3
0
Fork 0
mirror of https://github.com/Z3Prover/z3 synced 2025-04-08 10:25:18 +00:00

adding pre-processing to nlsat for equations

Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
Nikolaj Bjorner 2017-12-30 20:35:33 -08:00
parent 5bc4c9809e
commit 79a9dfd8fd
11 changed files with 696 additions and 222 deletions

View file

@ -370,7 +370,7 @@ public:
app * mk_lt(expr * arg1, expr * arg2) const { return m_manager.mk_app(m_afid, OP_LT, arg1, arg2); }
app * mk_gt(expr * arg1, expr * arg2) const { return m_manager.mk_app(m_afid, OP_GT, arg1, arg2); }
app * mk_add(unsigned num_args, expr * const * args) const { return m_manager.mk_app(m_afid, OP_ADD, num_args, args); }
app * mk_add(unsigned num_args, expr * const * args) const { return num_args == 1 && is_app(args[0]) ? to_app(args[0]) : m_manager.mk_app(m_afid, OP_ADD, num_args, args); }
app * mk_add(expr * arg1, expr * arg2) const { return m_manager.mk_app(m_afid, OP_ADD, arg1, arg2); }
app * mk_add(expr * arg1, expr * arg2, expr* arg3) const { return m_manager.mk_app(m_afid, OP_ADD, arg1, arg2, arg3); }
@ -378,7 +378,7 @@ public:
app * mk_sub(unsigned num_args, expr * const * args) const { return m_manager.mk_app(m_afid, OP_SUB, num_args, args); }
app * mk_mul(expr * arg1, expr * arg2) const { return m_manager.mk_app(m_afid, OP_MUL, arg1, arg2); }
app * mk_mul(expr * arg1, expr * arg2, expr* arg3) const { return m_manager.mk_app(m_afid, OP_MUL, arg1, arg2, arg3); }
app * mk_mul(unsigned num_args, expr * const * args) const { return m_manager.mk_app(m_afid, OP_MUL, num_args, args); }
app * mk_mul(unsigned num_args, expr * const * args) const { return num_args == 1 && is_app(args[0]) ? to_app(args[0]) : m_manager.mk_app(m_afid, OP_MUL, num_args, args); }
app * mk_uminus(expr * arg) const { return m_manager.mk_app(m_afid, OP_UMINUS, arg); }
app * mk_div(expr * arg1, expr * arg2) { return m_manager.mk_app(m_afid, OP_DIV, arg1, arg2); }
app * mk_idiv(expr * arg1, expr * arg2) { return m_manager.mk_app(m_afid, OP_IDIV, arg1, arg2); }

View file

@ -150,7 +150,6 @@ namespace polynomial {
return r;
}
/**
\brief Monomials (power products)
*/
@ -192,7 +191,7 @@ namespace polynomial {
};
static unsigned get_obj_size(unsigned sz) { return sizeof(monomial) + sz * sizeof(power); }
monomial(unsigned id, unsigned sz, power const * pws, unsigned h):
m_ref_count(0),
m_id(id),
@ -257,9 +256,7 @@ namespace polynomial {
if (m_size < SMALL_MONOMIAL) {
// use linear search for small monomials
// search backwards since we usually ask for the degree of "big" variables
unsigned i = last;
while (i > 0) {
--i;
for (unsigned i = last; i-- > 0; ) {
if (get_var(i) == x)
return i;
}
@ -798,9 +795,8 @@ namespace polynomial {
dec_ref(m_unit);
CTRACE("polynomial", !m_monomials.empty(),
tout << "monomials leaked\n";
monomial_table::iterator it = m_monomials.begin(); monomial_table::iterator end = m_monomials.end();
for (; it != end; ++it) {
(*it)->display(tout); tout << "\n";
for (auto * m : m_monomials) {
m->display(tout); tout << "\n";
});
SASSERT(m_monomials.empty());
if (m_own_allocator)
@ -1510,6 +1506,8 @@ namespace polynomial {
unsigned id() const { return m_id; }
unsigned size() const { return m_size; }
monomial * m(unsigned idx) const { SASSERT(idx < size()); return m_ms[idx]; }
monomial *const* begin() const { return m_ms; }
monomial *const* end() const { return m_ms + size(); }
numeral const & a(unsigned idx) const { SASSERT(idx < size()); return m_as[idx]; }
numeral & a(unsigned idx) { SASSERT(idx < size()); return m_as[idx]; }
numeral const * as() const { return m_as; }
@ -1773,11 +1771,9 @@ namespace polynomial {
}
bool manager::is_linear(polynomial const * p) {
unsigned sz = p->size();
for (unsigned i = 0; i < sz; i++) {
if (!is_linear(p->m(0)))
for (monomial* m : *p)
if (!is_linear(m))
return false;
}
return true;
}
@ -2396,6 +2392,7 @@ namespace polynomial {
return mm().is_valid(x);
}
void add_del_eh(del_eh * eh) {
eh->m_next = m_del_eh;
m_del_eh = eh;
@ -6101,6 +6098,33 @@ namespace polynomial {
});
}
lbool sign(monomial* m, numeral const& c, svector<lbool> const& sign_of_vars) {
unsigned sz = size(m);
lbool sign1 = m_manager.is_pos(c) ? l_true : l_false;
for (unsigned i = 0; i < sz; ++i) {
var v = get_var(m, i);
unsigned d = degree(m, i);
lbool sign2 = sign_of_vars.get(v, l_undef);
if (sign2 == l_undef)
return l_undef;
else if (1 == (d % 2) && sign2 == l_false) {
sign1 = sign1 == l_true ? l_false : l_true;
}
}
return sign1;
}
lbool sign(polynomial const * p, svector<lbool> const& sign_of_vars) {
unsigned sz = size(p);
if (sz == 0) return l_undef;
lbool sign1 = sign(p->m(0), p->a(0), sign_of_vars);
for (unsigned i = 1; sign1 != l_undef && i < sz; ++i) {
if (sign(p->m(i), p->a(i), sign_of_vars) != sign1)
return l_undef;
}
return sign1;
}
bool is_pos(polynomial const * p) {
bool found_unit = false;
unsigned sz = p->size();
@ -6372,6 +6396,31 @@ namespace polynomial {
R.add(new_a, mk_monomial(new_m));
}
return R.mk();
}
void substitute(polynomial const* r, var x, polynomial const* p, polynomial const* q, polynomial_ref& result) {
unsigned md = degree(r, x);
if (md == 0) {
result = const_cast<polynomial*>(r);
return;
}
result = 0;
polynomial_ref p1(pm()), q1(pm());
polynomial_ref_buffer ps(pm());
unsigned sz = r->size();
for (unsigned i = 0; i < sz; i++) {
monomial * m0 = r->m(i);
unsigned dm = m0->degree_of(x);
SASSERT(md >= dm);
monomial_ref m1(div_x(m0, x), pm());
pw(p, dm, p1);
pw(q, md - dm, q1);
p1 = mul(r->a(i), m1, p1 * q1);
if (result)
result = add(result, p1);
else
result = p1;
}
}
@ -6918,6 +6967,18 @@ namespace polynomial {
return m_imp->m().set_zp(p);
}
bool manager::is_var(polynomial const* p, var& v) {
return p->size() == 1 && is_var(p->m(0), v) && m_imp->m().is_one(p->a(0));
}
bool manager::is_var(monomial const* m, var& v) {
return m->size() == 1 && m->degree(0) == 1 && (v = m->get_var(0), true);
}
bool manager::is_var_num(polynomial const* p, var& v, scoped_numeral& n) {
return p->size() == 2 && m_imp->m().is_one(p->a(0)) && is_var(p->m(0), v) && is_unit(p->m(1)) && (n = p->a(1), true);
}
small_object_allocator & manager::allocator() const {
return m_imp->mm().allocator();
}
@ -7271,6 +7332,10 @@ namespace polynomial {
void manager::psc_chain(polynomial const * p, polynomial const * q, var x, polynomial_ref_vector & S) {
m_imp->psc_chain(p, q, x, S);
}
lbool manager::sign(polynomial const * p, svector<lbool> const& sign_of_vars) {
return m_imp->sign(p, sign_of_vars);
}
bool manager::is_pos(polynomial const * p) {
return m_imp->is_pos(p);
@ -7307,6 +7372,10 @@ namespace polynomial {
polynomial * manager::substitute(polynomial const * p, unsigned xs_sz, var const * xs, numeral const * vs) {
return m_imp->substitute(p, xs_sz, xs, vs);
}
void manager::substitute(polynomial const* r, var x, polynomial const* p, polynomial const* q, polynomial_ref& result) {
m_imp->substitute(r, x, p, q, result);
}
void manager::factor(polynomial const * p, factors & r, factor_params const & params) {
m_imp->factor(p, r, params);

View file

@ -29,6 +29,7 @@ Notes:
#include "util/params.h"
#include "util/mpbqi.h"
#include "util/rlimit.h"
#include "util/lbool.h"
class small_object_allocator;
@ -98,7 +99,7 @@ namespace polynomial {
};
struct display_var_proc {
virtual void operator()(std::ostream & out, var x) const { out << "x" << x; }
virtual std::ostream& operator()(std::ostream & out, var x) const { return out << "x" << x; }
};
class polynomial;
@ -306,12 +307,27 @@ namespace polynomial {
\brief Return true if m is linear (i.e., it is of the form 1 or x).
*/
static bool is_linear(monomial const * m);
/**
\brief Return true if all monomials in p are linear.
*/
static bool is_linear(polynomial const * p);
/**
\brief Return true if the monomial is a variable.
*/
static bool is_var(monomial const* p, var& v);
/**
\brief Return true if the polynomial is a variable.
*/
bool is_var(polynomial const* p, var& v);
/**
\brief Return true if the polynomial is of the form x + k
*/
bool is_var_num(polynomial const* p, var& v, scoped_numeral& n);
/**
\brief Return the degree of variable x in p.
*/
@ -860,7 +876,13 @@ namespace polynomial {
\brief Return true if p is a square, and store its square root in r.
*/
bool sqrt(polynomial const * p, polynomial_ref & r);
/**
\brief obtain the sign of the polynomial given sign of variables.
*/
lbool sign(polynomial const* p, svector<lbool> const& sign_of_vars);
/**
\brief Return true if p is always positive for any assignment of its variables.
@ -936,6 +958,13 @@ namespace polynomial {
return substitute(p, 1, &x, &v);
}
/**
\brief Apply substiution [x -> p/q] in r.
That is, given r \in Z[x, y_1, .., y_m] return
polynomial q^k * r(p/q, y_1, .., y_m), where k is the maximal degree of x in r.
*/
void substitute(polynomial const* r, var x, polynomial const* p, polynomial const* q, polynomial_ref& result);
/**
\brief Factorize the given polynomial p and store its factors in r.
*/

View file

@ -44,6 +44,8 @@ namespace nlsat {
bool is_learned() const { return m_learned; }
literal * begin() { return m_lits; }
literal * end() { return m_lits + m_size; }
literal const * begin() const { return m_lits; }
literal const * end() const { return m_lits + m_size; }
literal const * c_ptr() const { return m_lits; }
void inc_activity() { m_activity++; }
void set_activity(unsigned v) { m_activity = v; }

File diff suppressed because it is too large Load diff

View file

@ -35,7 +35,7 @@ namespace nlsat {
struct imp;
imp * m_imp;
public:
solver(reslimit& rlim, params_ref const & p);
solver(reslimit& rlim, params_ref const & p, bool incremental);
~solver();
/**

View file

@ -47,6 +47,8 @@ namespace nlsat {
typedef polynomial::var_vector var_vector;
typedef polynomial::manager pmanager;
typedef polynomial::polynomial poly;
typedef polynomial::monomial monomial;
typedef polynomial::numeral numeral;
const var null_var = polynomial::null_var;
const var true_bool_var = 0;

View file

@ -32,11 +32,11 @@ class nlsat_tactic : public tactic {
ast_manager & m;
expr_ref_vector m_var2expr;
expr_display_var_proc(ast_manager & _m):m(_m), m_var2expr(_m) {}
virtual void operator()(std::ostream & out, nlsat::var x) const {
virtual std::ostream& operator()(std::ostream & out, nlsat::var x) const {
if (x < m_var2expr.size())
out << mk_ismt2_pp(m_var2expr.get(x), m);
return out << mk_ismt2_pp(m_var2expr.get(x), m);
else
out << "x!" << x;
return out << "x!" << x;
}
};
@ -51,7 +51,7 @@ class nlsat_tactic : public tactic {
m(_m),
m_params(p),
m_display_var(_m),
m_solver(m.limit(), p) {
m_solver(m.limit(), p, false) {
}
void updt_params(params_ref const & p) {

View file

@ -48,11 +48,15 @@ tactic * mk_qfnra_nlsat_tactic(ast_manager & m, params_ref const & p) {
purify_p),
mk_propagate_values_tactic(m, p),
mk_solve_eqs_tactic(m, p),
using_params(mk_purify_arith_tactic(m, p),
purify_p),
mk_elim_uncnstr_tactic(m, p),
mk_elim_term_ite_tactic(m, p)),
and_then(/* mk_degree_shift_tactic(m, p), */ // may affect full dimensionality detection
factor,
mk_solve_eqs_tactic(m, p),
using_params(mk_purify_arith_tactic(m, p),
purify_p),
using_params(mk_simplify_tactic(m, p),
main_p),
mk_tseitin_cnf_core_tactic(m, p),

View file

@ -782,7 +782,7 @@ namespace qe {
m(m),
m_mode(mode),
m_params(p),
m_solver(m.limit(), p),
m_solver(m.limit(), p, true),
m_nftactic(0),
m_rmodel(m_solver.am()),
m_rmodel0(m_solver.am()),

View file

@ -44,6 +44,7 @@ class solve_eqs_tactic : public tactic {
expr_sparse_mark m_candidate_set;
ptr_vector<expr> m_candidates;
ptr_vector<app> m_vars;
expr_sparse_mark m_nonzero;
ptr_vector<app> m_ordered_vars;
bool m_produce_proofs;
bool m_produce_unsat_cores;
@ -55,8 +56,7 @@ class solve_eqs_tactic : public tactic {
m_r_owner(r == 0 || owner),
m_a_util(m),
m_num_steps(0),
m_num_eliminated_vars(0)
{
m_num_eliminated_vars(0) {
updt_params(p);
if (m_r == 0)
m_r = mk_default_expr_replacer(m);
@ -78,7 +78,7 @@ class solve_eqs_tactic : public tactic {
void checkpoint() {
if (m().canceled())
throw tactic_exception(m().limit().get_cancel_msg());
cooperate("solve-eqs");
cooperate("solve-eqs");
}
// Check if the number of occurrences of t is below the specified threshold :solve-eqs-max-occs
@ -106,7 +106,8 @@ class solve_eqs_tactic : public tactic {
}
}
bool trivial_solve(expr * lhs, expr * rhs, app_ref & var, expr_ref & def, proof_ref & pr) {
if (trivial_solve1(lhs, rhs, var, def, pr)) return true;
if (trivial_solve1(lhs, rhs, var, def, pr))
return true;
if (trivial_solve1(rhs, lhs, var, def, pr)) {
if (m_produce_proofs) {
pr = m().mk_commutativity(m().mk_eq(lhs, rhs));
@ -187,6 +188,77 @@ class solve_eqs_tactic : public tactic {
}
return false;
}
void add_pos(expr* f) {
expr* lhs = nullptr, *rhs = nullptr;
rational val;
if (m_a_util.is_le(f, lhs, rhs) && m_a_util.is_numeral(rhs, val) && val.is_neg()) {
m_nonzero.mark(lhs);
}
else if (m_a_util.is_ge(f, lhs, rhs) && m_a_util.is_numeral(rhs, val) && val.is_pos()) {
m_nonzero.mark(lhs);
}
else if (m().is_not(f, f)) {
if (m_a_util.is_le(f, lhs, rhs) && m_a_util.is_numeral(rhs, val) && !val.is_neg()) {
m_nonzero.mark(lhs);
}
else if (m_a_util.is_ge(f, lhs, rhs) && m_a_util.is_numeral(rhs, val) && !val.is_pos()) {
m_nonzero.mark(lhs);
}
else if (m().is_eq(f, lhs, rhs) && m_a_util.is_numeral(rhs, val) && val.is_zero()) {
m_nonzero.mark(lhs);
}
}
}
bool is_nonzero(expr* e) {
return m_nonzero.is_marked(e);
}
bool isolate_var(app* arg, app_ref& var, expr_ref& div, unsigned i, app* lhs, expr* rhs) {
if (!m_a_util.is_mul(arg)) return false;
unsigned n = arg->get_num_args();
for (unsigned j = 0; j < n; ++j) {
expr* e = arg->get_arg(j);
bool ok = is_uninterp_const(e) && check_occs(e) && !occurs(e, rhs) && !occurs_except(e, lhs, i);
if (!ok) continue;
var = to_app(e);
for (unsigned k = 0; ok && k < n; ++k) {
expr* arg_k = arg->get_arg(k);
ok = k == j || (!occurs(var, arg_k) && is_nonzero(arg_k));
}
if (!ok) continue;
ptr_vector<expr> args;
for (unsigned k = 0; k < n; ++k) {
if (k != j) args.push_back(arg->get_arg(k));
}
div = m_a_util.mk_mul(args.size(), args.c_ptr());
return true;
}
return false;
}
bool solve_nl(app * lhs, expr * rhs, expr* eq, app_ref& var, expr_ref & def, proof_ref & pr) {
SASSERT(m_a_util.is_add(lhs));
if (m_a_util.is_int(lhs)) return false;
unsigned num = lhs->get_num_args();
expr_ref div(m());
for (unsigned i = 0; i < num; i++) {
expr * arg = lhs->get_arg(i);
if (is_app(arg) && isolate_var(to_app(arg), var, div, i, lhs, rhs)) {
ptr_vector<expr> args;
for (unsigned k = 0; k < num; ++k) {
if (k != i) args.push_back(lhs->get_arg(k));
}
def = m_a_util.mk_sub(rhs, m_a_util.mk_add(args.size(), args.c_ptr()));
def = m_a_util.mk_div(def, div);
if (m_produce_proofs)
pr = m().mk_rewrite(eq, m().mk_eq(var, def));
return true;
}
}
return false;
}
bool solve_arith_core(app * lhs, expr * rhs, expr * eq, app_ref & var, expr_ref & def, proof_ref & pr) {
SASSERT(m_a_util.is_add(lhs));
@ -204,7 +276,8 @@ class solve_eqs_tactic : public tactic {
break;
}
else if (m_a_util.is_mul(arg, a, v) &&
is_uninterp_const(v) && !m_candidate_vars.is_marked(v) &&
is_uninterp_const(v) &&
!m_candidate_vars.is_marked(v) &&
m_a_util.is_numeral(a, a_val) &&
!a_val.is_zero() &&
(!is_int || a_val.is_minus_one()) &&
@ -252,16 +325,20 @@ class solve_eqs_tactic : public tactic {
return
(m_a_util.is_add(lhs) && solve_arith_core(to_app(lhs), rhs, eq, var, def, pr)) ||
(m_a_util.is_add(rhs) && solve_arith_core(to_app(rhs), lhs, eq, var, def, pr));
#if 0
// better done inside of nlsat
(m_a_util.is_add(lhs) && solve_nl(to_app(lhs), rhs, eq, var, def, pr)) ||
(m_a_util.is_add(rhs) && solve_nl(to_app(rhs), lhs, eq, var, def, pr));
#endif
}
bool solve(expr * f, app_ref & var, expr_ref & def, proof_ref & pr) {
if (m().is_eq(f)) {
if (trivial_solve(to_app(f)->get_arg(0), to_app(f)->get_arg(1), var, def, pr))
expr* arg1 = 0, *arg2 = 0;
if (m().is_eq(f, arg1, arg2)) {
if (trivial_solve(arg1, arg2, var, def, pr))
return true;
if (m_theory_solver) {
expr * lhs = to_app(f)->get_arg(0);
expr * rhs = to_app(f)->get_arg(1);
if (solve_arith(lhs, rhs, f, var, def, pr))
if (solve_arith(arg1, arg2, f, var, def, pr))
return true;
}
return false;
@ -321,11 +398,14 @@ class solve_eqs_tactic : public tactic {
m_candidate_set.reset();
m_candidates.reset();
m_vars.reset();
m_nonzero.reset();
app_ref var(m());
expr_ref def(m());
proof_ref pr(m());
unsigned size = g.size();
for (unsigned idx = 0; idx < size; idx++) {
add_pos(g.form(idx));
}
for (unsigned idx = 0; idx < size; idx++) {
checkpoint();
expr * f = g.form(idx);
@ -347,10 +427,8 @@ class solve_eqs_tactic : public tactic {
TRACE("solve_eqs",
tout << "candidate vars:\n";
ptr_vector<app>::iterator it = m_vars.begin();
ptr_vector<app>::iterator end = m_vars.end();
for (; it != end; ++it) {
tout << mk_ismt2_pp(*it, m()) << " ";
for (app* v : m_vars) {
tout << mk_ismt2_pp(v, m()) << " ";
}
tout << "\n";);
}
@ -374,12 +452,9 @@ class solve_eqs_tactic : public tactic {
typedef std::pair<expr *, unsigned> frame;
svector<frame> todo;
ptr_vector<app>::const_iterator it = m_vars.begin();
ptr_vector<app>::const_iterator end = m_vars.end();
unsigned num;
for (; it != end; ++it) {
unsigned num = 0;
for (app* v : m_vars) {
checkpoint();
app * v = *it;
if (!m_candidate_vars.is_marked(v))
continue;
todo.push_back(frame(v, 0));
@ -483,20 +558,19 @@ class solve_eqs_tactic : public tactic {
}
// cleanup
it = m_vars.begin();
for (unsigned idx = 0; it != end; ++it, ++idx) {
if (!m_candidate_vars.is_marked(*it)) {
unsigned idx = 0;
for (expr* v : m_vars) {
if (!m_candidate_vars.is_marked(v)) {
m_candidate_set.mark(m_candidates[idx], false);
}
++idx;
}
TRACE("solve_eqs",
tout << "ordered vars:\n";
ptr_vector<app>::iterator it = m_ordered_vars.begin();
ptr_vector<app>::iterator end = m_ordered_vars.end();
for (; it != end; ++it) {
SASSERT(m_candidate_vars.is_marked(*it));
tout << mk_ismt2_pp(*it, m()) << " ";
for (app* v : m_ordered_vars) {
SASSERT(m_candidate_vars.is_marked(v));
tout << mk_ismt2_pp(v, m()) << " ";
}
tout << "\n";);
m_candidate_vars.reset();
@ -609,10 +683,7 @@ class solve_eqs_tactic : public tactic {
if (m_produce_models) {
if (mc.get() == 0)
mc = alloc(gmc, m());
ptr_vector<app>::iterator it = m_ordered_vars.begin();
ptr_vector<app>::iterator end = m_ordered_vars.end();
for (; it != end; ++it) {
app * v = *it;
for (app* v : m_ordered_vars) {
expr * def = 0;
proof * pr;
expr_dependency * dep;