mirror of
https://github.com/Z3Prover/z3
synced 2025-06-15 18:36:16 +00:00
avoid repeated internalization of lambda #4169
Signed-off-by: Nikolaj Bjorner <nbjorner@microsoft.com>
This commit is contained in:
parent
7ae20476c2
commit
799b6131f2
8 changed files with 88 additions and 31 deletions
|
@ -55,6 +55,8 @@ literal_vector collect_induction_literals::pre_select() {
|
|||
continue;
|
||||
result.push_back(lit);
|
||||
}
|
||||
TRACE("induction", ctx.display(tout << "literal index: " << m_literal_index << "\n" << result << "\n"););
|
||||
|
||||
ctx.push_trail(value_trail<context, unsigned>(m_literal_index));
|
||||
m_literal_index = ctx.assigned_literals().size();
|
||||
return result;
|
||||
|
@ -68,11 +70,6 @@ void collect_induction_literals::model_sweep_filter(literal_vector& candidates)
|
|||
vector<expr_ref_vector> values;
|
||||
vs(terms, values);
|
||||
unsigned j = 0;
|
||||
IF_VERBOSE(1,
|
||||
verbose_stream() << "terms: " << terms << "\n";
|
||||
for (auto const& vec : values) {
|
||||
verbose_stream() << "assignment: " << vec << "\n";
|
||||
});
|
||||
for (unsigned i = 0; i < terms.size(); ++i) {
|
||||
literal lit = candidates[i];
|
||||
bool is_viable_candidate = true;
|
||||
|
@ -109,14 +106,26 @@ literal_vector collect_induction_literals::operator()() {
|
|||
// create_induction_lemmas
|
||||
|
||||
bool create_induction_lemmas::is_induction_candidate(enode* n) {
|
||||
expr* e = n->get_owner();
|
||||
app* e = n->get_owner();
|
||||
if (m.is_value(e))
|
||||
return false;
|
||||
// TBD: filter if n is equivalent to a value.
|
||||
bool in_good_context = false;
|
||||
for (enode* p : n->get_parents()) {
|
||||
app* o = p->get_owner();
|
||||
if (o->get_family_id() != m.get_basic_family_id())
|
||||
in_good_context = true;
|
||||
}
|
||||
if (!in_good_context)
|
||||
return false;
|
||||
|
||||
// avoid recursively unfolding skolem terms.
|
||||
if (e->get_num_args() > 0 && e->get_family_id() == null_family_id) {
|
||||
return false;
|
||||
}
|
||||
sort* s = m.get_sort(e);
|
||||
if (m_dt.is_datatype(s) && m_dt.is_recursive(s))
|
||||
return true;
|
||||
|
||||
|
||||
// potentially also induction on integers, sequences
|
||||
// m_arith.is_int(s)
|
||||
// return true;
|
||||
|
@ -160,14 +169,24 @@ enode_vector create_induction_lemmas::induction_positions(enode* n) {
|
|||
* TDD: add depth throttle.
|
||||
*/
|
||||
void create_induction_lemmas::abstract(enode* n, enode* t, expr* x, abstractions& result) {
|
||||
std::cout << "abs: " << result.size() << ": " << mk_pp(n->get_owner(), m) << "\n";
|
||||
if (n->get_root() == t->get_root()) {
|
||||
result.push_back(abstraction(m, x, n->get_owner(), t->get_owner()));
|
||||
}
|
||||
#if 0
|
||||
// check if n is a s
|
||||
if (is_skolem(n->get_owner())) {
|
||||
result.push_back(abstraction(m, n->get_owner()));
|
||||
return;
|
||||
}
|
||||
#endif
|
||||
|
||||
abstraction_args r1, r2;
|
||||
r1.push_back(abstraction_arg(m));
|
||||
for (enode* arg : enode::args(n)) {
|
||||
unsigned n = result.size();
|
||||
abstract(arg, t, x, result);
|
||||
std::cout << result.size() << "\n";
|
||||
for (unsigned i = n; i < result.size(); ++i) {
|
||||
abstraction& a = result[i];
|
||||
for (auto const& v : r1) {
|
||||
|
@ -193,7 +212,9 @@ void create_induction_lemmas::filter_abstractions(bool sign, abstractions& abs)
|
|||
vector<expr_ref_vector> values;
|
||||
expr_ref_vector fmls(m);
|
||||
for (auto & a : abs) fmls.push_back(a.m_term);
|
||||
std::cout << "sweep\n";
|
||||
vs(fmls, values);
|
||||
std::cout << "done sweep\n";
|
||||
unsigned j = 0;
|
||||
for (unsigned i = 0; i < fmls.size(); ++i) {
|
||||
bool all_cex = true;
|
||||
|
@ -207,15 +228,17 @@ void create_induction_lemmas::filter_abstractions(bool sign, abstractions& abs)
|
|||
abs[j++] = abs.get(i);
|
||||
}
|
||||
}
|
||||
std::cout << "resulting size: " << j << " down from " << abs.size() << "\n";
|
||||
abs.shrink(j);
|
||||
}
|
||||
|
||||
/*
|
||||
* Create simple induction lemmas of the form:
|
||||
*
|
||||
* lit & a.eqs() & is-c(t) => is-c(sk);
|
||||
* lit & a.eqs() => alpha
|
||||
* lit & a.eqs() & is-c(t) => ~beta
|
||||
* alpha & is-c(sk) => ~beta
|
||||
*
|
||||
* alpha & is-c(t) => is-c(sk);
|
||||
*
|
||||
* where
|
||||
* lit = is a formula containing t
|
||||
|
@ -242,6 +265,7 @@ void create_induction_lemmas::create_lemmas(expr* t, expr* sk, abstraction& a, l
|
|||
return;
|
||||
expr_ref alpha = a.m_term;
|
||||
auto const& eqs = a.m_eqs;
|
||||
literal alpha_lit = null_literal;
|
||||
literal_vector common_literals;
|
||||
for (func_decl* c : *m_dt.get_datatype_constructors(s)) {
|
||||
func_decl* is_c = m_dt.get_constructor_recognizer(c);
|
||||
|
@ -249,43 +273,51 @@ void create_induction_lemmas::create_lemmas(expr* t, expr* sk, abstraction& a, l
|
|||
for (func_decl* acc : *m_dt.get_constructor_accessors(c)) {
|
||||
if (acc->get_range() != s)
|
||||
continue;
|
||||
if (common_literals.empty()) {
|
||||
common_literals.push_back(~lit);
|
||||
for (auto const& p : eqs) {
|
||||
common_literals.push_back(~mk_literal(m.mk_eq(p.first, p.second)));
|
||||
}
|
||||
if (alpha_lit == null_literal) {
|
||||
alpha_lit = mk_literal(alpha);
|
||||
if (lit.sign()) alpha_lit.neg();
|
||||
}
|
||||
has_1recursive = true;
|
||||
literal_vector lits(common_literals);
|
||||
lits.push_back(~mk_literal(m.mk_app(is_c, t)));
|
||||
expr_ref beta(alpha);
|
||||
expr_safe_replace rep(m);
|
||||
rep.insert(sk, m.mk_app(acc, sk));
|
||||
rep(beta);
|
||||
literal b_lit = mk_literal(beta);
|
||||
if (lit.sign()) b_lit.neg();
|
||||
|
||||
// alpha & is_c(sk) => ~beta
|
||||
literal_vector lits;
|
||||
lits.push_back(~alpha_lit);
|
||||
lits.push_back(~mk_literal(m.mk_app(is_c, sk)));
|
||||
lits.push_back(~b_lit);
|
||||
add_th_lemma(lits);
|
||||
}
|
||||
|
||||
// alpha & is_c(t) => is_c(sk)
|
||||
if (has_1recursive) {
|
||||
literal_vector lits(common_literals);
|
||||
literal_vector lits;
|
||||
lits.push_back(~alpha_lit);
|
||||
lits.push_back(~mk_literal(m.mk_app(is_c, t)));
|
||||
lits.push_back(mk_literal(m.mk_app(is_c, sk)));
|
||||
add_th_lemma(lits);
|
||||
}
|
||||
}
|
||||
if (!common_literals.empty()) {
|
||||
literal_vector lits(common_literals);
|
||||
literal a_lit = mk_literal(alpha);
|
||||
if (lit.sign()) a_lit.neg();
|
||||
lits.push_back(a_lit);
|
||||
|
||||
// phi & eqs => alpha
|
||||
if (alpha_lit != null_literal) {
|
||||
literal_vector lits;
|
||||
lits.push_back(~lit);
|
||||
for (auto const& p : eqs) {
|
||||
lits.push_back(~mk_literal(m.mk_eq(p.first, p.second)));
|
||||
}
|
||||
lits.push_back(alpha_lit);
|
||||
add_th_lemma(lits);
|
||||
}
|
||||
}
|
||||
|
||||
void create_induction_lemmas::add_th_lemma(literal_vector const& lits) {
|
||||
IF_VERBOSE(1, ctx.display_literals_verbose(verbose_stream() << "lemma:\n", lits) << "\n");
|
||||
ctx.mk_clause(lits.size(), lits.c_ptr(), nullptr, smt::CLS_TH_LEMMA);
|
||||
ctx.mk_clause(lits.size(), lits.c_ptr(), nullptr, smt::CLS_TH_AXIOM); // CLS_TH_LEMMA, but then should re-instance if GC'ed
|
||||
++m_num_lemmas;
|
||||
}
|
||||
|
||||
|
@ -301,8 +333,8 @@ literal create_induction_lemmas::mk_literal(expr* e) {
|
|||
func_decl* create_induction_lemmas::mk_skolem(sort* s) {
|
||||
func_decl* f = nullptr;
|
||||
if (!m_sort2skolem.find(s, f)) {
|
||||
sort* domain[2] = { s, m.mk_bool_sort() };
|
||||
f = m.mk_fresh_func_decl("sk", 2, domain, s);
|
||||
sort* domain[3] = { m_a.mk_int(), s, m.mk_bool_sort() };
|
||||
f = m.mk_fresh_func_decl("sk", 3, domain, s);
|
||||
m_pinned.push_back(f);
|
||||
m_pinned.push_back(s);
|
||||
m_sort2skolem.insert(s, f);
|
||||
|
@ -314,10 +346,11 @@ func_decl* create_induction_lemmas::mk_skolem(sort* s) {
|
|||
bool create_induction_lemmas::operator()(literal lit) {
|
||||
unsigned num = m_num_lemmas;
|
||||
enode* r = ctx.bool_var2enode(lit.var());
|
||||
unsigned position = 0;
|
||||
for (enode* n : induction_positions(r)) {
|
||||
expr* t = n->get_owner();
|
||||
sort* s = m.get_sort(t);
|
||||
expr_ref sk(m.mk_app(mk_skolem(s), t, r->get_owner()), m);
|
||||
expr_ref sk(m.mk_app(mk_skolem(s), m_a.mk_int(position), t, r->get_owner()), m);
|
||||
std::cout << "abstract " << mk_pp(t, m) << " " << sk << "\n";
|
||||
abstractions abs;
|
||||
abstract(r, n, sk, abs);
|
||||
|
@ -326,6 +359,8 @@ bool create_induction_lemmas::operator()(literal lit) {
|
|||
for (abstraction& a : abs) {
|
||||
create_lemmas(t, sk, a, lit);
|
||||
}
|
||||
std::cout << "lemmas created\n";
|
||||
++position;
|
||||
}
|
||||
return m_num_lemmas > num;
|
||||
}
|
||||
|
@ -335,6 +370,7 @@ create_induction_lemmas::create_induction_lemmas(context& ctx, ast_manager& m, v
|
|||
m(m),
|
||||
vs(vs),
|
||||
m_dt(m),
|
||||
m_a(m),
|
||||
m_pinned(m),
|
||||
m_num_lemmas(0)
|
||||
{}
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue