(a1, a1_parity, precondition);
|
||||
pdd inv_odd_a = get_inverse(odd_a);
|
||||
|
@ -723,7 +735,7 @@ namespace polysat {
|
|||
LOG("Forced elimination: " << odd_a1 * inv_odd_a * rational::power_of_two(a1_parity - a_parity) * b + b1);
|
||||
verbose_stream() << "Forced elimination: " << odd_a1 * inv_odd_a * rational::power_of_two(a1_parity - a_parity) * (-b) + b1 << "\n";
|
||||
verbose_stream() << "From: " << "eliminated v" << x << " with a = " << a << "; -b = " << -b << "; p = " << p << "\n";
|
||||
return { odd_a1 * inv_odd_a * rational::power_of_two(a1_parity - a_parity) * (-b) + b1, true, {std::move(precondition)} };
|
||||
return { odd_a1 * inv_odd_a * rational::power_of_two(a1_parity - a_parity) * (-b) + b1, true };
|
||||
#endif
|
||||
#endif
|
||||
}
|
||||
|
|
|
@ -87,8 +87,8 @@ namespace polysat {
|
|||
|
||||
pdd get_pseudo_inverse(const pdd& p, unsigned parity);
|
||||
pdd get_inverse(const pdd& p);
|
||||
pdd get_odd(const pdd& p, unsigned parity, svector<signed_constraint>& pat);
|
||||
pdd get_odd(const pdd& p, unsigned parity, clause_builder& precondition);
|
||||
|
||||
std::tuple<pdd, bool, svector<signed_constraint>> eliminate_variable(saturation& saturation, pvar x, const pdd& a, const pdd& b, const pdd& p);
|
||||
std::tuple<pdd, bool> eliminate_variable(saturation& saturation, pvar x, const pdd& a, const pdd& b, const pdd& p, clause_builder& precondition);
|
||||
};
|
||||
}
|
||||
|
|
|
@ -154,7 +154,7 @@ bool rational::mult_inverse(unsigned num_bits, rational & result) const {
|
|||
}
|
||||
|
||||
/**
|
||||
* Compute multiplicative pseudo-inverse modulo 2^num_bits:
|
||||
* Compute the smallest multiplicative pseudo-inverse modulo 2^num_bits:
|
||||
*
|
||||
* mod(n * n.pseudo_inverse(bits), 2^bits) == 2^k,
|
||||
* where k is maximal such that 2^k divides n.
|
||||
|
@ -167,7 +167,7 @@ rational rational::pseudo_inverse(unsigned num_bits) const {
|
|||
SASSERT(!n.is_zero()); // TODO: or we define pseudo-inverse of 0 as 0.
|
||||
unsigned const k = n.trailing_zeros();
|
||||
rational const odd = machine_div2k(n, k);
|
||||
VERIFY(odd.mult_inverse(num_bits, result));
|
||||
VERIFY(odd.mult_inverse(num_bits - k, result));
|
||||
SASSERT_EQ(mod(n * result, rational::power_of_two(num_bits)), rational::power_of_two(k));
|
||||
return result;
|
||||
}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue